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Conditional inference plays a central role in logical and Bayesian
reasoning, and is used in a wide range of applications. It ba-
sically consists of expressing conditional relationship between
parent and child propositions, and then to combine those con-
ditionals with evidence about the parent propositions in order to
infer conclusions about the child propositions. While conditional
reasoning is a well established part of classical binary logic and
probability calculus, its extension to belief theory has only re-
cently been proposed. Subjective opinions represent a special
type of general belief functions. This article focuses on condi-
tional reasoning in subjective logic where beliefs are represented
in the form of binomial or multinomial subjective opinions.Bi-
nomial conditional reasoning operators for subjective logic have
been defined in previous contributions. We extend this approach
to multinomial opinions, thereby making it possible to represent
conditional and evidence opinions on frames of arbitrary size.
This makes subjective logic a powerful tool for conditionalrea-
soning in situations involving ignorance and partial information,
and makes it possible to analyse Bayesian network models with
uncertain probabilities.

Key words:Subjective logic, Conditional, Deduction, Abduction, Belief
theory, Bayesian networks
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1 INTRODUCTION

Conditionals are propositions like“If we don’t hurry we’ll be late for the
show” or “If it rains, Michael will carry an umbrella” which are of the form
“IF x THEN y” wherex denotes the antecedent andy the consequent propo-
sition. The truth value of conditionals can be evaluated in different ways, e.g.
as binary TRUE or FALSE, as a probability measure or as an opinion. Con-
ditionals are complex propositions because they contain anantecedent and a
consequent that are also propositions with truth values that can be evaluated
in the same way. Conditionals can be linked e.g. by letting a conditional
proposition be the antecedent of another conditional proposition.

The idea of having a conditional connection between an antecedent and a
consequent proposition can be traced back to Ramsey [21] whoarticulated
what has become known as Ramsey’s Test:To decide whether you believe a
conditional, provisionally or hypothetically add the antecedent to your stock
of beliefs, and consider whether to believe the consequent. This idea was
translated into a formal language by Stalnaker [27] in the form of the so-called
Stalnaker’s Hypothesis, formally expressed as:p(IF x THEN y) = p(y|x).
The interpretation of Stalnaker’s Hypothesis is that the probability of the con-
ditional proposition “IFx THEN y” is equal to the probability of the propo-
sition y given that the propositionx is TRUE. A more precise expression of
Stalnaker’s hypothesis is thereforep(IF x THEN y) = p(y|(p(x) = 1)), but
the bulkiness of this notation would make it impractical.

An alternative viewpoint to that of Stalnaker was put forward by Lewis
[18] who argued that conditional propositions do not have truth-values and
that they do not express propositions. This would mean that for any propo-
sitionsx andy, there is no propositionz for which p(z) = p(y|x), so the
conditional probability can not be the same as the probability of conditionals.

In our opinion Stalnaker’s Hypothesis is sound and applicable for condi-
tional reasoning. We would argue against Lewis’ view by simply saying that
it is meaningful to assign a probability to a conditional proposition like “y|x”,
which is defined in casex is true, and undefined in casex is false.

Meaningful conditional deduction requires relevance between antecedent
and consequent, i.e. that the consequent depends on the antecedent. Condi-
tionals that are based on the dependence between consequentand antecedent
are universally valid, and are calledlogical conditionals[3]. Deduction with
logical conditionals reflect human intuitive conditional reasoning.

Both binary logic and probability calculus have mechanismsfor condi-
tional reasoning. In binary logic, Modus Ponens (MP) and Modus Tollens
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(MT) are the classical operators which are used in any field oflogic that re-
quires conditional deduction. In probability calculus, binomial conditional
deduction is expressed as:

p(y‖x) = p(x)p(y|x) + p(x)p(y|x) (1)

where the terms are interpreted as follows:

p(y|x) : the conditional probability ofy givenx is TRUE
p(y|x) : the conditional probability ofy givenx is FALSE
p(x) : the probability of the antecedentx

p(x) : the probability of the antecedent’s complement (= 1 − p(x))
p(y‖x) : the deduced probability of the consequenty

The notationy‖x, introduced in [15], denotes that the truth or probability
of propositiony is deduced as a function of the probability of the antecedent
x together with the conditionals. The expressionp(y‖x) thus represents a
derived value, whereas the expressionsp(y|x) andp(y|x) represent input val-
ues together withp(x). Below, this notational convention will also be used
for opinions in subjective logic.

This article describes how the same principles for conditional inference
outlined above can be formulated in subjective logic. The advantage of this
approach is that conditional reasoning models can be analysed with subjective
opinions as input and output values, i.e. in the presence of uncertainty and
partial ignorance. This will also allow the analyst to appreciate the relative
proportions of firm evidence and uncertainty as contributing factors to the
derived probabilistic likelihoods.

This article is structured as follows. Section 2 reviews probabilistic con-
ditional reasoning in order to provide a benchmark for subjective logic de-
scribed later. Section 3 reviews the belief representationused in classical
Dempster-Shafer belief theory as a background for subjective opinions. Sec-
tion 4 provides a brief review of previous approaches to conditional belief
reasoning. Section 5 describes subjective opinions which are used as argu-
ments in subjective logic. Section 6 describes conditionaldeduction and ab-
duction in subjective logic, and Section 7 describes how Bayesian networks
can be based on subjective logic. Section 8 suggests application domains of
conditional reasoning with subjective logic, and concludes the presentation.
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2 PROBABILISTIC CONDITIONAL REASONING

Classical results from probabilistic conditional reasoning are briefly reviewed
below in order to provide a benchmark for conditional reasoning with subjec-
tive logic, described in Sec.6.

2.1 Binomial Conditional Reasoning
Probabilistic conditional reasoning is used extensively in areas where conclu-
sions need to be derived from probabilistic input evidence,such as for making
diagnoses from medical tests. A pharmaceutical company that develops a test
for a particular infection disease will typically determine the reliability of the
test by letting a group of infected and a group of non-infected people undergo
the test. The result of these trials will then determine the reliability of the
test in terms of itssensitivityp(x|y) andfalse positive ratep(x|y), wherex:
“Positive Test”, y: “Infected” andy: “Not infected”. The conditionals are
interpreted as:

• p(x|y): “The probability of positive test given infection”

• p(x|y): “The probability of positive test in the absence of infection” .

The problem with applying these reliability measures in a practical setting
is that the conditionals are expressed in the opposite direction to what the
practitioner needs in order to apply the expression of Eq.(1). The conditionals
needed for making the diagnosis are:

• p(y|x): “The probability of infection given positive test”

• p(y|x): “The probability of infection given negative test”

but these are usually not directly available to the medical practitioner. How-
ever, they can be obtained if the base rate of the infection isknown.

The base rate fallacy [17] in medicine consists of making theerroneous as-
sumption thatp(y|x) = p(x|y). While this reasoning error often can produce
a relatively good approximation of the correct diagnostic probability value, it
can lead to a completely wrong result and wrong diagnosis in case the base
rate of the disease in the population is very low and the reliability of the test
is not perfect. The required conditionals can be correctly derived by invert-
ing the available conditionals using Bayes rule. The inverted conditionals are
obtained as follows:






p(x|y) = p(x∧y)
p(y)

p(y|x) = p(x∧y)
p(x)

⇒ p(y|x) =
p(y)p(x|y)

p(x)
. (2)
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On the right hand side of Eq.(2) the base rate of the disease inthe population
is expressed byp(y). By applying Eq.(1) withx andy swapped in every
term, the expected rate of positive testsp(x) in Eq.(2) can be computed as a
function of the base ratep(y). In the following,a(x) anda(y) will denote the
base rates ofx andy respectively. The required conditional is:

p(y|x) =
a(y)p(x|y)

a(y)p(x|y) + a(y)p(x|y)
. (3)

A medical test result is typically considered positive or negative, so when
applying Eq.(1) it can be assumed that eitherp(x) = 1 (positive) orp(x)

= 1 (negative). In case the patient tests positive, Eq.(1) can be simplified to
p(y‖x) = p(y|x) so that Eq.(3) will give the correct likelihood that the patient
actually has contracted the disease.

