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ABSTRACT : Subcooled boiling bubble condensation experiments were conducted in a vertical-upward 

annular channel by using water as the testing fluid at atmosphere pressure.  The test runs comprised of 

bulk liquid temperatures, velocities and wall heat fluxes ranging from 75.0°C to 98.0°C, 0.25 m/s to 1.0 
m/s and 150 kW/m

2
 to 200 kW/m

2
 respectively.  A particle/droplet image analysis system was employed to 

capture the flow channel at four locations downstream of heated section for a total of 13 test conditions.  

The bubble Sauter-mean diameter was obtained in the range of 0.1 mm to 0.9 mm.  It is also found that 

bubble sizes increase with the increase of liquid temperature or the decrease of liquid velocity.  The 

condensation Nusselt number was calculated to be in the range of 10-4 to 10-1, which is much smaller than 

the typical range of 10
0
 to10

2
.  This might due to the existence of non-condensable gas in the bubble. 

1 Introduction  

Many industrial applications, for instance, boiler, boiling water reactor, and the new generation 

of electronic and computer system, are seriously interested in the understanding and modeling of 

subcooled boiling flow.  The mere existence of thermodynamic non-equilibrium between the gas and 

liquid phases greatly complicates the analysis of subcooled boiling flows in the core (bulk flow) region.  

Various two-phase flow models have been proposed to deal with the discontinuity at the interfaces 

between the different phases.  For example, some measured success has been achieved by the 

homogeneous and drift-flux models in some engineering applications.  However, intrinsic limitations 

preclude these models from robustly handling two-phase flows that are either transient or in a complex 

geometry.  An alternative approach, based on solving a set of conservative equations for each phase 

proposed in the two-fluid model, provides a feasible solution to these complex problems [1].  Provided 

that suitable boundary and initial conditions are imposed, the spatial and temporal distribution of each 

phase can be adequately simulated.  The weakest link of the two-fluid model is, however, the 

modelling of the phase interaction terms that couple the transfer of mass, momentum, and energy 

across the interface.  These phase interaction terms are specifically related to the interfacial area 

concentration, since all the interfacial transfer occurs through the liquid-gas interface. 
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A successful simulation of the subcooled boiling flow in the core region should precisely 

describe two basic geometric parameters: (i) void fraction (defined as the fraction of gas phase in the 

mixture), and (ii) interfacial area concentration (defined as the total interfacial area, or bubble surface 

area, divided by the mixture volume).  These two parameters can be mathematically accommodated by 

adopting the two-fluid model and either the Interfacial Area Transport Equation (IATE) or the 

Multiple-Size Group (MUSIG) model.  These two models both adopt a population balance approach to 

model the source and sink terms of interfacial area concentration or bubble number due to bubble 

coalescence, break-up, nucleation, condensation, and other mechanisms associated with heat and mass 

transfer processes involved in subcooled boiling flow. 

In previous research by the authors, all the source terms in the IATE have been thoroughly 

investigated.  The source and sink terms due to bubble coalescence and break-up has been successfully 

modeled for isothermal flows [2-5].  Additionally, a bubble-layer thickness model was developed to 

avoid covariance in cross-sectional averaging of the IATE in subcooled boiling flows [6].  As one of 

the most important source term, the bubble nucleation on heater surface consists of three contributing 

parameters, i.e., active nucleation site density, bubble lift-off diameter, and bubble departure frequency.  

Recently, Hibiki and Ishii [7] mechanistically modeled the active nucleate site density by accounting 

for the distribution of the critical cavity size and contact angle of the bubble on the heated surface.  

This model was correlated by taking into consideration various active nucleation site density data taken 

in pool boiling and convective flow boiling systems.  Situ et al. [8-10] conducted on a range of 

photographic studies of subcooled boiling flows to investigate the bubble departure and lift-off.  The 

model of bubble lift-off size has been developed based on the force balance analysis of a lifting-off 

bubble.  Besides, a correlation of bubble departure frequency was proposed and it agrees well with the 

existing datasets available in literature. 

