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Conditional inference plays a central role in logical ang&san
reasoning, and is used in a wide range of applications. It ba-
sically consists of expressing conditional relationshigtween
parent and child propositions, and then to combine those con
ditionals with evidence about the parent propositions gteoto
infer conclusions about the child propositions. While dtindal
reasoning is a well established part of classical binariclagd
probability calculus, its extension to belief theory hadyame-
cently been proposed. Subjective opinions represent aaspec
type of general belief functions. This article focuses ondio
tional reasoning in subjective logic where beliefs areespnted

in the form of binomial or multinomial subjective opinionBi-
nomial conditional reasoning operators for subjectiveddve
been defined in previous contributions. We extend this aggro
to multinomial opinions, thereby making it possible to regent
conditional and evidence opinions on frames of arbitrazg si
This makes subjective logic a powerful tool for conditionsa-
soning in situations involving ignorance and partial imfi@tion,
and makes it possible to analyse Bayesian network modets wit
uncertain probabilities.

Key words:Subjective logic, Conditional, Deduction, Abduction, Bél
theory, Bayesian networks
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1 INTRODUCTION

Conditionals are propositions likéf we don’t hurry we’ll be late for the
show” or “If it rains, Michael will carry an umbrella” which are of the form
“IF x THEN y” wherex denotes the antecedent anthe consequent propo-
sition. The truth value of conditionals can be evaluatedffieigtnt ways, e.g.
as binary TRUE or FALSE, as a probability measure or as anapirCon-
ditionals are complex propositions because they contaBnéecedent and a
consequent that are also propositions with truth valuescira be evaluated
in the same way. Conditionals can be linked e.g. by lettingrdiional
proposition be the antecedent of another conditional pitipo.

The idea of having a conditional connection between an adestt and a
consequent proposition can be traced back to Ramsey [21]antfoulated
what has become known as Ramsey’s Téstdecide whether you believe a
conditional, provisionally or hypothetically add the aoéglent to your stock
of beliefs, and consider whether to believe the consequéhis idea was
translated into a formal language by Stalnaker [27] in tmnfof the so-called
Stalnaker’s Hypothesis, formally expressed adF = THEN y) = p(y|x).
The interpretation of Stalnaker’s Hypothesis is that trabpbility of the con-
ditional proposition “IFx THEN y” is equal to the probability of the propo-
sition y given that the propositiom is TRUE. A more precise expression of
Stalnaker’s hypothesis is therefgrdF x THEN y) = p(y|(p(z) = 1)), but
the bulkiness of this notation would make it impractical.

An alternative viewpoint to that of Stalnaker was put foravéy Lewis
[18] who argued that conditional propositions do not hauthtvalues and
that they do not express propositions. This would mean tiraariy propo-
sitionsx andy, there is no proposition for which p(z) = p(y|z), so the
conditional probability can not be the same as the proligioficonditionals.

In our opinion Stalnaker’s Hypothesis is sound and appleéfdr condi-
tional reasoning. We would argue against Lewis’ view by dingaying that
it is meaningful to assign a probability to a conditionalposition like “y|x”,
which is defined in case is true, and undefined in casas false.

Meaningful conditional deduction requires relevance leetwantecedent
and consequent, i.e. that the consequent depends on tleedene. Condi-
tionals that are based on the dependence between consaqdaritecedent
are universally valid, and are callémbical conditionald3]. Deduction with
logical conditionals reflect human intuitive conditioneésoning.

Both binary logic and probability calculus have mechanigarscondi-
tional reasoning. In binary logic, Modus Ponens (MP) and Modollens



(MT) are the classical operators which are used in any fieldgit that re-
quires conditional deduction. In probability calculusndanial conditional
deduction is expressed as:

p(yllx) = p(x)p(ylz) + p(Z)p(y|T) 1)
where the terms are interpreted as follows:

(y|lz) : the conditional probability of givenz is TRUE
(y|z) : the conditional probability of givenz is FALSE
p(x) : the probability of the antecedent
(T) : the probability of the antecedent’s complemeatl( — p(x))
(y|lz) : the deduced probability of the consequgnt

The notatiory ||z, introduced in [15], denotes that the truth or probability
of propositiony is deduced as a function of the probability of the antecedent
x together with the conditionals. The expressigp||x) thus represents a
derived value, whereas the expressipfigx) andp(y|Z) representinput val-
ues together witlp(z). Below, this notational convention will also be used
for opinions in subjective logic.

This article describes how the same principles for condéionference
outlined above can be formulated in subjective logic. Theaathge of this
approach s that conditional reasoning models can be athlysh subjective
opinions as input and output values, i.e. in the presencencénainty and
partial ignorance. This will also allow the analyst to appaée the relative
proportions of firm evidence and uncertainty as contrilgufactors to the
derived probabilistic likelihoods.

This article is structured as follows. Section 2 reviewshatuailistic con-
ditional reasoning in order to provide a benchmark for sttije logic de-
scribed later. Section 3 reviews the belief representatged in classical
Dempster-Shafer belief theory as a background for subgopinions. Sec-
tion 4 provides a brief review of previous approaches to darhl belief
reasoning. Section 5 describes subjective opinions whietuged as argu-
ments in subjective logic. Section 6 describes conditidealuction and ab-
duction in subjective logic, and Section 7 describes howeBan networks
can be based on subjective logic. Section 8 suggests afipticiomains of
conditional reasoning with subjective logic, and conchitte presentation.



2 PROBABILISTIC CONDITIONAL REASONING

Classical results from probabilistic conditional reasgrére briefly reviewed
below in order to provide a benchmark for conditional reasgmvith subjec-
tive logic, described in Sec.6.

2.1 Binomial Conditional Reasoning

Probabilistic conditional reasoning is used extensivelgrieas where conclu-
sions need to be derived from probabilistic input evidesaeh as for making
diagnoses from medical tests. A pharmaceutical companyévelops a test
for a particular infection disease will typically deterraithe reliability of the
test by letting a group of infected and a group of non-infégteople undergo
the test. The result of these trials will then determine @i@bility of the
test in terms of itsensitivityp(z|y) andfalse positive rate(x|y), wherex:
“Positive Test", y: “Infected” andy: “Not infected”. The conditionals are
interpreted as:

e p(z|y): “The probability of positive test given infection”
e p(x|y): “The probability of positive test in the absence of infentio

The problem with applying these reliability measures inactical setting
is that the conditionals are expressed in the oppositetdireto what the
practitioner needs in order to apply the expression of BEgI{ie conditionals
needed for making the diagnosis are:

e p(y|x): “The probability of infection given positive test”
¢ p(y|Z): “The probability of infection given negative test”

but these are usually not directly available to the medicatiitioner. How-
ever, they can be obtained if the base rate of the infectiknasvn.

The base rate fallacy [17] in medicine consists of makingetiheneous as-
sumption thap(y|z) = p(z|y). While this reasoning error often can produce
a relatively good approximation of the correct diagnostayability value, it
can lead to a completely wrong result and wrong diagnosiase ¢he base
rate of the disease in the population is very low and theiiig of the test
is not perfect. The required conditionals can be correatiyved by invert-
ing the available conditionals using Bayes rule. The iragdonditionals are
obtained as follows:

1) = PEAY)
p(@ly) = 505 L i) = py)p(zly) )
p(ylz) = 2Ery) o

p(z)



On the right hand side of Eq.(2) the base rate of the diseabe ipopulation
is expressed by(y). By applying Eq.(1) withxz andy swapped in every
term, the expected rate of positive tegfs) in Eq.(2) can be computed as a
function of the base ratg(y). In the following,a(z) anda(y) will denote the
base rates aof andy respectively. The required conditional is:

a(y)p(zly) 3)
a(y)p(zly) + a@p(=([y)

A medical test result is typically considered positive ogaiive, so when
applying Eq.(1) it can be assumed that eithér) = 1 (positive) orp(z)
=1 (negative). In case the patient tests positive, Eq.(&)bsasimplified to
p(y||z) = p(y|x) so that Eq.(3) will give the correct likelihood that the |t
actually has contracted the disease.

pylz) =

2.2 Example 1: Probabilistic Medical Reasoning

Let the sensitivity of a medical test be expresseg@sy) = 0.9999 (i.e.
an infected person will test positive in 99.99% of the casag) the false
positive rate bep(z|y) = 0.001 (i.e. a non-infected person will test posi-
tive in 0.1% of the cases). Let the base rate of infection ipytation A be
1% (expressed as(y4)=0.01) and let the base rate of infection in popula-
tion B be 0.01% (expressed a$ys)=0.0001). Assume that a person from
populationA tests positive, then Eq.(3) and Eq.(1) lead to the concdfutsiat
p(yallz) = p(yalz) = 0.9099 which indicates a 91% likelihood that the per-
son is infected. Assume that a person from populaBaests positive, then
p(ysllz) = p(yp|z) = 0.0909 which indicates only a 9% likelihood that the
person is infected. By applying the correct method the batefallacy is
avoided in this example.

