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Abstract

Fractional Fokker-Planck equation is used in many physical transport problems take
place under the influence of an external force field. In this paper we examine some
practical numerical methods to solve a class of initial-boundary value fractional
Fokker-Planck equation on a finite domain. The solvability, stability, consistency,
and convergence of these methods are discussed. The stability is proved by the
energy method. Two numerical examples using these finite difference methods are
also presented and compared with the exact analytical solution.
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1 Introduction

Brownian motion in the presence of an external force field F(z) = —v/(z) is
usually described in terms of the Fokker-Plank equation (FPE) (see [20])
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which defines the probability density function (pdf) w(zx,t) to find the test
particle at a certain position z at a given time ¢. In the (1), m denotes the
mass of the particle, K; denotes the diffusion constant associated with the
transport process, and the friction coefficient 7; is a measure for the interaction
of the particle with its environment. The basic properties of the FPE are the
exponential decay of the modes, the Einstein relations which are intimately
connected with the fluctuation-dissipation theorem and with linear response,
and the Gaussian evolution in the force-free case (see [12], [13], and [14]). For
example, in the force-free case, i.e., v(z) = const, the corresponding diffusion
process is governed by Fick’s second law, leading to the linear time dependence

< 22(t) >= 2Kt (2)

of the mean square displacement; this hallmark of Gaussian diffusion is a
consequence of the central limit theorem. In a variety of systems one find that
the (2) is violated. Instead, diffusion in such systems is characterized by the
power-law time dependence

2K,

< 2%(t) >= Ti+a)
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of the mean square displacement (see [2], and [13]). This form is connected
with broad, lévy-type transport statistics, ruled by the paramount general-
ized central limit theorem (see [2]). According to the value of the anomalous
diffusion exponent «, one distinguishes subdiffusion (0 < a < 1) and su-
perdiffusion (a > 1). In what follows, the first case is considered which is also
referred to as dispersive transport (see [22]). Experimental evidence for such
slow diffusion has been found for transport on percolation clusters (see [8]), a
bead immersed in a polymeric network (see [1]), or for charge carrier transport
in amorphous semiconductors (see [18], and [4]), just to mention a few (see
2], and [13]). Thereby the conventional FPE cannot describe the anomalous
diffusion. As a model for subdiffusion in an external potential field v(x), the
fractional Fokker-Planck equation (FFPE)
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has recently been suggested (see [12], [24], [15], and [23]). Here, K,, > 0 denotes
the generalized diffusion coefficient of dimension [K,] = cm?sec™, and 7, is
the generalized friction coefficient with [n,] = sec® 2. The Eq. (3) uses a
Riemann-Liouville fractional derivative of order 1 — «, defined by
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where 0 < ao < 1 (see [17], [21], [16], and [6]), I'(z) is the Gamma function. It
is worthwhile considering the example of a subdiffusive, harmonically bound
particle, i.e. the subdiffusive motion in the potential V(z) = %muﬂxz which
exerts a restoring force on the test particle. The FFPE can be rewritten as

follows (see[14]):

w To
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which is established according to the subdiffusive generalisation of the Ornstein-
Uhlenbeck process. For convenience, let us only consider the case of K, is
constant. There have been some attempts on deriving numerical methods and
analysis techniques for the anomalous subdiffusion equation. Yuste and Acedo
[25] proposed an explicit finite difference method and a new Von Neumann-
type stability analysis for the anomalous subdiffusion equation. Langlands
and Henry [9] also investigated this problem and proposed an implicit numer-
ical scheme (L1 approximation). However, effective numerical methods and
supporting error analyses for the anomalous subdiffusion equation are still
limited. Zhuang and Liu et al. [26] proposed a new implicit numerical method
(INM) and two solution techniques for improving the order of convergence of
the INM for the anomalous subdiffusion equation. Chen an Liu et al. [3] also
proposed an implicit difference approximation (IDA) and a Fourier method
for analyzing the stability and convergence of the IDA.