Another important source/sink term in the IATE is the sink term due to bubble condensation.  It 

has been extensively studied in pool boiling and flow boiling, which has been thoroughly reviewed by 

Zeitoun et al. [11], and later updated by Warrier et al. [12] and Park, et al. [13].  The bubble 

condensation experiments were mostly performed to study stagnant bubbles in a pool [14-16]; or to 

study moving bubble in a stagnant liquid [17-19]; or to study bubbles collapsing in a flow boiling[11, 

12].  Most of the studies classified the bubble condensation into heat transfer or inertial controlled 

condensation.  Some researcher [20] found that inertial controlled condensation occurs at high liquid 

subcooling, while heat transfer controlled condensation happens at relative low subcooling.  Chen and 

Maying [19] obtained the criteria to be at Ja > 100 (for fully inertial controlled) and Ja < 80 (for 

complete heat transfer controlled).  On the other hand, Park et al. [13] divided a whole condensation 

process of a bubble, generated from the heated surface, into two stages: (i) heat transfer controlled 

region, starting from maximum bubble size, condensing in low surrounding subcooling, and finishing 

when bubble is reduced to 0.4 of maximum size, and rapid decreasing rate occurs; (ii) inertial 

controlled region, where bubble collapses sharply a critical collapsing bubble diameter Dc which is 

around 25 µm at atmosphere pressure.  By analyzing these two regions, a bubble condensation sink 

term in the IATE was developed [13].  Due to the limitation of measuring technique, most of the 

experiments have been conducted by measuring the size of one or a few bubbles, and the bubble size 

distribution and the averaged bubble size cannot be captured.  In addition, the low resolution setup of 

the camera makes it difficult to obtain bubble in micrometer level (less than 0.1 mm). 

The purpose of this paper is to investigate bubble condensation phenomena at micrometer range 

in subcooled boiling flow.  To this end it will utilize the recently-developed Particle/Droplet Image 
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Analysis (PDIA) technique to obtain bubble size and velocity distributions, compare the data with 

existing correlations, and propose new models. 

2 Experimental Setup 

2.1 Test Facility 

An experimental facility has been designed to measure the relevant two-phase parameters 

necessary for developing constitutive models for the two-fluid model in subcooled boiling flow.  The 

experimental facility is a scaled-down loop from a prototypic boiling water reactor based on proper 

scaling criteria for geometric, hydrodynamic, and thermal similarities [21, 22].  The schematic diagram 

of the flow loop is shown in Figure 1.  The pre-degassed distilled water is held in the main tank.  The 

main tank has a 2kW heater to maintain the temperature.  The water is pumped by a Lowara centrifugal 

pump and divided into four separate lines.  Each line runs to a fitting that is connected to the bottom of 

the test section.  The test section is an annulus formed by a clear polycarbonate tube on the outside with 

an ID of 38.1 mm, and a cartridge heater on the inside with an OD of 19.1 mm.  Thus, the hydraulic 

equivalent diameter, DH, is 19.1 mm.  The test section has an overall length of 1200 mm with a heated 

section of 200 mm in length.  The maximum heat flux of the heater is 200 kW/m2.  An image box (60 

cm length) was installed on the test section to minimize the image distortion. The image box was filled 

with glycerin because its index of refraction (1.473) is close to that of polycarbonate tube (1.58). On 

the top of the test section, an expansion joint is installed to accommodate the thermal expansion of the 

polycarbonate test section.  A separation tank is used to separate vapor phase from water.  The steam is 

then condensed, and the water is returned to the main tank.  The separation tank is located directly 

above the main tank. 

2.2 Particle/Droplet Image Analysis (PDIA) System 

Particle/Droplet Image Analysis (PDIA) is a newly developed digital image analysis technique 

by Oxford Lasers, which is capable of determining the properties of individual bubbles or droplets such 

as their velocity, size, shape and concentration over a finite region of interest in the flow. The principle 

of PDIA technique is to use an automated segmentation threshold algorithm for the quantitative 

analysis of bubble or droplet images [23]. This method is based on the original approach adopted by 

Yule et al. [24], using the degree of image focus determined from the edge gradient intensity of a 

bubble or droplet image.  