2.3 Deductive and Abductive Reasoning

In the general case where the truth of the antecedent is &squtas a proba-
bility, and not just binary TRUE and FALSE, the opposite citindal is also
needed as specified in Eg.(1). In case the negative condlii®not directly
available, it can be derived according to Eq.(3) by swappiagdZ in every
term. This produces:

= a(y)p(z|y)
PYT) = Sty T

4
— a(y)(1—p(z|y))
a(y)(1-p(zly))+a(@)(1-p(z[y))

Eq.(3) and Eq.(4) enables conditional reasoning even whemequired
conditionals are expressed in the reverse direction to ishededed.




The termframe® will be used with the meaning of a traditional state space
of mutually disjoint states. We will use the tefimarent frame” and“child
frame” to denote the reasoning direction, meaning that the paramtef is
what the analyst has evidence about, and probabilitiestbeerhild frame is
what the analyst needs. Defining parent and child framealis ¢lquivalent
with defining the direction of the reasoning.

Forward conditional inference, calle@ductionis when the parent frame
is the antecedent and the child frame is the consequent @iviikable con-
ditionals. Reverse conditional inference, calidmtiuction is when the parent
frame is the consequent, and the child frame is the anteteden

Deductive and abductive reasoning situations are illtestrn Fig.1 where
x denotes a state in the parent frame aritbnotes a state in the child frame.
Conditionals are expressed@gonsequentantecedent

p(x) | Parent = antecedent (& p(x) | Parent = consequent
— 8 —
/ <)
a > 7 <
; 2 ; ;
p(y1x) | p(y1x) | conditionals | p(x1y) | p(x1¥) | conditionals
* - A g > A
o
N 4 3. \ 2
p(y) | Child = consequent \Q/ p(y) | Child = antecedent
(a) Deduction (b) Abduction

FIGURE 1
Visualising deduction and abduction

The concepts ofcausal” and“derivative” reasoning can be meaningful
for clearly causal conditional relationships. By assunthmgt the antecedent
causes the consequent, then causal reasoning is equit@eductive rea-
soning, and derivative reasoning is equivalent to abdecgasoning.

In medical reasoning for example, the infection causesdsietd be posi-
tive, not the other way. The reliability of medical testsxpeessed as causal
conditionals, whereas the practitioner needs to apply thivative inverted
conditionals. Starting from a positive test to concludé tha patient is in-
fected therefore represents derivative reasoning. Magilpdave a tendency
to reason in a causal manner even in situations where degvaasoning is

* Usually calledframe of discernmerin traditional belief theory



required. In other words, derivative situations are oftenfased with causal
situations, which provides an explanation for the tendesfahe base rate
fallacy in medical diagnostics. In legal reasoning, thes#&ype of reasoning
error is calledhe prosecutor’s fallacy

2.4 Multinomial Conditional Reasoning

So far in this presentation the parent and child frames hansisted of binary
sets{z,7} and{y,y}. In general, both the parent and child frames in a
conditional reasoning situation can consist of an arhitrarmber of disjoint
states. LetX = {xz;|¢ = 1...k} be the parent frame with cardinaliky and
letY = {y;|j = 1...1} be the child frame with cardinality The deductive
conditional relationship betweel andY is then expressed with vector
conditionalsp(Y'|z;), each being of dimensions. This is illustrated in Fig.2.

Parent Child frame
fr;me Vs [y [ [ |

X C prix) D
x, vz

Vector conditionals p(Y'| x; )

x.k ( p(Y. I x,) )

FIGURE 2
Multinomial deductive vector conditionals between par&nand childY”

The vector conditional(Y |x;) relates each state to the frameY'. The
elements op(Y'|z;) are the scalar conditionals expressed as:

l
plyjle:),  where  p(y;la;) = 1. (5)
j=1
The probabilistic expression for multinomial conditiornkdduction from
X toY, generalising that of Eq.(1), is the vecigiy”|| X') overY where each
scalar vector elemep{(y; || X) is:

k

p(y;[1X) =D plai)p(y;las) - (6)

=1



The multinomial probabilistic expression for invertingndiitionals, gen-
eralising that of Eq.(3), becomes:

o1 alye)p(ailye)
wherea(y,) represents the base rateyof

By substituting the conditionals of Eq.(6) with invertedltimomial condi-
tionals from Eq.(7), the general expression for probaixlabduction emerges:

p(yjlwi) =

- b a(y;)p(@ily;)
X)) =S pla: Y. ' °
Pl =20l ><Eg_1a(yt>p<xi|yt>> X

This will be illustrated by a numerical example below.

2.5 Example 2: Probabilistic Intelligence Analysis

Two countriesd and B are in conflict, and intelligence analysts of counfty
want to find out whether countryt intends to use military aggression. The
analysts of countnyB consider the following possible alternatives regarding
countryA’s plans:

y1 . No military aggression from countryt
yo - Minor military operations by countryl (9)
ys . Full invasion of countryB by countryA

The way the analysts will determine the most likely plan afitioy A is by
trying to observe movement of troops in countty For this, they have spies
placed inside countnA. The analysts of countrys consider the following
possible movements of troops.

1 :  No movement of countr’s troops
Zo :  Minor movements of country’s troops (10)
x3 : Full mobilisation of all countryA’s troops

The analysts have defined a set of conditional probabilifi¢éoop move-
ments as a function of military plans, as specified by Table 1.

The rationale behind the conditionals are as follows. IrecamuntryA
has no plans of military aggressidn; ), then there is little logistic reason
for troop movements. However, even without plans of miitaggression
against countryB it is possible that countryl expects military aggression
from countryB, forcing troop movements by country. In case countnA



Troop movements

Probability 1 X9 T3
vectors No movemt. Minor movemt. Full mob.
P(X[y1): | p(x1lyr) =0.50  p(xalyr) =0.25  p(zslyr) = 0.25
P(Xly2): | p(z1|y2) =0.00 p(z2|y2) =0.50 p(zs|y2) = 0.50
P(Xlys): | p(z1lys) = 0.00 p(z2lys) =0.25 p(zslys) = 0.75

TABLE 1
Conditional probabilitiep (X |Y): troop movement; given military plany;

prepares for minor military operations against couryy- ), then necessar-
ily troop movements are required. In case countiyrepares for full invasion
of country B (ys), then significant troop movements are required.

Based on observations by spies of counrythe analysts determine the
likelihoods of actual troop movements to be:

p(x1) =0.00, p(x2) = 0.50 p(x3) = 0.50 . (11)

The analysts are faced with an abductive reasoning situatid must first
derive the conditionalg(Y'|X'). The base rate of military plans is set to:

a(yr) = 0.70 , a(y2) = 0.20, a(ys) = 0.10 . (12)

The expression of Eq.(7) can now be used to derive the redjcinedition-
als, which are given in Table 2 below.