The FFPE have recently been treated by a number of authors. Liu et al. (see
[10] and [11]) presented practical numerical methods to solve the space FFPE.
Metzler et al. (see [12]) considered the FFPE(3) and the solution was obtained
by using the separation of variables. However, the analytic solutions of most
FFPE cannot be obtained explicitly, and published papers on the numerical
solution of the FFPE(3) are sparse. This motivates us to consider effective
numerical methods for the FFPE(3).

2 Some Implicit Approximations and Consistency

In this section we introduce some implicit approximations for solving the

FFPE
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subject to the initial condition

w(z,0) =p(z), d<zx<b, (7)



and the boundary conditions

w(d> t) = gl(t)7 w(bv t) = gQ(t)> 0<t<T. (8)

Let t, = n7 denotes the integration time t,, > 0, h = (b — d)/M is the grid
size in space, where M is a positive integer, with x; = d+th fort =0,---, M.
Define w!" as the numerical approximation to w(z;,t,). The initial condition
is set by w{ = ¢(z;). The boundary conditions are set by wj = ¢;(t,) and

wiy = ga(tn).

For convenience, let f(z) = % We assume that the problem (6)-(8) has a
unique solution w(z,t) € C2¢([d,b] x [0,T]), then can rewrite the (3) in the
following equivalent form (see [13], [5], or Appendix)

0t 9 0?
oDfw(x,t) — M = —f(v)w(x,t) + Ka@

T(l-—a) Oz w(z,t). (9)

To approximate the Eq. (9) we use the second order central difference scheme
for the second order spatial derivative
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In this section, we assume that the function f(x) is not positive and decrease
monotonously in the interval [d, b]. We introduce three kind implicit approxi-
mations.

(1) Grimnwald— Letnikov and the backward Euler implicit approxima-
tion

We use the Grimwald — Letnikov definition (see [19]) to approximate the time
fractional derivative:

oDfw(x;, t,) — %
= 0D?(U)(x,t) - w(SL’,O)) (2i,tn)

~ T i up, [w?‘k — wﬂ + O(7),
k=0
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k

The first order spatial derivative is approximated using the backward differ-

where u, = (—1)



ence scheme.
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+O(h).

The first kind implicit approximation for the FFPE is determined by Grinwald—
Letnikov and the backward difference approximation (GL-BDIA):

i
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i=1,2- M1,
wy = p(x;), 1<i<M, (11)

wy = gi(tn), Wiy = ga(tn), n =1 (12)

The GL-BDIA defined by (10)-(12) is consistent with the FFPE, which gives
a local truncation error of O(7 + h).

(2) L-1 approximation and the central difference implicit approxi-
mation

The time fractional derivative is approximated by the L-1 approximation (see
[17]), which is valid for 0 < a < 1. Explicitly, the L-1 approximation for the
fractional derivative of order a with respect to time at ¢t = ¢, is given by (see
[17], [9])

@ w(x;,0 r:a
UDt U}(l'i, tn) — %

—a n=l _
~ oy | Wit = X (k1 — an—k)wf - an_lw? + 0(7—2 “)
r2—a) =

where ap = (k + 1)17* — k17«
The first order spatial derivative is approximated using the central difference
approximation.

9 . A Jiriwiyy — fiiw;' 4 2
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The second kind implicit approximation for the fractional Fokker-Planck equa-
tion is determined by L-1 approximation and the central difference approxi-



mation (L1-CDIA)
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i=1,2,-, M —1,
w) = @(x;), 1<i<M, (14)

wy = gitn), Wiy = galtn), n=1. (15)

The L1-CDIA defined by (13)-(15) is consistent with the FFPE, which gives
a local truncation error of O(72~ + h?).