2.2 Example 1: Probabilistic Medical Reasoning
Let the sensitivity of a medical test be expressed asp(x|y) = 0.9999 (i.e.
an infected person will test positive in 99.99% of the cases)and the false
positive rate bep(x|y) = 0.001 (i.e. a non-infected person will test posi-
tive in 0.1% of the cases). Let the base rate of infection in populationA be
1% (expressed asa(yA)=0.01) and let the base rate of infection in popula-
tion B be 0.01% (expressed asa(yB)=0.0001). Assume that a person from
populationA tests positive, then Eq.(3) and Eq.(1) lead to the conclusion that
p(yA‖x) = p(yA|x) = 0.9099 which indicates a 91% likelihood that the per-
son is infected. Assume that a person from populationB tests positive, then
p(yB‖x) = p(yB|x) = 0.0909 which indicates only a 9% likelihood that the
person is infected. By applying the correct method the base rate fallacy is
avoided in this example.

2.3 Deductive and Abductive Reasoning
In the general case where the truth of the antecedent is expressed as a proba-
bility, and not just binary TRUE and FALSE, the opposite conditional is also
needed as specified in Eq.(1). In case the negative conditional is not directly
available, it can be derived according to Eq.(3) by swappingx andx in every
term. This produces:

p(y|x) = a(y)p(x|y)
a(y)p(x|y)+a(y)p(x|y)

= a(y)(1−p(x|y))
a(y)(1−p(x|y))+a(y)(1−p(x|y)) .

(4)

Eq.(3) and Eq.(4) enables conditional reasoning even when the required
conditionals are expressed in the reverse direction to whatis needed.
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The termframe⋆ will be used with the meaning of a traditional state space
of mutually disjoint states. We will use the term“parent frame” and“child
frame” to denote the reasoning direction, meaning that the parent frame is
what the analyst has evidence about, and probabilities overthe child frame is
what the analyst needs. Defining parent and child frames is thus equivalent
with defining the direction of the reasoning.

Forward conditional inference, calleddeduction, is when the parent frame
is the antecedent and the child frame is the consequent of theavailable con-
ditionals. Reverse conditional inference, calledabduction, is when the parent
frame is the consequent, and the child frame is the antecedent.

Deductive and abductive reasoning situations are illustrated in Fig.1 where
x denotes a state in the parent frame andy denotes a state in the child frame.
Conditionals are expressed asp(consequent|antecedent).

FIGURE 1
Visualising deduction and abduction

The concepts of“causal” and“derivative” reasoning can be meaningful
for clearly causal conditional relationships. By assumingthat the antecedent
causes the consequent, then causal reasoning is equivalentto deductive rea-
soning, and derivative reasoning is equivalent to abductive reasoning.

In medical reasoning for example, the infection causes the test to be posi-
tive, not the other way. The reliability of medical tests is expressed as causal
conditionals, whereas the practitioner needs to apply the derivative inverted
conditionals. Starting from a positive test to conclude that the patient is in-
fected therefore represents derivative reasoning. Most people have a tendency
to reason in a causal manner even in situations where derivative reasoning is

⋆ Usually calledframe of discernmentin traditional belief theory
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required. In other words, derivative situations are often confused with causal
situations, which provides an explanation for the tendencyof the base rate
fallacy in medical diagnostics. In legal reasoning, the same type of reasoning
error is calledthe prosecutor’s fallacy.

2.4 Multinomial Conditional Reasoning
So far in this presentation the parent and child frames have consisted of binary
sets{x, x} and {y, y}. In general, both the parent and child frames in a
conditional reasoning situation can consist of an arbitrary number of disjoint
states. LetX = {xi|i = 1 . . . k} be the parent frame with cardinalityk, and
let Y = {yj|j = 1 . . . l} be the child frame with cardinalityl. The deductive
conditional relationship betweenX andY is then expressed withk vector
conditionalsp(Y |xi), each being ofl dimensions. This is illustrated in Fig.2.

FIGURE 2
Multinomial deductive vector conditionals between parentX and childY

The vector conditional~p(Y |xi) relates each statexi to the frameY . The
elements of~p(Y |xi) are the scalar conditionals expressed as:

p(yj |xi), where
l∑

j=1

p(yj |xi) = 1 . (5)

The probabilistic expression for multinomial conditionaldeduction from
X to Y , generalising that of Eq.(1), is the vectorp(Y ‖X) overY where each
scalar vector elementp(yj‖X) is:

p(yj‖X) =

k∑

i=1

p(xi)p(yj |xi) . (6)
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The multinomial probabilistic expression for inverting conditionals, gen-
eralising that of Eq.(3), becomes:

p(yj |xi) =
a(yj)p(xi|yj)∑l

t=1 a(yt)p(xi|yt)
(7)

wherea(yj) represents the base rate ofyj .
By substituting the conditionals of Eq.(6) with inverted multinomial condi-

tionals from Eq.(7), the general expression for probabilistic abduction emerges:

p(yj‖X) =

k∑

i=1

p(xi)

(
a(yj)p(xi|yj)∑l

t=1 a(yt)p(xi|yt)

)
. (8)

This will be illustrated by a numerical example below.

2.5 Example 2: Probabilistic Intelligence Analysis

Two countriesA andB are in conflict, and intelligence analysts of countryB

want to find out whether countryA intends to use military aggression. The
analysts of countryB consider the following possible alternatives regarding
countryA’s plans:

y1 : No military aggression from countryA
y2 : Minor military operations by countryA
y3 : Full invasion of countryB by countryA

(9)

The way the analysts will determine the most likely plan of countryA is by
trying to observe movement of troops in countryA. For this, they have spies
placed inside countryA. The analysts of countryB consider the following
possible movements of troops.

x1 : No movement of countryA’s troops
x2 : Minor movements of countryA’s troops
x3 : Full mobilisation of all countryA’s troops

(10)

The analysts have defined a set of conditional probabilitiesof troop move-
ments as a function of military plans, as specified by Table 1.

The rationale behind the conditionals are as follows. In case countryA
has no plans of military aggression(y1), then there is little logistic reason
for troop movements. However, even without plans of military aggression
against countryB it is possible that countryA expects military aggression
from countryB, forcing troop movements by countryA. In case countryA
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Troop movements
Probability x1 x2 x3

vectors No movemt. Minor movemt. Full mob.
~p(X |y1): p(x1|y1) = 0.50 p(x2|y1) = 0.25 p(x3|y1) = 0.25

~p(X |y2): p(x1|y2) = 0.00 p(x2|y2) = 0.50 p(x3|y2) = 0.50

~p(X |y3): p(x1|y3) = 0.00 p(x2|y3) = 0.25 p(x3|y3) = 0.75

TABLE 1
Conditional probabilitiesp(X|Y ): troop movementxi given military planyj

prepares for minor military operations against countryB (y2), then necessar-
ily troop movements are required. In case countryA prepares for full invasion
of countryB (y3), then significant troop movements are required.

Based on observations by spies of countryB, the analysts determine the
likelihoods of actual troop movements to be:

p(x1) = 0.00 , p(x2) = 0.50 , p(x3) = 0.50 . (11)

The analysts are faced with an abductive reasoning situation and must first
derive the conditionalsp(Y |X). The base rate of military plans is set to:

a(y1) = 0.70 , a(y2) = 0.20 , a(y3) = 0.10 . (12)

The expression of Eq.(7) can now be used to derive the required condition-
als, which are given in Table 2 below.

Probabilities of military plans given troop movement
~p(Y |x1) ~p(Y |x2) ~p(Y |x3)

Military plan No movemt. Minor movemt. Full mob.
y1: No aggr. p(y1|x1) = 1.00 p(y1|x2) = 0.58 p(y1|x3) = 0.50

y2: Minor ops. p(y2|x1) = 0.00 p(y2|x2) = 0.34 p(y2|x3) = 0.29

y3: Invasion p(y3|x1) = 0.00 p(y3|x2) = 0.08 p(y3|x3) = 0.21

TABLE 2
Conditional probabilitiesp(Y |X): military planyj given troop movementxi

The expression of Eq.(6) can then be used to derive the probabilities of
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military plans of countryA, resulting in:

p(y1‖X) = 0.54 , p(y2‖X) = 0.31 , p(y3‖X) = 0.15 . (13)

Based on the results of Eq.(13), it seems most likely that country A does
not plan any military aggression against countryB. Analysing the same ex-
ample with subjective logic in Sec.6.4 will show that these results give a
misleading estimate of countryA’s plans because they hide the underlying
uncertainty.