Probabilities of military plans given troop movement
pY|z1) p(Ylz2) p(Ylzs)
Military plan No movemt. Minor movemt. Full mob.
yi:Noaggr. | p(yi|z1) =1.00 | p(yi|z2) = 0.58 | p(yi|xs) = 0.50
ya2: Minor ops. | p(y2|x1) = 0.00 | p(yz|z2) = 0.34 | p(y2|xs) = 0.29
ys: Invasion | p(ys|x1) = 0.00 | p(ys|za) = 0.08 | p(ys|zs) = 0.21

TABLE 2
Conditional probabilitie(Y | X): military plany; given troop movement;

The expression of Eq.(6) can then be used to derive the piliiesbof



military plans of countryA, resulting in:
p(yillX) =054,  p(ye[X) =031,  p(ys)|X)=015. (13)

Based on the results of Eq.(13), it seems most likely thahttgud does
not plan any military aggression against counfty Analysing the same ex-
ample with subjective logic in Sec.6.4 will show that thessults give a
misleading estimate of country’s plans because they hide the underlying
uncertainty.

3 BELIEF REPRESENTATIONS

Traditional probabilities are not suitable for expressiggorance about the
likelihoods of possible states or outcomes. If somebodytsvém express
ignorance as$l don’'t know” this would be impossible with a simple scalar
probability value. A probability 0.5 would for example meirat the event
will take place50% of the time, which in fact is quite informative, and very
different from ignorance. Alternatively, a uniform prolilith density func-
tion over all possible states would more closely expressituation of ig-
norance about the outcome of an event. Subjective opinidrislwcan be
interpreted as probability density functions, and which eelated to belief
functions, can be used to express this type of ignorance.b&slkeground for
subjective opinions, the theory of belief functions will lngéefly described.

Belief theory represents an extension of classical prdibaby allowing
explicit expression of ignorance. Belief theory has itgwrin a model for
upper and lower probabilities proposed by Dempster in 19%60afer later
proposed a model for expressing beliefs [22]. The main idgdnl belief
theory is to abandon the additivity principle of probalititeory, i.e. that the
sum of probabilities on all pairwise disjoint states must agd to one. Instead
belief theory gives observers the ability to assign soechtielief mass to any
subset of the frame, i.e. to non-exclusive possibilitieduding the whole
frame itself. The main advantage of this approach is thairigmce, i.e. the
lack of information, can be explicitly expressed e.g. bygriag belief mass
to the whole frame.

The term uncertainty can be used to express many differpetésof our
perception of reality. In this article, it will be used in teense of uncertainty
about probability values. This is different from imprecigebabilities which
are normally interpreted as a pair of upper and lower prdibabalues. A
philosophical problem with imprecise probabilities is ciésed in Sec.4.3.
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General belief functions allow complex belief structurese expressed
on arbitrarily large frames. Shafer’s book [22] describeenynaspects of
belief theory, but the two main elements are 1) a flexible wWagxpressing
beliefs, and 2) a conjunctive method for fusing beliefs, owmly known as
Dempster’s Rule. We will not be concerned with Dempstets here.

In order for this presentation to be self contained, cemoalcepts from
Dempster-Shafer theory of evidence [22] are recalled. Xet {x;,i =
1,---, k} denote a frame (of discernment) consisting of a finite sexlohas-
tive and disjoint possible values for a state variable adriest. Let furthep™
denote its powerset, i.e. the set of all possible subsefs.ofhe frame can
for example be the set of six possible outcomes of throwinge, &ind the
(unknown) outcome of a particular instance of throwing tloe decomes the
state variable. A bba (basic belief assignn@ntienoted byn is defined as
a belief mass distribution function frog®* to [0, 1] satisfying:

m(P) =0 and Z m(z)=1. (14)

zCX

Values of a bba are callelbelief masses Each subset C X such that
m(z) > 0 is called a focal element.

The probability expectation projection [4], also known &g pignistic
transformation [25, 26], produces a probability expeotatvalue, denoted
by E(z), defined as:

E(x) = Z m(y) |xﬂy|7 ze2X. (15)
peax 1yl
A few special bba classes are worth mentioning. A vacuousHhaza
m(X) = 1, i.e. no belief mass committed to any proper subseXof A
Bayesiarbba is when all the focal elements are singletons, i.e. tem@ent
subsets ofX . If all the focal elements are nestable (i.e. linearly oedeby
inclusion) then we speak abozdnsonanbba. Adogmatichbba is defined by
Smets [24] as a bba for which(X) = 0. Let us note, that trivially, every
Bayesian bba is dogmatic.

4 REVIEW OF BELIEF-BASED CONDITIONAL REASONING

In this section, previous approaches to conditional reiagomith beliefs and
related frameworks are briefly reviewed.

T Calledbasic probability assignmein [22], andBelief Mass Assignme(BMA) in [8].

11



4.1 Smets’ Disjunctive Rule and Generalised Bayes Theorem

An early attempt at articulating belief-based conditioregsoning was pro-
vided by Smets (1993) [23] and by Xu & Smets [31, 30]. This aagh is
based on using the so-called Generalised Bayes Theorenllass\tiee Dis-
junctive Rule of Combination, both of which are defined witthie Dempster-
Shafer belief theory.

In the binary case, Smets’ approach assumes a conditionaéction be-
tween a binary parent franté and a binary child fram& defined in terms
of belief masses and conditional plausibilities. In Smatgdroach, binomial
deduction is defined as:

pl(x) = m(O)pl(x]0)+m(0)pl(x|0)+m(©)(1—(1—pl(x[0))(1—pl(x|0)))
pl(x) = m(0)pl(7(0) +m(0)pl(z]0) +m(O)(1—(1—pl(z|0))(1-pl(]0)))
pl(X)= m(0)pl(X0)+m(0)pl(X|0) +m(©)(1- (1-pl(X|0)) (1—-pl(X|0)))

(16)
The next example illustrate a case where Smets’ deductieratqr pro-
duces inconsistent results. Let the conditional plausislbe expressed as:

pl(x]0) =1/4  pl(z|0) = 3/4  pl(X]|0) =

O =X Laf) =1/4  pl@H) =3/4  pl(X[F) =1

(17)

Eq.(17) expresses that the plausibilitiesyodire totally independent af
becausel(z|0) = pl(z|f) andpl(z|0) = pl(z|0). Let now two bbasm§
andm& on © be expressed as:

This results in the following plausibilitiesl, belief masses x and pig-
nistic probabilitied on X in Table 3:

BecauseX is totally independent o according to Eq.(17), the bba on
should not be influenced by the bbas®n It can be seen from Table 3 that
the probability expectation valuésare equal for both bbas, which seems to
indicate consistency. However, the belief masses arerdiffewhich shows
that Smets’ method [23] can produce inconsistent resuitsain be mentioned
that the framework of subjective logic described in Sec.ésdaot have this
problem.

12



State | Result ofmg on® || Result ofm5 on©
pl | mg | E pl me | E

1/4 | 1/4 | 1/4 7/16 | 1/16 | 1/4
3/4| 3/4 | 3/4 1/16 | 9/16 | 3/4
1 0 n.a. 1 6/16 | n.a.

| Bl &

TABLE 3
Inconsistent results of deductive reasoning with Smetshouk

In Smets’ approach, binomial abduction is defined as:

pl(0) = m(@)pl(x]0) + m(@pl(Fl0) + m(X)(PI(X]0)) .
pl@) = m(@)pl(a[0) + m(@pl(F(0) + m(X)pl(X[5))) .
PlO)=  m(2)(1— (1 pl(2]6))(1 - pl([B))) (19)
+m(@)(1— (1 - pl(zl6))(1 - pl([6)))
+m(X)(1— (1- pl(X]0)) (1 pI(X[9))

Eq.(19) fails to take the base rates®rinto account and would therefore
unavoidably be subject to the base rate fallacy, which waldd be inconsis-
tent with probabilistic reasoning as e.g. described in Eplarth (Sec.2.2). It
can be mentioned that abduction with subjective logic dieedrin Sec.6 is
always consistent with probabilistic abduction.

4.2 Halpern’s Approach to Conditional Plausibilities

Halpern (2001) [5] analyses conditional plausibilitiesrfran algebraic point
of view, and concludes that conditional probabilities, ditional plausibili-
ties and conditional possibilities share the same algepraperties. Halpern’s
analysis does not provide any mathematical methods fotipehconditional
deduction or abduction.