(3) L-1 approximation and the backward difference implicit approx-
imation

In the first kind implicit numerical method, we replace the Griunwald —
Letnikov approximation with the L-1 approximation. Then we can establish
the third implicit approximation (called L1-BDIA):

n—1
T_a n k 0
Te—a (Wi — kz_:l(an—k—l - an_k)wi — Qp—1W;

frwp—fimywp Wiy~ 1
= TR (16)

i=1,2,---,M—1,
wy = (), 1<i<M, (17)

wy = gi(tn), whyy = g2(tn), n=>1 (18)

The L1-BDIA defined by (16)-(18) is consistent with the FFPE, which gives
a local truncation error of O(7%~ + h).

Remark 1: If the function f(z) is not negative and decrease monotonously
in the interval [d, b], we replace the backward difference scheme with the for-
ward difference scheme in the first kind implicit approximation. Then we can
establish the Grinwald — Letnikov and the forward difference approximation
(GL-FDIA):
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w) = p(x;), 1<i<M, (20)

wy = gitn), Wiy = galtn), n=>1. (21)

The GL-FDIA defined by (19)-(21) is consistent with the FFPE, which gives
a local truncation error of O(T + h).

Remark 2: If the function f(z) is not negative and decrease monotonously
in the interval [d, b], we replace the backward difference scheme with the for-
ward difference scheme in the third kind implicit approximation. Then we can
establish the L-1 approximation and the forward difference approximation

(L1-FDIA):

n—1
T~ n k 0
Te—a (Wi — > (an—k—l - an_k)wi — Qp—1W;
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:f+1 H;Ll S Z+Ka it1 h21+217 (22>
i=1,2,---,M—1,

w) = p(z;), 1<i< M, (23)

wg = gl(tn)7 wg\l/[ = gQ(tn)’ n =1 (24>

The L1-FDIA defined by (22)-(24) is consistent with the FFPE, which gives
a local truncation error of O(72~ + h).

3 Stability, Solvability and Convergence

Firstly, we introduce some relevant notations and properties (see [7]).
Suppose v = {ul|0 < i < M,n > 0} and v" = {o|0 < i < M,n > 0} are
two grid functions. We introduce the following notations:

(u)e = (wiy —wi)/hy (u)e = (u — i) /h,

M-1

(", 0") = > ufvth, | = (@ u")',
=1
M

(", 0" =D ujvih,  lu]| = (u", a2,
=1

In addition, if uj = 0 and u}; = 0, we have

(un7 (U;})x) = _(ug7 U;L (25)



< Bl (26)

n|2
o <

where [ = b — d.

Secondly, we discuss the stability of these approximations.

Let us suppose that @ (i = 0,1,2,---,M;j = 0,1,2,---,n) is the ap-
proximate solution of corresponding difference scheme, & = @ — w] (i =

0,1,2,-+-,M;5=0,1,2,---,n) denotes corresponding error.

Theorem 1 (1)If the function f(x) is not positive and decrease monotonously
in the interval [d,b], then GL-BDIA defined by (10)-(12) is unconditionally
stable, 1i.e.,

le™ 1 < 1171

(2)If the function f(x) is constant in the interval [d,b], then the L1-CDIA
defined by (13)-(15) is unconditionally stable, i.e.,

le™ 1 < 1101

PROOF. (1) For the GL-BDIA defined by (10)-(12), its error satisfies

n—1 ek n—1 0
T el + D0 urel " — D ukE;
k=1 k=

_ figl—fiagl + K € —2e] e

and e =€}, =0 (Vn € N).

Multiplying (27) by he! and summing up for i from 1 to M — 1, we obtain

M-—1 n—1 k n—1
T Z en + Z upel " — Z uksg £

lfz —fic1el n K (28>
Z e+ Kah Z e,
Eq. (28) can be rewritten as
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We have

M-1
n\2 n||2
hy o (e8) =" (30)
i=1
Because ug = 1,u;, = (1 — HTO‘)uk_l and % up = 0, we have up, < 0 k =
k=0
1,2,---, and Z ug > 0.
From which 1t follows that
—1n—1 k
=1 k=1
M_tne n—k\2 n\2
SR [( P+ (e’ (31)
n—1 - n—1
=3 2 e "II2 =5 X wlle™?
k=1 25
and
M—-1n—1
h Z Z ueden
i 1 2 2
<HE T wd (P + € (32)

n—1
= 1S w [l + ).