3 BELIEF REPRESENTATIONS

Traditional probabilities are not suitable for expressingignorance about the
likelihoods of possible states or outcomes. If somebody wants to express
ignorance as“I don’t know” this would be impossible with a simple scalar
probability value. A probability 0.5 would for example meanthat the event
will take place50% of the time, which in fact is quite informative, and very
different from ignorance. Alternatively, a uniform probability density func-
tion over all possible states would more closely express thesituation of ig-
norance about the outcome of an event. Subjective opinions which can be
interpreted as probability density functions, and which are related to belief
functions, can be used to express this type of ignorance. As abackground for
subjective opinions, the theory of belief functions will bebriefly described.

Belief theory represents an extension of classical probability by allowing
explicit expression of ignorance. Belief theory has its origin in a model for
upper and lower probabilities proposed by Dempster in 1960.Shafer later
proposed a model for expressing beliefs [22]. The main idea behind belief
theory is to abandon the additivity principle of probability theory, i.e. that the
sum of probabilities on all pairwise disjoint states must add up to one. Instead
belief theory gives observers the ability to assign so-called belief mass to any
subset of the frame, i.e. to non-exclusive possibilities including the whole
frame itself. The main advantage of this approach is that ignorance, i.e. the
lack of information, can be explicitly expressed e.g. by assigning belief mass
to the whole frame.

The term uncertainty can be used to express many different aspects of our
perception of reality. In this article, it will be used in thesense of uncertainty
about probability values. This is different from impreciseprobabilities which
are normally interpreted as a pair of upper and lower probability values. A
philosophical problem with imprecise probabilities is described in Sec.4.3.
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General belief functions allow complex belief structures to be expressed
on arbitrarily large frames. Shafer’s book [22] describes many aspects of
belief theory, but the two main elements are 1) a flexible way of expressing
beliefs, and 2) a conjunctive method for fusing beliefs, commonly known as
Dempster’s Rule. We will not be concerned with Dempster’s rule here.

In order for this presentation to be self contained, centralconcepts from
Dempster-Shafer theory of evidence [22] are recalled. LetX = {xi, i =

1, · · · , k} denote a frame (of discernment) consisting of a finite set of exhaus-
tive and disjoint possible values for a state variable of interest. Let further2X

denote its powerset, i.e. the set of all possible subsets ofX . The frame can
for example be the set of six possible outcomes of throwing a dice, and the
(unknown) outcome of a particular instance of throwing the dice becomes the
state variable. A bba (basic belief assignment† ), denoted bym is defined as
a belief mass distribution function from2X to [0, 1] satisfying:

m(∅) = 0 and
∑

x⊆X

m(x) = 1 . (14)

Values of a bba are calledbelief masses. Each subsetx ⊆ X such that
m(x) > 0 is called a focal element.

The probability expectation projection [4], also known as the pignistic
transformation [25, 26], produces a probability expectation value, denoted
by E(x), defined as:

E(x) =
∑

y∈2X

m(y)
|x ∩ y|

|y|
, x ∈ 2X . (15)

A few special bba classes are worth mentioning. A vacuous bbahas
m(X) = 1, i.e. no belief mass committed to any proper subset ofX . A
Bayesianbba is when all the focal elements are singletons, i.e. one-element
subsets ofX . If all the focal elements are nestable (i.e. linearly ordered by
inclusion) then we speak aboutconsonantbba. Adogmaticbba is defined by
Smets [24] as a bba for whichm(X) = 0. Let us note, that trivially, every
Bayesian bba is dogmatic.

4 REVIEW OF BELIEF-BASED CONDITIONAL REASONING

In this section, previous approaches to conditional reasoning with beliefs and
related frameworks are briefly reviewed.

† Calledbasic probability assignmentin [22], andBelief Mass Assignment(BMA) in [8].
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4.1 Smets’ Disjunctive Rule and Generalised Bayes Theorem

An early attempt at articulating belief-based conditionalreasoning was pro-
vided by Smets (1993) [23] and by Xu & Smets [31, 30]. This approach is
based on using the so-called Generalised Bayes Theorem as well as the Dis-
junctive Rule of Combination, both of which are defined within the Dempster-
Shafer belief theory.

In the binary case, Smets’ approach assumes a conditional connection be-
tween a binary parent frameΘ and a binary child frameX defined in terms
of belief masses and conditional plausibilities. In Smets’approach, binomial
deduction is defined as:

pl(x) = m(θ)pl(x|θ)+m(θ)pl(x|θ)+m(Θ)(1−(1−pl(x|θ))(1−pl(x|θ)))

pl(x) = m(θ)pl(x|θ)+m(θ)pl(x|θ)+m(Θ)(1−(1−pl(x|θ))(1−pl(x|θ)))

pl(X)= m(θ)pl(X |θ)+m(θ)pl(X |θ)+m(Θ)(1−(1−pl(X |θ))(1−pl(X |θ)))
(16)

The next example illustrate a case where Smets’ deduction operator pro-
duces inconsistent results. Let the conditional plausibilities be expressed as:

Θ 7−→ X :

∣∣∣∣
pl(x|θ) = 1/4 pl(x|θ) = 3/4 pl(X |θ) = 1

pl(x|θ) = 1/4 pl(x|θ) = 3/4 pl(X |θ) = 1

∣∣∣∣ (17)

Eq.(17) expresses that the plausibilities ofx are totally independent ofθ
becausepl(x|θ) = pl(x|θ) andpl(x|θ) = pl(x|θ). Let now two bbas,mA

Θ

andmB
Θ onΘ be expressed as:

mA
Θ :






mA
Θ(θ) = 1/2

mA
Θ(θ) = 1/2

mA
Θ(Θ) = 0

mB
Θ :






mB
Θ(θ) = 0

mB
Θ(θ) = 0

mB
Θ(Θ) = 1

(18)

This results in the following plausibilitiespl, belief massesmX and pig-
nistic probabilitiesE onX in Table 3:

BecauseX is totally independent ofΘ according to Eq.(17), the bba onX
should not be influenced by the bbas onΘ. It can be seen from Table 3 that
the probability expectation valuesE are equal for both bbas, which seems to
indicate consistency. However, the belief masses are different, which shows
that Smets’ method [23] can produce inconsistent results. It can be mentioned
that the framework of subjective logic described in Sec.6 does not have this
problem.
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State Result ofmA
Θ onΘ Result ofmB

Θ onΘ

pl mΘ E pl mΘ E
x 1/4 1/4 1/4 7/16 1/16 1/4
x 3/4 3/4 3/4 1/16 9/16 3/4
X 1 0 n.a. 1 6/16 n.a.

TABLE 3
Inconsistent results of deductive reasoning with Smets’ method

In Smets’ approach, binomial abduction is defined as:

pl(θ) = m(x)pl(x|θ) + m(x)pl(x|θ) + m(X)(pl(X |θ))) ,

pl(θ) = m(x)pl(x|θ) + m(x)pl(x|θ) + m(X)pl(X |θ))) ,

pl(Θ)= m(x)(1 − (1 − pl(x|θ))(1 − pl(x|θ)))

+m(x)(1 − (1 − pl(x|θ))(1 − pl(x|θ)))

+m(X)(1− (1− pl(X |θ))(1− pl(X |θ))) .

(19)

Eq.(19) fails to take the base rates onΘ into account and would therefore
unavoidably be subject to the base rate fallacy, which wouldalso be inconsis-
tent with probabilistic reasoning as e.g. described in Example 1 (Sec.2.2). It
can be mentioned that abduction with subjective logic described in Sec.6 is
always consistent with probabilistic abduction.

4.2 Halpern’s Approach to Conditional Plausibilities
Halpern (2001) [5] analyses conditional plausibilities from an algebraic point
of view, and concludes that conditional probabilities, conditional plausibili-
ties and conditional possibilities share the same algebraic properties. Halpern’s
analysis does not provide any mathematical methods for practical conditional
deduction or abduction.

4.3 Conditional Reasoning with Imprecise Probabilities
Imprecise probabilities are generally interpreted as probability intervals that
contain the assumed real probability values. Imprecision is then an increasing
function of the interval size [28]. Various conditional reasoning frameworks
based on notions of imprecise probabilities have been proposed.