4.3 Conditional Reasoning with Imprecise Probabilities
Imprecise probabilities are generally interpreted as abdhy intervals that
contain the assumed real probability values. Imprecisidhen an increasing
function of the interval size [28]. Various conditional seaing frameworks
based on notions of imprecise probabilities have been mexho

Credal networks introduced by Cozman [1] are based on cesds] also
called convex probability sets, with which upper and loweatyabilities can
be expressed. In this theory, a credal set is a set of pratiedivith a defined
upper and lower bound. There are various methods for dgrimiadal sets,

13



e.g. [28]. Credal networks allow credal sets to be used a# inBayesian
networks. The analysis of credal networks is in general ncoraplex than
the analysis of traditional probabilistic Bayesian netwgdvecause it requires
multiple analyses according to the possible probabilitiesach credal set.
Various algorithms can be used to make the analysis moréesffic

Weak non-monotonic probabilistic reasoning with conditibconstraints
proposed by Lukasiewicz [19] is also based on probabiliiditionals ex-
pressed with upper and lower probability values. Varioapprties for condi-
tional deduction are defined for weak non-monotonic prdisdigireasoning,
and algorithms are described for determining whether ¢immdil deduction
properties are satisfied for a set of conditional constsaint

The surveyed literature on credal networks and non-momoprobabilis-
tic reasoning only describe methods for deductive reagpaithough abduc-
tive reasoning under these formalisms would theoretidalpossible.

A philosophical concern with imprecise probabilities imgeal, and with
conditional reasoning with imprecise probabilities intpadar, is that there
can be no real upper and lower bound to probabilities unlesset bounds
are set to the trivial intervgD, 1]. This is because probabilities about real
world propositions can never be absolutely certain, theteéiving the pos-
sibility that the actual observed probability is outside 8pecified interval.
For example, Walley's Imprecise Dirichlet Model (IDM) [29§ based on
varying the base rate over all possible outcomes in the frafn@eDirichlet
distribution. The probability expectation value of an arte resulting from
assigning the total base rate (i.e. equal to one) to thabowgroduces the
upper probability, and the probability expectation valdean outcome re-
sulting from assigning a zero base rate to that outcome pexithe lower
probability. The upper and lower probabilities are theripteted as the up-
per and lower bounds for the relative frequency of the oudihile this is
an interesting interpretation of the Dirichlet distritmrtj it can not be taken
literally. According to this model, the upper and lower pabbity values for
an outcomer; are defined as:

IDM Upper Probability: P (z;) = W—+C (20)
C+> . r(z)
IDM Lower Probability: P (x;) = _ ) (21)

C+ 30 (@)

wherer(x;) is the number of observations of outcomeandC is the weight
of the non-informative prior probability distribution.
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It can easily be shown that these values can be misleadingexample,
assume an urn containing nine red balls and one black badinime that the
relative frequencies of red and black balls afeed) = 0.9 andp(black) =
0.1. Thea priori weight is set toC' = 2. Assume further that an observer
picks one ball which turns out to be black. According to Ed)(the lower
probability is thenP(black) = %. It would be incorrect to literally interpret
this value as the lower bound for the relative frequency bgedt obviously
is greater than the actual relative frequency of black ballkis example
shows that there is no guarantee that the actual probadility event is inside
the interval defined by the upper and lower probabilitiesescdbed by the
IDM. This result can be generalised to all models based oremuapd lower
probabilities, and the terms “upper” and “lower” must tHfere be interpreted
as rough terms for imprecision, and not as absolute bounds.

Opinions used in subjective logic do not define upper and iqveba-
bility bounds. As opinions are equivalent to general Dilettprobability
density functions, they always cover any probability vadueept in the case
of dogmatic opinions which specify discrete probabilityues.

5 THE OPINION REPRESENTATION IN SUBJECTIVE LOGIC

Subjective logic[7, 8] is a type of probabilistic logic thextplicitly takes un-
certainty and belief ownership into account. Argumentsuhjactive logic
are subjective opinions about states in a frame. A binonpedion applies to
a single proposition, and can be represented as a Betabdigin. A multi-
nomial opinion applies to a collection of propositions, aad be represented
as a Dirichlet distribution. Subjective logic also corresgs to a specific type
of belief functions which are described next.

5.1 The Dirichlet bba

A special type of bba calleBirichlet bba corresponds to opinions used in
subjective logic. Dirichlet bbas are characterised bywélig only mutually
disjoint focal elements, in addition to the whole fratieitself. This is de-
fined as follows.

Definition 1 (Dirichlet bba) LetX be aframe and lefz;, x;) be arbitrary
subsets o . A bbam x where the only focal elements akeand/or mutually
exclusive subsets of is a Dirichlet belief mass distribution function, called
Dirichlet bba for short. This constraint can be expressedhamatically as:

(i z;) A (@inz; # 0)) = ((mx (2:) = 0) vV (mx(z;) = 0)) . (22)
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The name “Dirichlet” bba is used because bbas of this typeespond to
Dirichlet probability density functions under a specificppiang. A bijective
mapping between Dirichlet bbas and Dirichlet probabiligndity functions
is described in [10, 11].

5.2 The Base Rate

Let X be a frame and let»x be a Dirichlet bba orX. The relative share of
the uncertainty mass x (X) assigned to subsets &f when computing their
probability expectation values can be defined by a funatiofhis function
is thebase rate functioyas defined below.

Definition 2 (Base Rate Function)Let X = {x;|i = 1,...k} be a frame
and letmx be a Dirichlet bba onX. The function:: X — [0, 1] satisfying:

a(@)=0 and Z a(z) =1 (23)
reX
that defines the relative contribution of the uncertaintysea x (X) to the
probability expectation values af is called a base rate function oK.

The introduction of the base rate function allows the deigveof the prob-
ability expectation value to be independent from the irdgestructure of the
frame. In the default case, the base rate function for eamimesit is1/k
wherek is the cardinality, but it is possible to define arbitrarydaates for
all mutually exclusive elements of the frame, as long as thdtiity con-
straint of Eq.(23) is satisfied.

The probability expectation vald&(x;) derived from a Dirichlet bbau is
a function of the bba and the base rate functipas expressed by:

E(x;) = m(x;) + a(z;)m(X) . (24)

A central problem when applying conditional reasoning ial keorld sit-
uations is the determination of base rates. A distinctionlmamade between
events that can be repeated many times and events that gamapmuen once.

Events that can be repeated many times are frequentistimenand the
base rates for these can be derived from knowledge of the\aabsituation,
or reasonably approximated through empirical observatiar example, if
an observer only knows the number of different colours ttadiisbn an urn
can have, then the inverse of that number will be the baseofateawing a
ball of a specific colour. For frequentist problems whereelrases cannot be
known with absolute certainty, then approximation thropgior empirical
observation is possible.
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For events that can only happen once, the observer mustdadtade what
the base rates should be based on subjective intuitionhwihérefore can be-
come a source of error in conditional reasoning. When ngthlge is know,
the default base rate should be defined to be equally pasiidetween all
disjoint states in the frame, i.e. when there Agtates, the default base rate
should be set td/ k.

The difference between the concepts of subjective and é&mtigt proba-
bilities is that the former can be defined as subjective figtidds — and the
latter as the relative frequency of empirically observethgerhere the two
collapse in the case where empirical data is available [2]e @Goncepts of
subjectiveandempiricalbase rates can be defined in a similar manner where
they also converge and merge into a single base rate whenieahgiata is
available.

5.3 Example 3: Base Rates of Diseases

The base rate of diseases within a community can be estimaigzically,
data is collected from hospitals, clinics and other souwcesre people di-
agnosed with the disease are treated. The amount of dates tlegjuired to
calculate the base rate of the disease will be determinedrg slepartmen-
tal guidelines, statistical analysis, and expert opinibaud the data that it is
truly reflective of the actual number of infections — whichitgelf a subjec-
tive assessment. After the guidelines, analysis and apiaie all satisfied,
the base rate will be determined from the data, and can thesdzbwith med-
ical tests to provide a better indication of the likelihoddspecific patients
having contracted the disease [6].