 

It is possible to determine the diameter of a droplet from an estimate of the pixel area of a 

shadow droplet image by using a simple threshold algorithm, and thus simultaneous estimates of the 

droplet size and sphericity can be obtained. However, out-of-focus droplets appear typically up to 30% 

larger than they are. The PDIA technique uses two thresholds, one to measure the grey, out-of-focus 

border, and the other to measure the dark core. From the ratio of these areas, the true droplet size and 

its distance from the plane of best focus can be deduced. Moreover, the PDIA software also corrects the 

bias introduced by droplets that touch the edges of the image: large droplets are more likely to touch 

the edges [25]. 
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Fig. 1. Experimental facility. 

 

Diameter measurement in PDIA is based on an area estimate of the shadow image of an 

individual droplet, and is straightforward for a perfect sphere. As reported by Whybrew et al. [23], the 

image analysis technique also permits the sizing of non-spherical droplets where the diameter for a 

droplet of arbitrary shape, Da, is based on the equivalent circular area as given by equation (1):  

π

A
CD

4
a = , (1) 

where A is the total number of pixels and C is the ratio of microns to pixel obtained from calibration. 

The droplet based on the equivalent circular perimeter, Dp is defined through the ratio of microns to 

pixels, C, and the is the number of pixels on the perimeter of the non-spherical droplet, P, defined in 

equation (2). 

π

CP
D =p

, (2) 

Figure 1 shows a schematic diagram of the PDIA apparatus used in the current study. A double-

pulsed Nd: YAG laser was used as the illumination source with pulse duration of 5 ns. The fluorescent 

diffuser coupled with an articulated beam delivery arm produces an expanding cone of light with a 

uniform background intensity distribution. Image acquisition was achieved with a non-intensified 12-

bit CCD camera (PCO Sensicam) with a 1280 × 1024 pixel array and pixel dimensions of 6.7 × 6.7 µm. 

An Oxford Lasers long distance microscope lens (Model Option 4) provided a magnification of 0.64 
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offering a resolution of approximately 11.55 µm/pixel (after calibration considering the image 
distortion effect of test tube). It was found that 400 continual images at the rate of four frames per 

second were needed to get stable statistical mean diameter of the bubbles for each experimental 

operating condition. In addition a background image was also taken without the presence of bubbles. 

Due to the complex structure of the annual test section causing highly non-uniform image illumination, 

a Background Subtraction Mode within the PDIA VisiSize Solo software (version 2.089) was 

employed. 

2.3 Experimental Procedure 

The experiments were conducted rigorously.  In preparing for an experiment, the distilled water 

in the main tank is degassed by heating up the tank for 24 hours.  Before the measurement, the flow 

reaches steady state, and the inlet temperature and fluid velocity keep constant for 30 minutes.  

Experiments of 13 conditions, as shown in Table 1, were performed for the investigation of bubble 

condensation downstream of the heated section.  For each condition, the camera were placed at four 

locations in the unheated section, i.e., 0 mm (or 20 mm), 50 mm, 100mm, and 200mm. The 

temperature at the end of heated section ranges from 75.0 to 98.0 °C; the inlet velocity varies from 0.25 

to 1.0 m/s; and the heat flux changes from 150 to 200 kW/m
2
.  In all experiments, the temperatures at 

several locations (test section inlet, outlet, and heated section end) were measured by the thermocouple 

with accuracy of ±0.1 °C.  Besides, the pressures at inlet and outlet of the test section were also 

measured by Gems Sensors 2200 series pressure transducers.  In addition, heat flux and inlet velocity 

are acquired by a data acquisition system.  The measurement accuracies of heat flux, liquid 

temperature, liquid velocity, and pressure are ±1%, ±1.5°C, ±1.5% of reading, ±25%, respectively. 

 

Table 1. Experimental conditions. 