Credal networks introduced by Cozman [1] are based on credalsets, also
called convex probability sets, with which upper and lower probabilities can
be expressed. In this theory, a credal set is a set of probabilities with a defined
upper and lower bound. There are various methods for deriving credal sets,
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e.g. [28]. Credal networks allow credal sets to be used as input in Bayesian
networks. The analysis of credal networks is in general morecomplex than
the analysis of traditional probabilistic Bayesian networks because it requires
multiple analyses according to the possible probabilitiesin each credal set.
Various algorithms can be used to make the analysis more efficient.

Weak non-monotonic probabilistic reasoning with conditional constraints
proposed by Lukasiewicz [19] is also based on probabilisticconditionals ex-
pressed with upper and lower probability values. Various properties for condi-
tional deduction are defined for weak non-monotonic probabilistic reasoning,
and algorithms are described for determining whether conditional deduction
properties are satisfied for a set of conditional constraints.

The surveyed literature on credal networks and non-monotonic probabilis-
tic reasoning only describe methods for deductive reasoning, although abduc-
tive reasoning under these formalisms would theoreticallybe possible.

A philosophical concern with imprecise probabilities in general, and with
conditional reasoning with imprecise probabilities in particular, is that there
can be no real upper and lower bound to probabilities unless these bounds
are set to the trivial interval[0, 1]. This is because probabilities about real
world propositions can never be absolutely certain, thereby leaving the pos-
sibility that the actual observed probability is outside the specified interval.
For example, Walley’s Imprecise Dirichlet Model (IDM) [29]is based on
varying the base rate over all possible outcomes in the frameof a Dirichlet
distribution. The probability expectation value of an outcome resulting from
assigning the total base rate (i.e. equal to one) to that outcome produces the
upper probability, and the probability expectation value of an outcome re-
sulting from assigning a zero base rate to that outcome produces the lower
probability. The upper and lower probabilities are then interpreted as the up-
per and lower bounds for the relative frequency of the outcome. While this is
an interesting interpretation of the Dirichlet distribution, it can not be taken
literally. According to this model, the upper and lower probability values for
an outcomexi are defined as:

IDM Upper Probability: P (xi) =
r(xi) + C

C +
∑k

i=1 r(xi)
(20)

IDM Lower Probability: P (xi) =
r(xi)

C +
∑k

i=1 r(xi)
(21)

wherer(xi) is the number of observations of outcomexi, andC is the weight
of the non-informative prior probability distribution.
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It can easily be shown that these values can be misleading. For example,
assume an urn containing nine red balls and one black ball, meaning that the
relative frequencies of red and black balls arep(red) = 0.9 andp(black) =

0.1. Thea priori weight is set toC = 2. Assume further that an observer
picks one ball which turns out to be black. According to Eq.(21) the lower
probability is thenP (black) = 1

3 . It would be incorrect to literally interpret
this value as the lower bound for the relative frequency because it obviously
is greater than the actual relative frequency of black balls. This example
shows that there is no guarantee that the actual probabilityof an event is inside
the interval defined by the upper and lower probabilities as described by the
IDM. This result can be generalised to all models based on upper and lower
probabilities, and the terms “upper” and “lower” must therefore be interpreted
as rough terms for imprecision, and not as absolute bounds.

Opinions used in subjective logic do not define upper and lower proba-
bility bounds. As opinions are equivalent to general Dirichlet probability
density functions, they always cover any probability valueexcept in the case
of dogmatic opinions which specify discrete probability values.

5 THE OPINION REPRESENTATION IN SUBJECTIVE LOGIC

Subjective logic[7, 8] is a type of probabilistic logic thatexplicitly takes un-
certainty and belief ownership into account. Arguments in subjective logic
are subjective opinions about states in a frame. A binomial opinion applies to
a single proposition, and can be represented as a Beta distribution. A multi-
nomial opinion applies to a collection of propositions, andcan be represented
as a Dirichlet distribution. Subjective logic also corresponds to a specific type
of belief functions which are described next.

5.1 The Dirichlet bba
A special type of bba calledDirichlet bba corresponds to opinions used in
subjective logic. Dirichlet bbas are characterised by allowing only mutually
disjoint focal elements, in addition to the whole frameX itself. This is de-
fined as follows.

Definition 1 (Dirichlet bba) LetX be a frame and let(xi, xj) be arbitrary
subsets ofX . A bbamX where the only focal elements areX and/or mutually
exclusive subsets ofX is a Dirichlet belief mass distribution function, called
Dirichlet bba for short. This constraint can be expressed mathematically as:

((xi 6=xj) ∧ (xi∩xj 6= ∅)) ⇒ ((mX(xi) = 0) ∨ (mX(xj) = 0)) . (22)
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The name “Dirichlet” bba is used because bbas of this type correspond to
Dirichlet probability density functions under a specific mapping. A bijective
mapping between Dirichlet bbas and Dirichlet probability density functions
is described in [10, 11].

5.2 The Base Rate
Let X be a frame and letmX be a Dirichlet bba onX . The relative share of
the uncertainty massmX(X) assigned to subsets ofX when computing their
probability expectation values can be defined by a functiona. This function
is thebase rate function, as defined below.

Definition 2 (Base Rate Function)Let X = {xi|i = 1, . . . k} be a frame
and letmX be a Dirichlet bba onX . The functiona :X 7−→ [0, 1] satisfying:

a(∅) = 0 and
∑

x∈X

a(x) = 1 (23)

that defines the relative contribution of the uncertainty massmX(X) to the
probability expectation values ofxi is called a base rate function onX .

The introduction of the base rate function allows the derivation of the prob-
ability expectation value to be independent from the internal structure of the
frame. In the default case, the base rate function for each element is1/k

wherek is the cardinality, but it is possible to define arbitrary base rates for
all mutually exclusive elements of the frame, as long as the additivity con-
straint of Eq.(23) is satisfied.

The probability expectation valueE(xi) derived from a Dirichlet bbam is
a function of the bba and the base rate functiona, as expressed by:

E(xi) = m(xi) + a(xi)m(X) . (24)

A central problem when applying conditional reasoning in real world sit-
uations is the determination of base rates. A distinction can be made between
events that can be repeated many times and events that can only happen once.

Events that can be repeated many times are frequentist in nature and the
base rates for these can be derived from knowledge of the observed situation,
or reasonably approximated through empirical observation. For example, if
an observer only knows the number of different colours that balls in an urn
can have, then the inverse of that number will be the base rateof drawing a
ball of a specific colour. For frequentist problems where base rates cannot be
known with absolute certainty, then approximation throughprior empirical
observation is possible.
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For events that can only happen once, the observer must oftendecide what
the base rates should be based on subjective intuition, which therefore can be-
come a source of error in conditional reasoning. When nothing else is know,
the default base rate should be defined to be equally partitioned between all
disjoint states in the frame, i.e. when there arek states, the default base rate
should be set to1/k.

The difference between the concepts of subjective and frequentist proba-
bilities is that the former can be defined as subjective betting odds – and the
latter as the relative frequency of empirically observed data, where the two
collapse in the case where empirical data is available [2]. The concepts of
subjectiveandempiricalbase rates can be defined in a similar manner where
they also converge and merge into a single base rate when empirical data is
available.

5.3 Example 3: Base Rates of Diseases

The base rate of diseases within a community can be estimated. Typically,
data is collected from hospitals, clinics and other sourceswhere people di-
agnosed with the disease are treated. The amount of data thatis required to
calculate the base rate of the disease will be determined by some departmen-
tal guidelines, statistical analysis, and expert opinion about the data that it is
truly reflective of the actual number of infections – which isitself a subjec-
tive assessment. After the guidelines, analysis and opinion are all satisfied,
the base rate will be determined from the data, and can then beused with med-
ical tests to provide a better indication of the likelihood of specific patients
having contracted the disease [6].

5.4 Subjective Opinions

Subjective opinions, called“opinions” for short, represent a special type of
belief functions used in subjective logic. Through the equivalence between
subjective opinions and probability density functions in the form of Beta and
Dirichlet distributions, subjective logic also provides acalculus for such prob-
ability density functions.

A subjective opinion consists of the combination of a Dirichlet bba and a
base rate function contained in a single composite function. In order to have
a simple and intuitive notation, the Dirichlet bba is split into a belief mass
vector~b and an uncertainty massu. This is defined as follows.