5.4 Subjective Opinions

Subjective opinionsalled“opinions” for short, represent a special type of
belief functions used in subjective logic. Through the gglgénce between
subjective opinions and probability density functionstie form of Beta and
Dirichlet distributions, subjective logic also providesadculus for such prob-
ability density functions.

A subijective opinion consists of the combination of a Ditattbba and a
base rate function contained in a single composite functioorder to have
a simple and intuitive notation, the Dirichlet bba is spiitd a belief mass
vectorb and an uncertainty mass This is defined as follows.

Definition 3 (Belief Mass Vector and Uncertainty Mass)
Letmx be a Dirichlet bba. The belief mass vectgf and the uncertainty
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massu x are defined as follows:

Belief masses: bx(z;) =mx(z;) where z; # X |

. 25
Uncertainty mass: ux =mx(X). (25)

It can be noted that Eq.(14) makes opinions satisfy the tmléess addi-
tivity criterion:

k
UX+ZEX($1):1- (26)
r=1

Belief mass additivity is different from probability adidity in that only ele-
ments ofX can carry probability whereas the fram¥eas well as its elements
can carry belief mass. The belief mass vedter the uncertainty massy
and the base rate vect@iare used in the definition of subjective opinions.

Definition 4 (Subjective Opinions) Let X = {z;|i = 1...k} be a frame
and letm x be a Dirichlet bba onX with belief mass vectd?x and uncer-
tainty masaux. Letdx be a base rate vector a. The composite function
wy = (bx,ux,dx) is then a subjective opinion aX.

We use the convention that the subscript on the opinion symbdizates
the frame to which the opinion applies, and that a supersitrificates the
owner of the opinion. For example, the opiniog represents subject entity
A’s opinion over the frameX. An alternative notation is)(A : X). The
owner can be omitted whenever irrelevant.

Opinions can be be geometrically represented as pointsynaarid with
dimensions equal to the cardinality of the frame. For exafd.3 illustrates
an opinion pyramid on a ternary frame.

The uncertainty of the opinion is equal to the relative waitdistance from
the base to the opinion point. Dogmatic opinions have zepedainty. The
belief mass on a state is equal to the relative distance from the triangular
side plane to the opinion point when measured towards thexeorrespond-
ing to the state. Specific belief and base rate parametersfareed to as:

{ Belief parameters: by, = bx (z;) , 27)
Base rate parametersu,, = dx (z;) -

The base rate vectaly can be represented as a point on the pyramid base,
and the line joining the pyramid apex with that point is cdllee director. The
projection of the opinion onto the base parallel to the doedetermines the
probability expectation value vectbry.
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by,

Expectation value Base rate vector

FIGURE 3
Visualisation of trinomial opinion

Assuming that the fram& has cardinalityt, then the belief mass vector
bx and the base rate vectdx will have k parameters each. The uncertainty
massux is a simple scalar. A subjective opinion over a frame of czatity
k will thus contain(2k + 1) parameters. However, given the constraints of
Eq.(14) and Eq.(23), the opinion will only hay2k — 1) degrees of freedom.
A binomial opinion will for example have three degrees o&ftem.

Equivalently to the probability projection of Eq.(24), thebability trans-
formation of subjective opinions can be expressed as aiimof the belief
mass vector, the uncertainty mass and the base rate vector.

Definition 5 (Probability Expectation) Let X = {a;|i = 1,...k} be a
frame, and letwx be a subjective opinion oX consisting of belief mass
vectorl;, uncertainty mass and base rate vectaf. The functionE x from
wx to [0, 1] defining the probability expectation values expressed as:

Ex(z;) = bx (x:) + dx (z:)ux (28)
is then called the probability expectation function of opirs.
It can be shown thdf x satisfies the additivity principle:

Ex(0)=0 and » Ex(z)=1. (29)

reX

The base rate function of Def.2 expresagwiori probability, whereas the
probability expectation function of Eq.(28) expresagmsterioriprobability.
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With a cardinalityk, the default base rate for each element in the frame is
1/k, but it is possible to define arbitrary base rates for all ralljiexclusive
elements as long as the additivity constraint of Eq.(23ais8ed.

Two different subjective opinions on the same frame willmaHly share
the same base rate functions. However, it is obvious thatdifferent ob-
servers can assign different base rate functions to the §@me, and this
could naturally reflect two different analyses of the santeasion by two
different persons.

5.5 Binomial Subjective Opinions

A special notation is used to denote a binomial subjectiveiop which con-
sists of an ordered tuple containing the three specific belessedelief,
disbelief, uncertaintas well as thdase rateof z;.

Definition 6 (Binomial Subjective Opinion) Let X be a frame where; €
X is a state of interest. Assumey to be a Dirichlet bba onX, andax to
be a base rate function ok . The ordered quadruple,, defined as:

Belief: by, = mx (z;)
Disbelief: dy, = mx (T;)
r; — x;y W,y Uy Uy )y h H ’
We; (b, d i Uz @ 7,) where Uncerta"]ty: Ug, = mx(X) (30)

Baserate: a,, = ax(z;)
is then called a binomial opinion ap; in the binary frameX = {x;,7;}.

Binomial subjective opinions can be mapped to a point in arakgided
triangle as illustrated in Fig.4.

The relative distance from the left side edge to the pointesgnts be-
lief, from the right side edge to the point represents dishehnd from the
base line to the point represents uncertainty. For an argitsinomial opin-
ion w, = (by,ds,us,a,), the three parametets, d, andu, thus deter-
mine the position of the opinion point in the triangle. Thed®dine is the
probability axis and the base rate value can be indicated as a point on the
probability axis. Fig.4 illustrates an example opinion ato with the value
w, = (0.7, 0.1, 0.2, 0.5) indicated by a black dot in the triangle. The
probability expectation value of a binomial opinion dedvieom Eq.(28), is:

E(wﬂﬂi) = bwl + Qg Ug; - (31)

The projector going through the opinion point, parallel to the line that
joins the uncertainty corner and the base rate point, détesihe probability
expectation value of Eq.(31).

20



Unce&tainty

Example opinion:
wx=(0.7,0.1,0.2, 0.

Probability axis

FIGURE 4
Opinion triangle with example binomial opinion

Although a binomial opinion consists of four parametereniy has three
degrees of freedom because the three compomgnts. andu, are depen-
dent through Eqg.(14). As such they represent the traditiBe#x) (Belief)
andPI(z) (Plausibility) pair of Shaferian belief theory through t@respon-
denceBel(z) = b, andPl(z) = b, + ug.

The redundant parameter in the binomial opinion represientallows for
more compact expressions of subjective logic operatorsdttzerwise would
have been possible. Various visualisations of binomiahigpis are possible
to facilitate human interpretatién

Binomial opinions are used in traditional subjective logierators defined
in[8,9, 12, 14, 15, 20]. It can be shown that binomial opisi@ne equiva-
lent to Beta distributions [8] and that multinomial opingare equivalent to
Dirichlet distributions [10].

6 CONDITIONAL REASONING IN SUBJECTIVE LOGIC

In sections 1 and 2 basic notions of classical probabilstieditional rea-
soning were presented. This section extends the same typendftional
reasoning to subjective opinions. While conditional re@sg operators for

t see for example the online demo of subjective logic at titav. unik.no/people/josang/sl/
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binomial opinions have already been described [15, 20]r teneralisation
to multinomial opinions will be described below.

6.1 Notation for Deduction and Abduction
LetX = {z;Ji =1...k}andY = {y;|j = 1...1} be frames, wher& will
play the role of parent, and will play the role of child.

Assume the parent opiniany where|X| = k. Assume also the con-
ditional opinions of the formvy,,, wherei = 1...k. There is thus one
conditional for each element; in the parent frame. Each of these condi-
tionals must be interpreted as the subjective opiniorYomyiven thatz; is
TRUE. The subscript notation on each conditional opiniatidates not only
the frameY it applies to, but also the element on which it is conditioned.
Similarly to Eq.(6), subjective logic conditional dedugstiis expressed as: .