Because f(z) <0 and f(z) decrease monotonously in [d, b], we obtain

M—
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1\14 11 M—1
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[M—1 M—1 )2
STa ; fl(gzz) Zjl fz 1M]
M—1 M=t L M=t
=7 ¥ file!)? -3 P fiea(el)? =5 P fz‘—l(&??_OZ]
a-Mf 2 1 MEE m2 1 M=2 n\2
=T ; file})? — 5 ; fioi(e})? — 5 ; fi(e?)

« -1 Mt n\2 1 Mt n)2 1 n 2
=7% 3 X file)" =3 Z; fimr(e9)? + 3 fu—1(eh) ]




Using (25) and (26), we obtain

M—1 _n n n

e —2el 4l
,7_04 l{ah 2: i+1 i i—1
=1

n
72 i

= 1Ko (") ()] )
= =T Kol|(e)a]?
< —Fgtellen||?
<0
Taking into account (29)-(34) we conclude that
n—1 n—1
le™ 1 < = > ualle™ 1% + 3 ||, (35)
k=1 k=0
It follows from (35) by induction that
le™1* < 11", vn €N (36)

In fact, for n = 1, (36) is fulfilled obviously. Suppose that
||€k||2§ ||€0||27 k:1727"'7n_1a

then
n—1 n—1
len* < = 5 welle" 1 + X ukll”)®
n—1 k= n—1 F=0
< = 3wl + 3 )
k=1 k=0
= [l
According to (36), we obtain that the GL-BDIA defined by (10)-(12) is un-
conditionally stable

(2) For the the L1-CDIA defined by (13)-(15), its error satisfies

n—1
T n

m gi - Z (an—k—l - an—k)gf‘ — an_lgg

fit1el 1 —fi—1e el —2el+el
_ fin Hth 18,1 + K, 41 - 1’ (37)

i=1,2- M—1
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and € = ¢y, =0 (Vn € N).
Multiplying (37) by hel and summing up for i from 1 to M — 1, we obtain

n

M— —1
T h Y gn—”z(a — p_)e¥ —an_ 18 ¢
r(2—a) . 3 n—k—1 n—k)<; n—1<; i
=1 k=1

38
— hMil fi+15?+12_hfi*15?71€? + Kah Mil Ep1— 2;2 +ei 18?. ( )
=1 =1
Let P = 7°T'(2 — a), we can rewrite (38) in the form
M=—1 —1n—1
h ¥ (e})? hZ Z(ankl—ank)ge —|—an1h2&tlsz
+Ph Y l“gl“ghz gt 1 PRh Y, Sty
i=1 i=1
Since a; > a;41, [ =0,1,---, we have
M=1n-1 i
h' Z(ankl_ank)zzl
i=1 k=1
Mtnd 1 [(-k\2 n\2
<h' S S (anogor — ani)d [(E9)2 + (1)
S (40
3 (ks = an I+ 3 ke — P
n—1 -
= %kfl(an_k_l — an—i)l|]* + 3 (a0 — an—1)[le"|I*.
We obtain
M—1
an_1h Y edel
<apih T 3D + () )
1=
= 3an-1 [||°]1 + [le"]|] -
Because f(z) = C*, x € [d,b], where C* is constant, we obtain
M—1
Jivrel —fim1e]
Ph i+1 7 1€n
— PCr TN nen
2 igl (8 €z+1 &; 6271) (42)
= PQC (ehr—18hr — €7€0)
= 0.
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It follows from (34), we have

PK,h Y “HL T T oinlen <), (43)

Taking into account (30) and (39)-(43) we conclude that

le™1* < >~ (an—t-1 = an-u) |e*]I* + an-1[le°||*. (44)

It follows from (44) by induction that

le™1* < 11°11%, vn € N. (45)

In fact, for n = 1, (45) is fulfilled obviously. Suppose that
||€k||2S ”50”27 k=1,2,---,n—1,

then X
e
len? < k;(@n—k—l — an)||E¥]* + an—1|€°
n—1 N
< kz_:l(an—k—l - an—k)HgOHQ + an—1||50||2
= (L= an1)[[E°)* + an-1]€°]?
= [|°]%.