Definition 3 (Belief Mass Vector and Uncertainty Mass)
Let mX be a Dirichlet bba. The belief mass vector~bX and the uncertainty
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massuX are defined as follows:

Belief masses: ~bX(xi) = mX(xi) where xi 6= X ,

Uncertainty mass: uX = mX(X) .
(25)

It can be noted that Eq.(14) makes opinions satisfy the belief mass addi-
tivity criterion:

uX +

k∑

x=1

~bX(xi) = 1 . (26)

Belief mass additivity is different from probability additivity in that only ele-
ments ofX can carry probability whereas the frameX as well as its elements
can carry belief mass. The belief mass vector~bX , the uncertainty massuX

and the base rate vector~a are used in the definition of subjective opinions.

Definition 4 (Subjective Opinions) Let X = {xi|i = 1 . . . k} be a frame
and letmX be a Dirichlet bba onX with belief mass vector~bX and uncer-
tainty massuX . Let~aX be a base rate vector onX . The composite function
ωX = (~bX , uX ,~aX) is then a subjective opinion onX .

We use the convention that the subscript on the opinion symbol indicates
the frame to which the opinion applies, and that a superscript indicates the
owner of the opinion. For example, the opinionωA

X represents subject entity
A’s opinion over the frameX . An alternative notation isω(A : X). The
owner can be omitted whenever irrelevant.

Opinions can be be geometrically represented as points in a pyramid with
dimensions equal to the cardinality of the frame. For example Fig.3 illustrates
an opinion pyramid on a ternary frame.

The uncertainty of the opinion is equal to the relative vertical distance from
the base to the opinion point. Dogmatic opinions have zero uncertainty. The
belief mass on a statexi is equal to the relative distance from the triangular
side plane to the opinion point when measured towards the vertex correspond-
ing to the state. Specific belief and base rate parameters arereferred to as:

{
Belief parameters: bxi

= ~bX(xi) ,

Base rate parameters:axi
= ~aX(xi) .

(27)

The base rate vector~aX can be represented as a point on the pyramid base,
and the line joining the pyramid apex with that point is called the director. The
projection of the opinion onto the base parallel to the director determines the
probability expectation value vector~EX .
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FIGURE 3
Visualisation of trinomial opinion

Assuming that the frameX has cardinalityk, then the belief mass vector
~bX and the base rate vector~aX will havek parameters each. The uncertainty
massuX is a simple scalar. A subjective opinion over a frame of cardinality
k will thus contain(2k + 1) parameters. However, given the constraints of
Eq.(14) and Eq.(23), the opinion will only have(2k− 1) degrees of freedom.
A binomial opinion will for example have three degrees of freedom.

Equivalently to the probability projection of Eq.(24), theprobability trans-
formation of subjective opinions can be expressed as a function of the belief
mass vector, the uncertainty mass and the base rate vector.

Definition 5 (Probability Expectation) Let X = {xi|i = 1, . . . k} be a
frame, and letωX be a subjective opinion onX consisting of belief mass
vector~b, uncertainty massu and base rate vector~a. The functionEX from
ωX to [0, 1] defining the probability expectation values expressed as:

EX(xi) = ~bX(xi) + ~aX(xi)uX (28)

is then called the probability expectation function of opinions.

It can be shown thatEX satisfies the additivity principle:

EX(∅) = 0 and
∑

x∈X

EX(x) = 1 . (29)

The base rate function of Def.2 expressesa priori probability, whereas the
probability expectation function of Eq.(28) expressesa posterioriprobability.
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With a cardinalityk, the default base rate for each element in the frame is
1/k, but it is possible to define arbitrary base rates for all mutually exclusive
elements as long as the additivity constraint of Eq.(23) is satisfied.

Two different subjective opinions on the same frame will normally share
the same base rate functions. However, it is obvious that twodifferent ob-
servers can assign different base rate functions to the sameframe, and this
could naturally reflect two different analyses of the same situation by two
different persons.

5.5 Binomial Subjective Opinions
A special notation is used to denote a binomial subjective opinion which con-
sists of an ordered tuple containing the three specific belief massesbelief,
disbelief, uncertaintyas well as thebase rateof xi.

Definition 6 (Binomial Subjective Opinion) Let X be a frame wherexi ∈

X is a state of interest. AssumemX to be a Dirichlet bba onX , andaX to
be a base rate function onX . The ordered quadrupleωxi

defined as:

ωxi
= (bxi

, dxi
, uxi

, axi
), where






Belief: bxi
= mX(xi)

Disbelief: dxi
= mX(xi)

Uncertainty: uxi
= mX(X)

Base rate: axi
= aX(xi)

(30)

is then called a binomial opinion onxi in the binary frameX = {xi, xi}.

Binomial subjective opinions can be mapped to a point in an equal-sided
triangle as illustrated in Fig.4.

The relative distance from the left side edge to the point represents be-
lief, from the right side edge to the point represents disbelief, and from the
base line to the point represents uncertainty. For an arbitrary binomial opin-
ion ωx = (bx, dx, ux, ax), the three parametersbx, dx andux thus deter-
mine the position of the opinion point in the triangle. The base line is the
probability axis, and the base rate value can be indicated as a point on the
probability axis. Fig.4 illustrates an example opinion about x with the value
ωx = (0.7, 0.1, 0.2, 0.5) indicated by a black dot in the triangle. The
probability expectation value of a binomial opinion derived from Eq.(28), is:

E(ωxi
) = bxi

+ axi
uxi

. (31)

The projector going through the opinion point, parallel to the line that
joins the uncertainty corner and the base rate point, determines the probability
expectation value of Eq.(31).
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FIGURE 4
Opinion triangle with example binomial opinion

Although a binomial opinion consists of four parameters, itonly has three
degrees of freedom because the three componentsbx, dx andux are depen-
dent through Eq.(14). As such they represent the traditional Bel(x) (Belief)
andPl(x) (Plausibility) pair of Shaferian belief theory through thecorrespon-
denceBel(x) = bx andPl(x) = bx + ux.

The redundant parameter in the binomial opinion representation allows for
more compact expressions of subjective logic operators than otherwise would
have been possible. Various visualisations of binomial opinions are possible
to facilitate human interpretation‡ .

Binomial opinions are used in traditional subjective logicoperators defined
in [8, 9, 12, 14, 15, 20]. It can be shown that binomial opinions are equiva-
lent to Beta distributions [8] and that multinomial opinions are equivalent to
Dirichlet distributions [10].

6 CONDITIONAL REASONING IN SUBJECTIVE LOGIC

In sections 1 and 2 basic notions of classical probabilisticconditional rea-
soning were presented. This section extends the same type ofconditional
reasoning to subjective opinions. While conditional reasoning operators for

‡ See for example the online demo of subjective logic at http://www.unik.no/people/josang/sl/
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binomial opinions have already been described [15, 20], their generalisation
to multinomial opinions will be described below.

6.1 Notation for Deduction and Abduction

Let X = {xi|i = 1 . . . k} andY = {yj|j = 1 . . . l} be frames, whereX will
play the role of parent, andY will play the role of child.

Assume the parent opinionωX where|X | = k. Assume also the con-
ditional opinions of the formωY |xi

, wherei = 1 . . . k. There is thus one
conditional for each elementxi in the parent frame. Each of these condi-
tionals must be interpreted as the subjective opinion onY , given thatxi is
TRUE. The subscript notation on each conditional opinion indicates not only
the frameY it applies to, but also the elementxi on which it is conditioned.
Similarly to Eq.(6), subjective logic conditional deduction is expressed as: .

ωY ‖X = ωX ⊚ ωY |X (32)

where⊚ denotes the general conditional deduction operator for subjective
opinions, andωY |X = {ωY |xi

|i = 1 . . . k} is a set ofk = |X | different
opinions conditioned on eachxi ∈ X respectively. Similarly, the expressions
for subjective logic conditional abduction is expressed as:

ω
Y ‖X

= ωX⊚(ωX|Y ,~aY ) (33)

where⊚ denotes the general conditional abduction operator for subjective
opinions, andωX|Y = {ωX|yj

|j = 1 . . . l} is a set ofl = |Y | different
Dirichlet opinions conditioned on eachyj ∈ Y respectively.

The mathematical methods for evaluating the general deduction and ab-
duction operators of Eq.(32) and Eq.(33) are described next.