Test 
Tin 

[°C] 

Tout 

[°C] 
wq ′′  

 [kW/m2] 

vfin 

[m/s] 

pin 

(kPa) 

pout 

(kPa) 

1 88.9 89.8 146.6 0.498 15.8 2.4 

2 96.5 98.2 148.4 0.501 15.1 2.3 

3 89.5 90.0 147.5 0.999 16.2 2.4 

4 70.9 75.2 201.6 0.247 15.2 2.1 

5 74.8 80.0 201.2 0.249 16.1 2.0 

6 85.3 90.1 200.8 0.249 15.3 2.4 

7 90.2 95.0 201.7 0.250 15.5 2.0 

8 77.7 79.9 200.7 0.501 16.0 2.4 

9 82.7 84.9 201.2 0.501 16.2 2.1 

10 87.8 90.0 200.6 0.501 16.9 2.6 

11 92.4 95.1 200.8 0.498 14.8 2.0 

12 89.3 90.0 201.3 0.999 16.1 2.4 

13 9.9 95.1 200.9 0.999 15.9 2.1 
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3 Results and Analysis 

Data of bubble Sauter-mean diameter were extracted from pictures by using VisiSize Solo 

software from Oxford Lasers. For each experimental condition, a total of 200 or 400 pairs of image 

files were processed to ensure enough number of bubbles to be available for analysis.  During the 

analyzing, data of bubble diameter was obtained by analyzing every first image of the pair of images.  

Since the image illumination was highly non-uniform, the reference background image was subtracted 

from the original image.  Next, the adaptive mode of 55% was taken to obtain bubble images.  After 

that, shape sphericity less than 0.2 were rejected.  The shape sphericity is defined as  

2

p

a 4

P

A

D

D
S

π
== . (3) 

When diameters of all the bubbles were known, the averaged bubble diameter can be obtained by 

choosing different method.  In order to better comparing with datasets in literature, the Sauter-mean 

method was chosen: 

∑∑≡
kk

DDD 2

k

3

ksm . (4) 

Averaged bubble Sauter-mean diameters at one axial location was obtained by setting the whole flow 

channel as the window; while radial distribution profile of the local bubble Sauter-mean diameter was 

obtained by setting the analysis window as 10% of the flow channel width (20% windows were chosen 

for Test 2, 7, 11, and 13 due to the appearance of large bubbles). 

Another important output from the software is bubble velocity, which was obtained by particle 

tracking method which analyzing every pair of images.  In the velocity mode, several parameters were 

set: bubble flow direction (upwards), maximum angle deviation (< 15°), and maximum pixel separation 

(determined according to liquid velocity).  The mean bubble velocity was obtained by averaging all the 

bubbles in the window. 

3.1 Bubble Sauter-mean diameter radial profile 

 Figure 1 shows the radial profile of bubble Sauter-mean diameter.  Comparing with Test 1 and 

Test 2 in Fig. 1 finds that bubble diameter increases as the liquid temperature increases from 90 to 

98°C.  Similar phenomena can be found by comparing Test 4-7 and Test 8-11.  In addition, bubble 

layer tends to expand to the core region, and big bubbles can be found (for unheated length zu = 20mm).  

This suggests that bubble can survive at higher temperature.  On the other hand, increase of liquid 

velocity seems to reduce the bubble size, which can be seen by comparing Test 1 and 3, Test 5 and 8, 

and Test 6 and 10, etc. 
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Fig. 2. Bubble Sauter-mean diameter radial profile. 
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3.2 Bubble velocity radial profile 

 Figure 3 shows the radial profile of bubble velocity, which agrees well with turbulent liquid 

velocity profile.  Comparing with Test 1 and Test 3 finds that bubble velocity increase correspondingly 

with the increase of liquid velocity from 0.5 to 1.0 m/s.  In addition, comparing with Test 1 and 2 find 

that the peak of velocity profile moves closer to left side, which is the heated surface.  This can be 

explained with reference of Fig. 2(a), where bubble size is in the range of 300 to 400µm in Test 2 

comparing with 100mm in Test 1.  Thus the void fraction in Test 2 is much higher than in Test 1, 

which suggests that higher void fraction will result in higher bubble velocity.  These phenomena can 

also be found in other subcooled boiling experiments [22].  Another interesting finding in test 2 is that 

bubble velocity decrease as the bubble travels in the unheated section, from zu = 20mm to zu = 200mm.  

This figure indicates that bubble diameter decrease in condensing flow, so does the bubble velocity. 
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Fig. 3. Bubble velocity radial profile. 