According to (45), we obtain that the L1-CDIA defined by (13)-(15) is uncon-
ditionally stable.

Using similar method above we have the following results:

Theorem 2 (1)If the function f(z) is not positive and decrease monotonously
in the interval [d, b], the L1-BDIA defined by (16)-(18) is unconditionally sta-
ble.

(2)If the function f(x) is not negative and decrease monotonously in the in-
terval [d,b], the GL-FDIA defined by (19)-(21) is unconditionally stable.
(8)If the function f(x) is not negative and decrease monotonously in the in-
terval [d,b], the L1-FDIA defined by (22)-(24) is unconditionally stable.

Now we prove the solvability of these implicit difference approximations.

Theorem 3 (1) If the function f(z) is not positive and decrease monotonously
in the interval [d,b], then the GL-BDIA defined by (10)-(12) is uniquely solv-
able.

12



(2) If the function f(x) is constant in the interval [d,b], then the L1-CDIA
defined by (13)-(15) is uniquely solvable.

(3) If the function f(z) is not positive and decrease monotonously in the in-
terval [d, b], the L1-BDIA defined by (16)-(18) is uniquely solvable.

(4) If the function f(x) is not negative and decrease monotonously in the in-
terval [d,b], the GL-FDIA defined by (19)-(21) is uniquely solvable.

(5) If the function f(x) is not negative and decrease monotonously in the

interval [d,b], the L1-FDIA defined by (22)-(24) is uniquely solvable.

PROOF. Since the proven method of the uniquely solvability of the above
difference approximations is similar, so we only prove (1) the uniquely solv-
ability of the GL-BDIA defined by (10)-(12).

Since the GL-BDIA is a system of linear algebraic equations at each time level.
It suffices to show that the corresponding homogeneous equations:

n—1
T ¢ n k 0
ta |V~ X (ko1 = Gnop)w — ang;

_ i —fioiwit Wiy —2wi Wi 4

— 1 L K, e (46)

1=1,2,--- M —1,

w) =0, 0<i<M, (47)
wy =0, wy=0n>1 (48)

have only zero solution. From the proven procedure of Theorem 1, using (46)

and (48), we have

™[ < [l vneN. (49)

Using (47), we obtain

[w?][* = 0.
According to (49), we have
lw™[* =0, nz=1 (50)
It follows from (50) that
wWwh'=0, 1<i<M-1, n>1.

Let €' = w(x;, t,) —wl, e ={ef| 0 < i< M, n>0}isa grid function.

7

Now we give following theorem of convergence.
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Theorem 4 (1) If the function f(x) is not positive and decrease monotonously
in the interval [d,b], then the GL-BDIA defined by (10)-(12) is convergence,
and there exists a positive constant C' > 0, such that

le™] < C( + h).

(2) If the function f(x) is constant in the interval [d,b], then the L1-CDIA
defined by (13)-(15) is convergence, and there exists a positive constant C > 0,
such that

le"|| < C(727* + 1?).

PROOF. (1) According to the results from discussing consistency of the
GL-BDIA defined by (10)-(12) in Section 3, we obtain the following error

equation:

—a | .n nl n—k nl 0
T e; + kz uge; = — Z uRe;
=1

) ) ) (51)
:%"FKQ%}L#"’_T@? Z.:1727"'7M_17

=0 1<i<M, (52)
eq =0, ey =0, n >0, (53)

where |rl'| < Cy(T + h), C} is a positive constant.