6.2 Subjective Logic Deduction

Assume that a conditional relationship exists between the two framesX and
Y . LetωY |X be the set of conditional opinions on the consequent frameY as
a function of the opinion on the antecedent frameX expressed as

ωY |X :
{
ωY |xi

, i = 1, . . . k
}

. (34)

Each conditional opinion is a tuple composed of a belief vector ~bY |xi
, an

uncertainty massuY |xi
and a base rate vector~aY expressed as:

ωY |xi
=
(
~bY |xi

, uY |xi
,~aY

)
. (35)
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Note that the base rate vector~aY is equal for all conditional opinions of
Eq.(34). LetωX be the opinion on the antecedent frameX .

Traditional probabilistic conditional deduction can always be derived from
these opinions by inserting their probability expectationvalues into Eq.(6),
resulting in the expression:

E(yj‖X) =

k∑

i=1

E(xi)E(yj|xi) (36)

where Eq.(28) provides each factor.
The operator for subjective logic deduction takes the uncertainty ofωY |X

andωX into account when computing the derived opinionωY ‖X as indicated
by Eq.(32). The method for computing the derived opinion described below
is based on a geometric analysis of the input opinionsωY |X andωX , and how
they relate to each other.

The conditional opinions will in general define a sub-pyramid inside the
opinion pyramid of the child frameY . A visualisation of deduction with
ternary parent and child pyramids and trinomial opinions isillustrated in
Fig.5.

FIGURE 5
Sub-pyramid defined as the conditional projection of the parent pyramid.

The sub-pyramid formed by the conditional projection of theparent pyra-
mid into the child pyramid is shown as the shaded pyramid on the right hand
side in Fig.5. The position of the derived opinionωY ‖X is geometrically de-
termined by the point inside the sub-pyramid that linearly corresponds to the
opinionωX in the parent pyramid.
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In general, the sub-pyramid will not appear as regular as in the example
of Fig.5, and can be skewed in all possible ways. The dimensionality of
the sub-pyramid is equal to the smallest cardinality ofX andY . For binary
frames, the sub-pyramid is reduced to a triangle. Visualising pyramids larger
than ternary is impractical on two-dimensional media such as paper and flat
screens.

The mathematical procedure for determining the derived opinionωY ‖X is
described in four steps below. The uncertainty of the sub-pyramid apex will
emerge from the largest sub-triangle in any dimension ofY when projected
against the triangular side planes, and is derived in steps 1to 3 below. The
following expressions are needed for the computations.






E(yt|X̂) =
∑k

i=1 axi
E(yt|xi) ,

E(yt|(x̂r , xs)) = (1−ayt
)byt|xs

+ ayt
(byt|xr

+ uY |xr
) .

(37)

The expressionE(yt|X̂) gives the expectation value ofyt given a vacuous
opinionω bX

onX . The expressionE(yt|(x̂r, xs)) gives the expectation value
of yt for the theoretical maximum uncertaintyuT

yt
.

• Step 1:Determine theX-dimensions(xr, xs) that give the largest the-
oretical uncertaintyuT

yt
in eachY -dimensionyt, independently of the

opinion onX . Each dimension’s maximum uncertainty is:

uT
yt

= 1−Min
[(

1−byt|xr
−uY |xr

+byt|xs

)
, ∀(xr, xs)∈X

]
. (38)

The X-dimensions(xr, xs) are recorded for eachyt. Note that it is
possible to havexr = xs.

• Step 2: First determine the triangle apex uncertaintyu
yt‖ bX

for each
Y -dimension by assuming a vacuous opinionω bX

and the actual base
rate vector~aX . Assuming thatayt

6= 0 andayt
6= 1 for all base rates

onY , each triangle apex uncertaintyu
yt‖ bX

can be computed as:

Case A: E(yt|X̂) ≤ E(yt|(x̂r , xs)) :

u
yt‖ bX

=

(
E(yt|X̂) − byt|xs

ayt

)
(39)

Case B: E(yt|X̂) > E(yt|(x̂r , xs)) :

u
yt‖ bX

=

(
byt|xr

+ uY |xr
− E(yt|X̂)

1 − ayt

)
(40)
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Then determine the intermediate sub-pyramid apex uncertainty uInt
Y ‖ bX

which is equal to the largest of the triangle apex uncertainties computed
above. This uncertainty is expressed as.

uInt
Y ‖ bX

= Max
[
u

yt‖ bX
, ∀yt ∈ Y

]
. (41)

• Step 3: First determine the intermediate belief componentsbInt
yj‖ bX

in

case of vacuous belief onX as a function of the intermediate apex
uncertaintyuInt

Y ‖ bX
:

bInt
yj‖ bX

= E(yj‖X̂) − ayj
uInt

Y ‖ bX
. (42)

For particular geometric combinations of the triangle apexuncertain-
ties u

yt‖ bX
it is possible that an intermediate belief componentbInt

yj‖ bX

becomes negative. In such cases a new adjusted apex uncertaintyuAdj

yt‖ bX

is computed. Otherwise the adjusted apex uncertainty is setequal to the
intermediate apex uncertainty of Eq.(41). Thus:

Case A: bInt
yj‖ bX

< 0 : uAdj

yj‖ bX
= E(yj‖X̂)/ayj

(43)

Case B: bInt
yj‖ bX

≥ 0 : uAdj

yj‖ bX
= uInt

Y ‖ bX
(44)

Then compute the sub-pyramid apex uncertaintyu
Y ‖ bX

as the minimum
of the adjusted apex uncertainties according to:

u
Y ‖ bX

= Min
[
uAdj

yj‖ bX
, ∀yj ∈ Y

]
. (45)

Note that the apex uncertainty is not necessarily the highest uncertainty
of the sub-pyramid. It is possible that one of the conditionals ωY |xi

actually contains a higher uncertainty, which would simplymean that
the sub-pyramid is skewed or tilted to the side.

• Step 4: Based on the sub-pyramid apex uncertaintyu
Y ‖ bX

, the actual
uncertaintyuY ‖X as a function of the opinion onX is:

uY ‖X = u
Y ‖ bX

−
k∑

i=1

(u
Y ‖ bX

− uY |xi
)bxi

. (46)

Given the actual uncertaintyuY ‖X , the actual beliefsbyj‖X are:

byj‖X = E(yj‖X)− ayj
uY ‖X . (47)
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The belief vector~bY ‖X is expressed as:

~bY ‖X =
{
byj‖X | j = 1, . . . l

}
. (48)

Finally, the derived opinionωY ‖X is the tuple composed of the belief
vector of Eq.(48), the uncertainty belief mass of Eq.(46) and the base
rate vector of Eq.(35) expressed as:

ωY ‖X =
(
~bY ‖X , uY ‖X ,~aY

)
. (49)

The method for multinomial deduction described above represents both
a simplification and a generalisation of the method for binomial deduction
described in [15]. In case of2 × 2 deduction in particular, the methods are
equivalent and produce exactly the same results.

6.3 Subjective Logic Abduction
Subjective logic abduction requires the inversion of conditional opinions of
the formωX|yj

into conditional opinions of the formωY |xi
similarly to Eq.(7).

The inversion of probabilistic conditionals according to Eq.(7) uses the divi-
sion operator for probabilities. While a division operatorfor binomial opin-
ions is defined in [14], a division operator for multinomial opinions would
be intractable because it involves matrix and vector expressions. Instead we
define inverted conditional opinions as an uncertainty maximised opinion.

It is natural to define base rate opinions as vacuous opinions, so that the
base rate vector~a alone defines their probability expectation values. The ra-
tionale for defining inversion of conditional opinions as producing maximum
uncertainty is that it involves multiplication with a vacuous base rate opinion
which produces an uncertainty maximised product. Let|X | = k and|Y | = l,
and assume the set of available conditionals to be:

ωX|Y :
{
ωX|yj

, wherej = 1 . . . l
}

. (50)

Assume further that the analyst requires the set of conditionals expressed as:

ωY |X :
{
ωY |xi

, wherei = 1 . . . k
}

. (51)

First compute thel different probability expectation values of each in-
verted conditional opinionωY |xi

, according to Eq.(7) as:

E(yj|xi) =
a(yj)E(ωX|yj

(xi))
∑l

t=1 a(yt)E(ωX|yt
(xi))

(52)
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wherea(yj) denotes the base rate ofyj . Consistency requires that:

E(ωY |xi
(yj)) = E(yj |xi) . (53)

The simplest opinions that satisfy Eq.(53) are thek dogmatic opinions:

ωY |xi
:






bY |xi
(yj) = E(yj|xi), for j = 1 . . . k ,

uY |xi
= 0 ,

~aY |xi
= ~aY .