Wy x = wx @wy|x (32)

where© denotes the general conditional deduction operator fojestite
opinions, andvy|x = {wys,|i = 1...k} is a set ofk = |X]| different
opinions conditioned on eaah € X respectively. Similarly, the expressions
for subjective logic conditional abduction is expressed as

wyTx = wx©@(wx|y,dy) (33)

where® denotes the general conditional abduction operator fojestite
opinions, andvx|y = {wxy,li = 1...1} is a set ofl = |Y| different
Dirichlet opinions conditioned on eagh € Y respectively.

The mathematical methods for evaluating the general dedtuand ab-
duction operators of Eq.(32) and Eq.(33) are described next

6.2 Subjective Logic Deduction

Assume that a conditional relationship exists betweenvloeftamesX and
Y. Letwy | x be the set of conditional opinions on the consequent frene
a function of the opinion on the antecedent frafexpressed as

wy|x : {wy‘wi, 1= 1,...k} . (34)

Each conditional opinion is a tuple composed of a beIief@eE{/m, an
uncertainty massy|,, and a base rate vect@y expressed as:

Wyle; = (EY\:EivuY|xiaaY) . (35)
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Note that the base rate vectd@y is equal for all conditional opinions of
Eq.(34). Letwx be the opinion on the antecedent frakie

Traditional probabilistic conditional deduction can aj@de derived from
these opinions by inserting their probability expectatafues into Eq.(6),
resulting in the expression:

E(y;[|1X) = Z E(z;)E(y;lz:) (36)

where Eq.(28) provides each factor.

The operator for subjective logic deduction takes the uag#y of wy| x
andwy into account when computing the derived opinigp, x as indicated
by Eq.(32). The method for computing the derived opiniorcdesd below
is based on a geometric analysis of the input opiniops; andwy, and how
they relate to each other.

The conditional opinions will in general define a sub-pyrainiside the
opinion pyramid of the child framé&”. A visualisation of deduction with
ternary parent and child pyramids and trinomial opiniondlisstrated in
Fig.5.

Opinions on parent frame X Opinions on child frame Y

S u
wyu){ Y

by,

FIGURE 5
Sub-pyramid defined as the conditional projection of thepiapyramid.

The sub-pyramid formed by the conditional projection of plaeent pyra-
mid into the child pyramid is shown as the shaded pyramid erittht hand
side in Fig.5. The position of the derived opiniog x is geometrically de-
termined by the point inside the sub-pyramid that lineadyresponds to the
opinionwy in the parent pyramid.
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In general, the sub-pyramid will not appear as regular akéneixample
of Fig.5, and can be skewed in all possible ways. The dimeatity of
the sub-pyramid is equal to the smallest cardinalitXoandY . For binary
frames, the sub-pyramid is reduced to a triangle. Visugdigiyramids larger
than ternary is impractical on two-dimensional media sucpaper and flat
screens.

The mathematical procedure for determining the derivediopioy x is
described in four steps below. The uncertainty of the sulaspyd apex will
emerge from the largest sub-triangle in any dimensiolr afhen projected
against the triangular side planes, and is derived in steps3lbelow. The
following expressions are needed for the computations.

E(ytp?) = 25;1 az, E(yslzi) ,
(37)
E(yi|(@r,75)) = (1=ay,)by,ja, + ay, (by, |z, + ya,) -

The expressiofi(y;| X ) gives the expectation value gf given a vacuous
opinionwy on X. The expressiok(y, |(Z,, z,)) gives the expectation value
of y, for the theoretical maximum uncertaintgt.

e Step 1: Determine theX -dimensiongz,, =) that give the largest the-
oretical uncertaintw;{ in eachY -dimensiony,, independently of the
opinion onX . Each dimension’s maximum uncertainty is:

wy = 1—Min[(1=by, 1z, — Uy |z, + by, . ) , V(2 2s) EX] . (38)

Yt

The X-dimensiongz,., z5) are recorded for eacl.. Note that it is
possible to have, = x,.

e Step 2: First determine the triangle apex uncertain%‘;( for each
Y -dimension by assuming a vacuous opiniog and the actual base
rate vector@x. Assuming that,, # 0 anda,, # 1 for all base rates
onY, each triangle apex uncertaint}jt”)? can be computed as:

Case A: E(y,| X) < E(y|(zr, 23)) :

E(ye] X) = by e,
1% = (— )
Case B: E(y:|X) > E(y:|(zr, 23)) :
b o — Byl X
u o yt|fI:T + uY‘.L‘r (yt| ) (40)
Y|l X 1—ay,
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Then determine the intermediate sub-pyramid apex unoe]taifﬁ)?
which is equal to the largest of the triangle apex unceiigsromputed
above. This uncertainty is expressed as.
Int __ =N
Uy = Max uyt”X,Vyt € Y} . (42)
Step 3: First determine the intermediate belief componéngtﬁ)? in

case of vacuous belief oX as a function of the intermediate apex
H Int .
uncertalntqu” %

b;:tw? = E(y;[|X) — ay, uglﬁf . (42)

For particular geometric combinations of the triangle appgertain-

ties Uy, % it is possible that an intermediate belief comporiéyf?‘ﬁ)?

becomes negative. In such cases a new adjusted apex unt;exﬁ’)?

is computed. Otherwise the adjusted apex uncertainty eggetl to the
intermediate apex uncertainty of Eq.(41). Thus:

. plnt ) Adj  _ X

Case A: b\ ¢ <0 U % E(y;[1X)/ay, (43)
. pInt . Ade _ o Int

Case B: byj”X >0: “yjux Uy (44)

Then compute the sub-pyramid apex uncertaiq;y;( as the minimum
of the adjusted apex uncertainties according to:

: Adj
uy g = Min [ubU vy, € Y} . (45)

Note that the apex uncertainty is not necessarily the highrertainty
of the sub-pyramid. It is possible that one of the conditisng,|,,
actually contains a higher uncertainty, which would simplgan that
the sub-pyramid is skewed or tilted to the side.

Step 4: Based on the sub-pyramid apex uncertahz\g;;ﬂg, the actual
uncertaintyuy | x as a function of the opinion oX is:

x>

Uy||x = Uy x — Z(UYH)? - UY\m)bm,; . (46)

=1
Given the actual uncertainty| x, the actual beliefs, | x are:

by, 1x = E(y; | X) — ay,uyx . (47)
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The belief vectoEYHX is expressed as:
5Y||X:{byj||x|j:17---l} . (48)

Finally, the derived opinioy | x is the tuple composed of the belief
vector of Eq.(48), the uncertainty belief mass of Eq.(46) tre base
rate vector of Eq.(35) expressed as:

Wy x = (Z;YHXaUYHXaa:Y) : (49)

The method for multinomial deduction described above isges both
a simplification and a generalisation of the method for birdrdeduction
described in [15]. In case & x 2 deduction in particular, the methods are
equivalent and produce exactly the same results.

6.3 Subjective Logic Abduction

Subjective logic abduction requires the inversion of ctindal opinions of

the formwy,, into conditional opinions of the formy- |, similarly to Eq.(7).

The inversion of probabilistic conditionals according tp.&) uses the divi-
sion operator for probabilities. While a division operafimr binomial opin-

ions is defined in [14], a division operator for multinomigdioions would

be intractable because it involves matrix and vector exgiwas. Instead we
define inverted conditional opinions as an uncertainty maed opinion.

It is natural to define base rate opinions as vacuous opingmthat the
base rate vectat alone defines their probability expectation values. The ra-
tionale for defining inversion of conditional opinions asgucing maximum
uncertainty is that it involves multiplication with a vaaigbase rate opinion
which produces an uncertainty maximised product.|lgt= k£ and|Y| = I,
and assume the set of available conditionals to be:

wx|y : {wX|yj, Wherej = ].l} . (50)
Assume further that the analyst requires the set of comditfoexpressed as:
wy|x : {wy‘mi, wherei =1... k} . (51)

First compute thd different probability expectation values of each in-
verted conditional opiniowy|,.,, according to Eq.(7) as:

a(yj)E(wx|y, (7))
S a(y) E(wxy, (2:)

E(y;|zi) = (52)
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wherea(y,) denotes the base ratewpf. Consistency requires that:

E(wy |z, (y5)) = E(yj|:) - (53)
The simplest opinions that satisfy Eq.(53) are rdogmatic opinions:

by|mi (y]) = E(yj|xl), fij =1...k s
QY\:E,; : Uy|a; =0 ; (54)
ay|u, =ady .