3.3 Bubble Sauter-mean diameter axial profile 

 Axial profiles of bubble Sauter-mean diameter are plotted in Fig. 4.  It is suggested that bubbles 

collapse sharply when the bubble size is more than 400 µm, for conditions Test 2 and 11.  However, 
after bubbles drop below 300 mm, bubbles condensation rate is reduced.  The reducing of condensation 

rate can be explained clearly by drawing the condensation Nusselt number, which is defined as 

( ) t

D

TTk

Di
Nu

g

d

d

2
sm

fsatf

smfg

c
−

−=
ρ

, (5) 

where ρg, ifg, kf, Tsat, Tf are vapor density, latent heat, liquid thermal conductivity, saturation 
temperature, liquid temperature, respectively.  Hence, the condensation Nusselt number is calculated 

from the experimental parameters, and plotted in Fig. 5 against Sauter-mean diameter and bubble 

Reynolds number  
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Fig. 4. Bubble Sauter-mean diameter axial profile. 
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where ρf, µf are liquid density and liquid viscosity.  The existing models of condensation Nusselt 

number, described in Table 2, are compared.  The results show that all the models predict Nuc to be in 

the range of 1 to 10, which is much higher than the experimental data, which mainly fall in the range of 

10
-5
 to 10

-2
. 

This contradict with the condensation trend, described by Park et al [13], that bubble collapses 

sharply after it reduced to 40% of the initial size.  This suggests that bubble would not disappear 

completely after dropping to 200µm.  This suggests that the remnant of the bubble is not water vapor 
but non-condensable air.  Although distilled water is chosen as working fluid, and it had been degassed 

extensively before the experiments.  It cannot guarantee no air trapped in the water.  Furthermore, the 

nucleate boiling on the heated surface relies on the trapped air in the nucleation cavity.  Thus, there 

must be some air trapped in the bubble.  This phenomenon was not discussed in literature, might due to 

two reasons.  First, the experimental method can not discern bubble in level of 0.1mm.  Thus bubble in 

this range was discarded.  Secondly, the purpose of the experiment was to find the condensation rate, 

and these tiny air bubbles would not contribute to the heat and mass transfer.  Hence, the reducing of 
condensation rate is neglected in most of the research. 
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Fig. 5. Bubble condensation Nusselt number. 

 
Table 2. Bubble condensation models. 

 

Author Condensation Nusselt number Applicable range 

Isenberg and Sideman [18] ( ) 1/31/2

bc 1 PrReNu π=  Non-available 

TRACE Code [26] 

( ) 402/3

b

50

bc

1/20.7

bc

1/2

c

060402

1850

7116

.. PrRe.Re.Nu

PrRe.Nu

Pr.Nu

++=

=

=

 

400

00010400

00010

b

b

b

≤

≤≤

≥

Re

,Re

,Re

 

Chen and Mayinger [19] 
)detachment(after  1850

)detachment (before 60

0.50.7

bc

500.6

bc

PrRe.Nu

PrRe.Nu .

=

=
 00010b ,Re ≤  

Warrier et al. [12] [ ]2/3

0

901/30.6

bc 201160 FoJa.PrRe.Nu .−=  70020 b ≤≤ Re  

Ruckenstein [27] ( )1/2

bc 4 PrReNu π=  Non-available 

 

4 Conclusions 

 Subcooled boiling bubble condensation experiments were conducted in a vertical-upward 

annular channel by using water as the testing fluid at atmosphere pressure.  The test runs comprised of 

bulk liquid temperatures, velocities and wall heat fluxes ranging from 75.0°C to 98.0°C, 0.25 m/s to 1.0 

m/s and 150 kW/m
2
 to 200 kW/m

2
 respectively.  The PDIA system was employed to capture the flow 

channel at four locations downstream of heated section for a total of 13 test conditions.  The bubble 

Sauter-mean diameter was obtained in the range of 0.1 mm to 0.9 mm.  The bubble sizes increase with 

the increase of liquid temperature or the decrease of liquid velocity.  The condensation Nusselt number 

was calculated to be in the range of 10
-4
 to 10

-1
, which is much smaller than the typical range of 10

0
 

to10
2
.  This might due to the existence of non-condensable gas in the bubble. 
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