(54)

Uncertainty maximisation ofωY |xi
consists of converting as much belief

mass as possible into uncertainty mass while preserving consistent proba-
bility expectation values according to Eq.(53). The resultis the uncertainty
maximised opinion denoted aŝωY |xi

. This process is illustrated in Fig.6.

FIGURE 6
Uncertainty maximisation of dogmatic opinion

It must be noted that Fig.6 only represents two dimensions ofthe multino-
mial opinions onY , namelyyj and its complement. The line defined by

E(yj |xi) = bY |xi
(yj) + aY |xi

(yj)uY |xi
(55)

that is parallel to the base rate line and that joinsωY |xi
andω̂Y |xi

in Fig.6,
defines the opinionsωY |xi

for which the probability expectation values are
consistent with Eq.(53). An opinion̂ωY |xi

is uncertainty maximised when
Eq.(55) is satisfied and at least one belief mass ofω̂Y |xi

is zero. In general,
not all belief masses can be zero simultaneously except for vacuous opinions.

In order to find the dimension(s) that can have zero belief mass, the belief
mass will be set to zero in Eq.(55) successively for each dimensionyj ∈ Y ,
resulting inl different uncertainty values defined as:

uj

Y |xi
=

E(yj|xi)

aY |xi
(yj)

, wherej = 1 . . . l . (56)
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The minimum uncertainty expressed asMin[uj

Y |xi
, for j = 1 . . . l] deter-

mines the dimension which will have zero belief mass. Setting the belief
mass to zero for any other dimension would result in negativebelief mass for
other dimensions. Assume thatyt is the dimension for which the uncertainty
is minimum. The uncertainty maximised opinion can then be determined as:

ω̂Y |xi
:






bY |xi
(yj) = E(yj|xi) − aY (yj)u

t
Y |xi

, for y = 1 . . . l

uY |xi
= ut

Y |xi

~aY |xi
= ~aY

(57)

By definingωY |xi
= ω̂Y |xi

, the expressions for the set of inverted con-
ditional opinionsωY |xi

(with i = 1 . . . k) emerges. Conditional abduction
according to Eq.(33) with the original set of conditionalsωX|Y is now equiv-
alent to conditional deduction according to Eq.(32) where the set of inverted
conditionalsωY |X is used deductively. The difference between deductive and
abductive reasoning with opinions is illustrated in Fig.7 below.

(a) Deduction. (b) Abduction.

FIGURE 7
Visualising deduction and abduction with opinions

Fig.7 shows that deduction uses conditionals defined over the child frame,
and that abduction uses conditionals defined over the parentframe.

6.4 Example 4: Military Intelligence Analysis with Subjective Logic
Example 2 is revisited, but now with conditionals and evidence represented
as subjective opinions according to Table 4 and Eq.(58).
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Troop movements
Opinions x1 : x2 : x3 : X
ωX|Y No movemt. Minor movemt. Full mob. Any
ωX|y1

: b(x1) = 0.50 b(x2) = 0.25 b(x3) = 0.25 u = 0.00

ωX|y2
: b(x1) = 0.00 b(x2) = 0.50 b(x3) = 0.50 u = 0.00

ωX|y3
: b(x1) = 0.00 b(x2) = 0.25 b(x3) = 0.75 u = 0.00

TABLE 4
Conditional opinionωX|Y : troop movementxi given military planyj

The opinion about troop movements is expressed as the opinion:

ωX =






b(x1) = 0.00, a(x1) = 0.70

b(x2) = 0.50, a(x2) = 0.20

b(x3) = 0.50, a(x3) = 0.10

u = 0.00

(58)

First the conditional opinions must be inverted as expressed in Table 5.

Opinions of military plans given troop movement
ωY |x1

ωY |x2
ωY |x3

Military plan No movemt. Minor movemt. Full mob.
y1: No aggression b(y1) = 1.00 b(y1) = 0.00 b(y1) = 0.00

y2: Minor ops. b(y2) = 0.00 b(y2) = 0.17 b(y2) = 0.14

y3: Invasion b(y3) = 0.00 b(y3) = 0.00 b(y3) = 0.14

Y : Any u = 0.00 u = 0.83 u = 0.72

TABLE 5
Conditional opinionsωY |X : military planyj given troop movementxi

Then the likelihoods of countryA’s plans can be computed as the opinion:

ωY ‖X =






b(y1) = 0.00, a(y1) = 0.70, E(y1) = 0.54

b(y2) = 0.16, a(y2) = 0.20, E(y2) = 0.31

b(y3) = 0.07, a(y3) = 0.10, E(y3) = 0.15

u = 0.77

(59)

These results can be compared with those of Eq.(13) which were derived
with probabilities only, and which are equal to the probability expectation
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values given in the rightmost column of Eq.(59). The important observation
to make is that althoughy1 (no aggression) seems to be countryA’s most
likely plan in probabilistic terms, this likelihood is based on uncertainty only.
The only firm evidence actually supportsy2 (minor aggression) ory3 (full
invasion), wherey2 has the strongest support (b(y2) = 0.16). A likelihood
expressed as a scalar probability can thus hide important aspects of the anal-
ysis, which will only come to light when uncertainty is explicitly expressed,
as done in the example above.

7 BAYESIAN NETWORKS WITH SUBJECTIVE LOGIC

A Bayesian network is a graphical model for conditional relationships. Specif-
ically, a Bayesian network is normally defined as a directed acyclic graph of
nodes representing variables and arcs representing conditional dependence
relations among the variables.

Equipped with the operators for conditional deduction and abduction, it is
possible to analyse Bayesian networks with subjective logic. For example,
the simple Bayesian network:

X −→ Y −→ Z (60)

can be modelled by defining conditional opinions between thethree frames.
In case conditionals can be obtained withX as antecedent andY as conse-
quent, then deductive reasoning can be applied to the edge[X : Y ]. In case
there are available conditionals withY as antecedent andX as consequent,
then abductive reasoning must be applied.

In the example illustrated in Fig.8 it is assumed that deductive reasoning
can be applied to both[X : Y ] and[Y : Z].

The framesX andY thus represent parent and child of the first condi-
tional edge, and the framesY andZ represent parent and child of the second
conditional edge respectively.

This chaining of conditional reasoning is possible becauseof the symmetry
between the parent and child frames. They both consist of sets of mutually
exclusive elements, and subjective opinions can be appliedto both. In general
it is arbitrary which frame is the antecedent and which frameis the consequent
in a given conditional edge. Conditional reasoning is possible in either case,
by applying the deductive or the abductive operator.

Frame pairs to consider as parent-child relationships musthave a degree
of relevance to each other. The relevance between two nodes can be formally
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FIGURE 8
Deductive opinion structure for the Bayesian network of Eq.(60)

expressed as a relevance measure, and is a direct function ofthe condition-
als. For probabilistic conditional deduction, the relevance denoted asR(y, x)

between two statesy andx can be defined as:

R(y, x) = |p(y|x) − p(y|x)| . (61)

It can be seen thatR(y, x) ∈ [0, 1], whereR(y, x) = 0 expresses total
irrelevance, andR(y, x) = 1 expresses total relevance betweeny andx.

For conditionals expressed as opinions, the same type of relevance be-
tween a given stateyj ∈ Y and a given statexi ∈ X can be defined as:

R(yj , xi) = |E(ωY |xi
(yj)) − E(ωY |xj

(yj))| . (62)

The relevance between a child frameY and a given statexi ∈ X of a
parent frame can be defined as:

R(Y, xi) = Max[R(yj , xi), j = 1, . . . l] . (63)
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Finally, the relevance between a child frameY and a parent frameX can
be defined as:

R(Y, X) = Max[R(Y, xi), i = 1, . . . k] . (64)

In our model, the relevance measure of Eq.(64) is the most general.
In many situations there can be multiple parents for the samechild, which

requires fusion of the separate child opinions into a singleopinion. The ques-
tion then arises which type of fusion is most appropriate. The two most typi-
cal situations to consider are the cumulative case and the averaging case.