Uncertainty maximisation ab, ., consists of converting as much belief
mass as possible into uncertainty mass while preservingistent proba-
bility expectation values according to Eq.(53). The remuthe uncertainty
maximised opinion denoted as-|,,. This process is illustrated in Fig.6.

Uncertainty

1
1
\
\
\
\
\
\
\
\
|
|
\

X

E(ylx) a0 Belief
FIGURE 6

Uncertainty maximisation of dogmatic opinion

It must be noted that Fig.6 only represents two dimensiotiseomultino-
mial opinions onY’, namelyy; and its complement. The line defined by

E(yjlz;) = me (y;) + ay|z; (yj)uY\wi

(55)
that is parallel to the base rate line and that jaigs,, andwy |, in Fig.6,

defines the opinionsy|,,, for which the probability expectation values are
consistent with Eq.(53). An opinio@y |, is uncertainty maximised when
Eq.(55) is satisfied and at least one belief massef,, is zero. In general,
not all belief masses can be zero simultaneously excepafiraus opinions.

In order to find the dimension(s) that can have zero belieptag belief

mass will be set to zero in Eq.(55) successively for each diioay; € Y,
resulting in/ different uncertainty values defined as:

u{,lr, = M, wherej =1...1.
T ay|e, (Y5)

(56)
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The minimum uncertainty expressed ]}aﬁn[u{mi, forj = 1...1] deter-
mines the dimension which will have zero belief mass. Sgttire belief
mass to zero for any other dimension would result in negakief mass for
other dimensions. Assume thatis the dimension for which the uncertainty
is minimum. The uncertainty maximised opinion can then bereined as:

by, (y5) = E(yjlzi) — ay (y;)uy,,, fory=1...1
Oy, 1 4 Uy, = ug/m (57)

ay|z; = ay

By definingwy|,, = Wy|s,, the expressions for the set of inverted con-
ditional opinionswy|,, (with i = 1...k) emerges. Conditional abduction
according to Eq.(33) with the original set of conditionalg|y- is now equiv-
alent to conditional deduction according to Eq.(32) whleedet of inverted
conditionalsvy| x is used deductively. The difference between deductive and
abductive reasoning with opinions is illustrated in Figefdov.

Parent Child frame Parent Child frame

frame f

S IRt R I B 1

X Wy | ? | X, m f—\

p) Dy | % ) X, ‘ Conditionals ®,, , ‘
g. (0% @ @ @ o
% Xyl X [ y2 X |y
e
=

- = L

Xk Dy | 1 73 X, \—/\_—/\L/

\ 4 y

—_ ( myux ) = ( (DYHX )
(a) Deduction. (b) Abduction.

FIGURE 7
Visualising deduction and abduction with opinions

Fig.7 shows that deduction uses conditionals defined oeeshifid frame,
and that abduction uses conditionals defined over the paesne.

6.4 Example 4: Military Intelligence Analysis with Subjective Logic
Example 2 is revisited, but now with conditionals and evitkerepresented
as subjective opinions according to Table 4 and Eq.(58).
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Troop movements
Opinions 1 To T3 X
wx|y No movemt.  Minor movemt. Full mob. Any
WXy, - b(x1) =0.50  b(z2) =0.25 b(r3)=0.25 «=0.00
WX |ys- b(x1) =0.00  b(z2) =0.50  b(x3) =0.50 u=0.00
WX |y b(x1) =0.00 b(z2) =0.25 b(r3)=0.75 «=0.00

TABLE 4
Conditional opinionuv x|y : troop movement; given military plany;

The opinion about troop movements is expressed as the opinio

b(x1) = 0.00, a(xry) =0.70
b(xze) = 0.50, a(xze) =0.20
= 58
wx b(zs) =050, a(zz) =0.10 (58)
U = 0.00

First the conditional opinions must be inverted as expksséable 5.

Opinions of military plans given troop movement
Wy |z, WY |z Wy |3
Military plan No movemt. | Minor movemt. Full mob.
y1: No aggression b(y;) = 1.00 | b(y1) = 0.00 b(y1) = 0.00
yo: Minor ops. b(y2) = 0.00 | b(y2) =0.17 b(y2) = 0.14
y3: Invasion b(ys) = 0.00 | b(ys) = 0.00 b(ys) = 0.14
Y: Any u =000 | u =083 | u =0.72
TABLE 5

Conditional opinionsvy | x : military plany; given troop movement;

Then the likelihoods of countryt’s plans can be computed as the opinion:

b(y1) =0.00, a(y1) =0.70, E(y1) =054
" _ bly2) =0.16, a(y2) =0.20, E(y2) =0.31 (59)
Yiix b(ys) =0.07, a(ys) =0.10, E(ys) =0.15
u =0.77

These results can be compared with those of Eq.(13) whick dexrived
with probabilities only, and which are equal to the probigbixpectation
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values given in the rightmost column of Eq.(59). The impotrtabservation
to make is that although, (no aggression) seems to be countg most
likely plan in probabilistic terms, this likelihood is basen uncertainty only.
The only firm evidence actually suppoms (minor aggression) ogs (full
invasion), wherey, has the strongest suppob{¢2) = 0.16). A likelihood
expressed as a scalar probability can thus hide importaetésof the anal-
ysis, which will only come to light when uncertainty is exgilly expressed,
as done in the example above.

7 BAYESIAN NETWORKS WITH SUBJECTIVE LOGIC

A Bayesian network is a graphical model for conditionaltietaships. Specif-
ically, a Bayesian network is normally defined as a direcwatléic graph of
nodes representing variables and arcs representing mralidependence
relations among the variables.

Equipped with the operators for conditional deduction andiugtion, it is
possible to analyse Bayesian networks with subjectiveclogior example,
the simple Bayesian network:

X —Y —Z7 (60)

can be modelled by defining conditional opinions betweettttee frames.
In case conditionals can be obtained wkhas antecedent arld as conse-
quent, then deductive reasoning can be applied to the [gdgeY’]. In case
there are available conditionals with as antecedent andl as consequent,
then abductive reasoning must be applied.

In the example illustrated in Fig.8 it is assumed that dedectasoning
can be applied to bothX : Y] and[Y : Z].

The framesX andY thus represent parent and child of the first condi-
tional edge, and the framé&sandZ represent parent and child of the second
conditional edge respectively.

This chaining of conditional reasoning is possible becafifee symmetry
between the parent and child frames. They both consist sfaenutually
exclusive elements, and subjective opinions can be apgliedth. In general
itis arbitrary which frame is the antecedent and which fréglee consequent
in a given conditional edge. Conditional reasoning is guiesh either case,
by applying the deductive or the abductive operator.

Frame pairs to consider as parent-child relationships imaxgt a degree
of relevance to each other. The relevance between two neadsecformally
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FIGURE 8
Deductive opinion structure for the Bayesian network of( &)

expressed as a relevance measure, and is a direct functtbe obndition-
als. For probabilistic conditional deduction, the relesadenoted aR(y, x)
between two stategandz can be defined as:

R(y,z) = [p(ylz) — p(y[T)| . (61)

It can be seen th&(y,z) € [0, 1], whereR(y,z) = 0 expresses total
irrelevance, an®(y, x) = 1 expresses total relevance betwgemdz.

For conditionals expressed as opinions, the same type efaiete be-
tween a given statg; € Y and a given state; € X can be defined as:

R(yj, i) = [E(wy e, (47)) — Elwyz(y;))] - (62)

The relevance between a child frarileand a given state; € X of a
parent frame can be defined as:

R(Y, xl) = Max[R(yj, {L‘Z‘), j=1,.. l] . (63)
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Finally, the relevance between a child fraiieand a parent fram& can
be defined as:

R(Y, X) = Max[R(Y, z;), i=1,...k] . (64)

In our model, the relevance measure of Eq.(64) is the mostrgén

In many situations there can be multiple parents for the szhité, which
requires fusion of the separate child opinions into a siogiaion. The ques-
tion then arises which type of fusion is most appropriatee o most typi-
cal situations to consider are the cumulative case and gragiwng case.

Cumulative fusion is applicable when independent evidés@cumu-
lated over time such as by continuing observation of outcoofi@ process.
Averaging fusion is applicable when two sources providéedéit but inde-
pendent opinions so that each opinion is weighed as a funetiibs certainty.

Both cumulative and averaging situations are encountarpdictical sit-
uations, and their operators are provided below. The cuialaperator of
fusing opinions [10] represents a generalisation of thesensus operator[9].

Definition 7 (Cumulative Fusion Operator)
Letw? andw® be opinions respectively held by agenstsand B over the
same frameX = {z;|j = 1, -1}. Letw*? be the opinion such that:

Casel: For ut #0 v u® #0:

A ‘ b (@) uB b () ut
pAB () = el
(65)
A, B
uAOB = uA—l-ZquuAuB
Casell: For v =0 A u®=0:
bAB(z;) =10 (x;) + vPbP (x;)
(66)
uAOB =0
B A
u u
where v* = lim ——— and +% = lim ——
i wA o ut +uB " wA o ut +uB
uB =0 uB =0

Thenw”°B is called the cumulatively fused bbawt andw?, represent-
ing the combination of independent opinionsicdind B. By using the symbol
‘@’ to designate this belief operator, we definé®? = w4 @ wB.

The averaging operator for opinions [10] represents a gdisation of the
consensus operator for dependent opinions [13, 16].
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Theorem 1 (Averaging Fusion Rule)
Let w4 andw® be opinions respectively held by agentsand B over the
same frameX = {z; | j = 1,--- ,1}. Letw“°P be the opinion such that:

Casel: For u? #0 v u®#0:

A i 71.B B xT /II,A
bAgB(xj) _b (Hf_z)uAiZB( 4)
(67)
uAeB _ 2u?d®
— uA+uB
Casell: For ut=0 A u®=0:
bAB(z;) =y b(a;) + PP (2))
(68)
uAOB =0

A b B ut
where ~* = uljrilo A b and v” = uljrilo AT uB
u” —0 u” —0
Thenw”2B is called the averaged opinion of* andw?, representing the
combination of the dependent opinionsbénd B. By using the symbolt’

to designate this belief operator, we definde? = wAg wB.

In case of dogmatic opinions, the cumulative and the avegagperators
are equivalent. This is so because dogmatic opinions muisttépreted as
opinions based on infinite evidence, so that two differelirtiops necessarily
must be dependent, in which case the averaging operatoplisaple.

By fusing child opinions resulting from multiple parentsbigrarily large
Bayesian networks can be constructed. Depending on thaisitiit must be
decided whether the cumulative or the averaging operai@ppdicable. An
example with three grandparent frames, X», X3, two parent parent frames
Y1,Y5 and one child fram¢ is illustrated in Fig.9 below.

The nodesX, X», X3 andY; represent initial parent frames because they
do not themselves have parents in the model. Opinions abeiriitial parent
nodes represent the input evidence to the model.

When representing Bayesian networks as graphs, the steusfwondi-
tionals is hidden in the edges, and only the nodes consisfiq@rent and
children frames are shown.

When multiple parents can be identified for the same chilelelare two
important considerations. Firstly, the relative relev@ahetween the child and
each parent, and secondly the relevance or dependencesatveeparents.
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FIGURE 9
Bayesian network with multiple parent evidence nodes

Strong relevance between child and parents is desiratdenadels should
include the strongest child-parent relationships thattmaidentified, and for
which there is evidence directly or potentially available.

Dependence between parents should be avoided as far alslpossnore
subtle and hard to detect dependence can originate fronehidarent nodes
outside the Bayesian network model itself. In this case #remt nodes have a
hidden common grand parent node which makes them deperiglatsoph-
ically speaking everything depends on everything in somg @ absolute
independence is never achievable. There will often be s@yeed of depen-
dence between evidence sources, but which from a practcappctive can
be ignored. When building Bayesian network models it is inga to be
aware of possible dependencies, and try to select paredgrese nodes that
have the lowest possible degree of dependence.

As an alternative method for managing dependence it coulgolssible
to allow different children to share the same parent by figaip the parent
opinion, or alternatively taking dependence into accounindj the fusion
operation. The latter option can be implemented by appljtiegaveraging
fusion operator.

It is also possible that evidence opinions provided by etspeeed to be
discounted due to the analysts doubt in their reliabilityisican be done with
the trust transitivity operat8r of subjective logic.

9 Also called discounting operator
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Definition 8 (Trust Transitivity) Let A, B and be two agents wherd'’s
opinion aboutB’s recommendations is expressed as a binomial opinidr=
{b4,d%,uB, ad}, and letX be aframe wherBsoplmon aboutX is recom-
mended tod with the opinionu2 = {62, uB aB}. Letwd:B = (4B u4B g4:B)
be the opinion such that:

bA'B(xl) = b0 (z;), fori=1...k,
—dA+uB+bBuX,
a‘;‘(B(xl) = a¥(z;) .

thenw+'Z is called A’s discounted opinion about . By using the symbaob
to denote this operator, trust transitivity can be expresaswi? = wi ®
w)]?. (N

The transitivity operator is associative but not commutatDiscounting
of opinions through transitivity generally increases theertainty mass, and
reduces belief masses.

8 DISCUSSION AND CONCLUSION

When faced with complex situations combined with partialdgance, pure
human cognition and reasoning will often lead to inconsisééd unreliable
conclusions. Practical situations where this can happelnde medical di-
agnostic reasoning, the analysis of financial markets,icghinvestigations,
and military intelligence analysis, just to name a few exi®pin such cases,
reasoning based on subjective logic can complement hunagoméng to de-
rive more consistent and reliable conclusions. The chgéiefior applying
subjective logic to the analysis of such situations, is to

e adequately model the situation, and
e determining the evidence needed as input to the model.

The modelling of a given situation includes defining the vate parent and
child frames, and defining the conditional opinions thateeparent and child
frames to each other. Determining the evidence consistgtefahining the
opinions on parent frames from adequate and reliable sswfdaformation.
The results of the analysis are in the form of opinions ondcframes of
interest. These derived opinions can then for exampletasgigdical practi-
tioner to make a more accurate diagnosis, can assist a fatamaiket analyst
to more realistically predict trends and consequences tidres; can assist
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police in uncovering crime scenarios, and can assist igéglte analysts in
predicting military scenarios.

Multinomial subjective opinions consist of a Dirichlet bhad a base rate
function. We have described methods for conditional dedoand condi-
tional abduction with subjective opinions. These methadsbased on the
geometric interpretation of opinions as points in pyranvitiere the dimen-
sionality of a pyramid is equal to the cardinality of the franThis interpre-
tation provides an intuitive basis for defining conditioredsoning operators
for multinomial opinions. The ability to perform conditiahreasoning with
multinomial opinions gives many advantages, such as

¢ the parent and child frames can be of arbitrary size,

e the reasoning can go in any direction, meaning that for tvamngs
where there are conditionally dependent subjective op8s)ithe choice
of parent and child is arbitrary,

e conditional reasoning can be chained as in Bayesian nesyork

e conditional reasoning can be done with arbitrary degreégnafrance
in the opinions,

e the computations are always compatible with classical qpdistic
computations, and in fact

e the computations are reduced to classical probabilistiggzdations in
case of only using dogmatic opinions.

The cumulative and averaging fusion operators for multirbwpinions
makes it possible to have multiple parents for each child ye3ian net-
works. In summary, the described methods provide a powestilset for
analysing complex situations involving multiple sourcéswdence and pos-
sibly long chains of reasoning. This allows uncertainty escdmplete knowl-
edge to be explicitly expressed in the input opinions, armktoarried through
the analysis to the conclusion opinions. In this way theystalan better ap-
preciate the level of uncertainty associated with the @ersonclusions.
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