Cumulative fusion is applicable when independent evidenceis accumu-
lated over time such as by continuing observation of outcomes of a process.
Averaging fusion is applicable when two sources provide different but inde-
pendent opinions so that each opinion is weighed as a function of its certainty.

Both cumulative and averaging situations are encountered in practical sit-
uations, and their operators are provided below. The cumulative operator of
fusing opinions [10] represents a generalisation of the consensus operator[9].

Definition 7 (Cumulative Fusion Operator)
Let ωA and ωB be opinions respectively held by agentsA and B over the
same frameX = {xj |j = 1, · · · l}. LetωA⋄B be the opinion such that:

Case I: For uA 6= 0 ∨ uB 6= 0 :





bA⋄B(xj) =
bA(xj)u

B+bB(xj)u
A

uA+uB−uAuB

uA⋄B = uAuB

uA+uB−uAuB

(65)

Case II: For uA = 0 ∧ uB = 0 :





bA⋄B(xj) = γA bA(xj) + γBbB(xj)

uA⋄B = 0

(66)

where γA = lim
uA→0
uB→0

uB

uA + uB
and γB = lim

uA→0
uB→0

uA

uA + uB

ThenωA⋄B is called the cumulatively fused bba ofωA andωB, represent-
ing the combination of independent opinions ofA andB. By using the symbol
‘⊕’ to designate this belief operator, we defineωA⋄B ≡ ωA ⊕ ωB.

The averaging operator for opinions [10] represents a generalisation of the
consensus operator for dependent opinions [13, 16].
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Theorem 1 (Averaging Fusion Rule)
Let ωA and ωB be opinions respectively held by agentsA and B over the
same frameX = {xj | j = 1, · · · , l}. LetωA⋄B be the opinion such that:

Case I: For uA 6= 0 ∨ uB 6= 0 :





bA⋄B(xj) =
bA(xj)u

B+bB(xj)u
A

uA+uB

uA⋄B = 2uAuB

uA+uB

(67)

Case II: For uA = 0 ∧ uB = 0 :





bA⋄B(xj) = γA bA(xj) + γBbB(xj)

uA⋄B = 0

(68)

where γA = lim
uA→0
uB→0

uB

uA + uB
and γB = lim

uA→0
uB→0

uA

uA + uB

ThenωA⋄B is called the averaged opinion ofωA andωB, representing the
combination of the dependent opinions ofA andB. By using the symbol ‘⊕’
to designate this belief operator, we defineωA⋄B ≡ ωA⊕ωB.

In case of dogmatic opinions, the cumulative and the averaging operators
are equivalent. This is so because dogmatic opinions must beinterpreted as
opinions based on infinite evidence, so that two different opinions necessarily
must be dependent, in which case the averaging operator is applicable.

By fusing child opinions resulting from multiple parents, arbitrarily large
Bayesian networks can be constructed. Depending on the situation it must be
decided whether the cumulative or the averaging operator isapplicable. An
example with three grandparent framesX1, X2, X3, two parent parent frames
Y1, Y2 and one child frameZ is illustrated in Fig.9 below.

The nodesX1, X2, X3 andY2 represent initial parent frames because they
do not themselves have parents in the model. Opinions about the initial parent
nodes represent the input evidence to the model.

When representing Bayesian networks as graphs, the structure of condi-
tionals is hidden in the edges, and only the nodes consistingof parent and
children frames are shown.

When multiple parents can be identified for the same child, there are two
important considerations. Firstly, the relative relevance between the child and
each parent, and secondly the relevance or dependence between the parents.
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FIGURE 9
Bayesian network with multiple parent evidence nodes

Strong relevance between child and parents is desirable, and models should
include the strongest child-parent relationships that canbe identified, and for
which there is evidence directly or potentially available.

Dependence between parents should be avoided as far as possible. A more
subtle and hard to detect dependence can originate from hidden parent nodes
outside the Bayesian network model itself. In this case the parent nodes have a
hidden common grand parent node which makes them dependent.Philosoph-
ically speaking everything depends on everything in some way, so absolute
independence is never achievable. There will often be some degree of depen-
dence between evidence sources, but which from a practical perspective can
be ignored. When building Bayesian network models it is important to be
aware of possible dependencies, and try to select parent evidence nodes that
have the lowest possible degree of dependence.

As an alternative method for managing dependence it could bepossible
to allow different children to share the same parent by fissioning the parent
opinion, or alternatively taking dependence into account during the fusion
operation. The latter option can be implemented by applyingthe averaging
fusion operator.

It is also possible that evidence opinions provided by experts need to be
discounted due to the analysts doubt in their reliability. This can be done with
the trust transitivity operator¶ of subjective logic.

¶ Also called discounting operator
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Definition 8 (Trust Transitivity) Let A, B and be two agents whereA’s
opinion aboutB’s recommendations is expressed as a binomial opinionωA

B =

{bA
B, dA

B, uA
B, aA

B}, and letX be a frame whereB’s opinion aboutX is recom-
mended toA with the opinionωB

X = {~bB
X , uB

X ,~aB
X}. LetωA:B

X = {~bA:B
X , uA:B

X ,~aA:B
X }

be the opinion such that:






bA:B
X (xi) = bA

BbB
X(xi), for i = 1 . . . k ,

uA:B
X = dA

B + uA
B + bA

BuB
X ,

aA:B
X (xi) = aB

X(xi) .

thenωA:B
X is calledA’s discounted opinion aboutX . By using the symbol⊗

to denote this operator, trust transitivity can be expressed asωA:B
X = ωA

B ⊗

ωB
X . 2

The transitivity operator is associative but not commutative. Discounting
of opinions through transitivity generally increases the uncertainty mass, and
reduces belief masses.

8 DISCUSSION AND CONCLUSION

When faced with complex situations combined with partial ignorance, pure
human cognition and reasoning will often lead to inconsistent and unreliable
conclusions. Practical situations where this can happen include medical di-
agnostic reasoning, the analysis of financial markets, criminal investigations,
and military intelligence analysis, just to name a few examples. In such cases,
reasoning based on subjective logic can complement human reasoning to de-
rive more consistent and reliable conclusions. The challenge for applying
subjective logic to the analysis of such situations, is to

• adequately model the situation, and

• determining the evidence needed as input to the model.

The modelling of a given situation includes defining the relevant parent and
child frames, and defining the conditional opinions that relate parent and child
frames to each other. Determining the evidence consists of determining the
opinions on parent frames from adequate and reliable sources of information.

The results of the analysis are in the form of opinions on child frames of
interest. These derived opinions can then for example assist a medical practi-
tioner to make a more accurate diagnosis, can assist a financial market analyst
to more realistically predict trends and consequences of actions, can assist
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police in uncovering crime scenarios, and can assist intelligence analysts in
predicting military scenarios.

Multinomial subjective opinions consist of a Dirichlet bbaand a base rate
function. We have described methods for conditional deduction and condi-
tional abduction with subjective opinions. These methods are based on the
geometric interpretation of opinions as points in pyramidswhere the dimen-
sionality of a pyramid is equal to the cardinality of the frame. This interpre-
tation provides an intuitive basis for defining conditionalreasoning operators
for multinomial opinions. The ability to perform conditional reasoning with
multinomial opinions gives many advantages, such as

• the parent and child frames can be of arbitrary size,

• the reasoning can go in any direction, meaning that for two frames
where there are conditionally dependent subjective opinions, the choice
of parent and child is arbitrary,

• conditional reasoning can be chained as in Bayesian networks,

• conditional reasoning can be done with arbitrary degrees ofignorance
in the opinions,

• the computations are always compatible with classical probabilistic
computations, and in fact

• the computations are reduced to classical probabilistic computations in
case of only using dogmatic opinions.

The cumulative and averaging fusion operators for multinomial opinions
makes it possible to have multiple parents for each child in Bayesian net-
works. In summary, the described methods provide a powerfultool set for
analysing complex situations involving multiple sources of evidence and pos-
sibly long chains of reasoning. This allows uncertainty andincomplete knowl-
edge to be explicitly expressed in the input opinions, and tobe carried through
the analysis to the conclusion opinions. In this way the analyst can better ap-
preciate the level of uncertainty associated with the derived conclusions.
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