Multiplying (51) by hel' and summing up for i from 1 to M — 1, we obtain

M-—1 n—1 & n—1
T%h E er + Z upel " — Z ugel| er

1 fie} —f el —2el el (54)
E i i— zln+KhZ z+1 h2 Zln+hzr162'
Eq. (54) can be rewritten in the following form
M-—1 9 M—-1n-—1 k) M-—1 fien_fi—len
h ¥ (ef)?=—h X Z uge; ef +71%h Y ———e}
i=1 i=1 i=1 (55>
M- gen +e M-1
+7_01K h Z z+l h i—1 7L+7_th Z ,r.
i=1 =1
It follows from the proven procedure of Theorem 1 that
M—1
n)2 n|2
hy o (ef) = e (56)
i=1
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and

M=In-l n—k_n 1 n=l n—kl|2 1 nl nl|2
—h ¥ X ugel Vel < —5 3 uglle" P — 5 X uklle]]?, (57)
i=1 k=1 k=1 k=1
M-1 n n
h Y fici }’: izl <0, (58)
=1

no.—2e 7.‘
i+1 h€2’L + e’L—l 6? SO (59)

M-1
7K, h Z
i—1

To discuss the right fourth term in (55), let us first discuss the coefficient uy.

o
For convenience, let us denote v, = —n® > .
k=n
00 n n k} —a—1 n—uo
Because > up, =0and > u, = > = )
k=0 k=0 k=0 2 n
o] n—1 n — 1 —
therefore — Y up= > up =

From which it follow that

— 2 Uk n—1—a« n—1—a«a
= - = =1+ —— (60)
— > u n—1 n—1 n—o n—a
k=n+1
For z € (—1,1), we have
-1 —1)(a—2
(1+x)°‘:1—|—a:c—|—a(a2' )x2+Q(a 3)|(a )x3+--~
Because 0 < a < 1, therefore we obtain
(n+D)* (1+ ;)a
— 14+ Oé% + oz(oc2!—1) (%)2 + a(oc—lg)!(oc—Q) (%)3 4o (6]_)

<1+2.
Using (60) and (61) we obtain
~ S .
S )

oo a
— > ug "
k=n+1

15



From which it follows that

Up > Upy1- (62)

Because

2 « 0 _ : —« -
Ti—a) " Di(t —0) —Tﬂl(}mmT:tT kz;;uk,

for t = 1, we obtain

lim n® ) wu, = ———.
Thus we have

12, Yot
= — lim (n 4+ 1)* % Up

n—oo k=n+1
= —nlinolo("T“)ana > ug

o (63)

=— lim n® Y

n—00 k=n+1

n

= lim n® Y ug
n—ee k=0

rl—a)*

Taking into account (63) and (63) we conclude that

1
> =, N.
v (1= a) n e
From which it follows that
—iuk>¥ n € N. (64)
= nol(1 — )’
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Using (64) we have

M—1
T > rlel
i=1 .
M-1 N -2 uk
<Th Y | —=— () + ()’
=1 —2 Z Ul
A4—1k:n 00
= Toh S () = L3 e 65
—92 Z ug =1 k=n ( )
k=n

IN

729027 (1—« X n
DM = )7+ 1) = § 3 ugle”]?

RC e (e )~ 4 5 e
k=n

IN

oo = 4 5 ueler|.
Taking into account (65) and (55)-(59) we conclude that

n—1
lle™||? < —Zuk||e"_k||2—l—027'°‘(7‘+h)2. (66)
k=1

It follows from (66) by induction that

le"]]? < Co(= > u) '7%(r + h)? VYn € N. (67)
k=n

In fact, for n = 1, (66) is fulfilled obviously. Suppose that
[€¥]1* < Co(= " ug) ' 7%(7 + ), k=1,2,---,n—1,
s=k

then
n—1
le*|* < = 3 wuplle" | + Cor®(7 + h)?
k=1

n—1 fe’e)
< =S wCh(— Y uy) (7 + h)? + Cot(T + h)?
k=1 s=n—k

n—1 00
< — 3 upOy(— X ug) 171 + h)? + Cor®(7 + h)?
k=1 s=n

— (14 3 u)Cal— 3 wg) " 7%(r + h)2 + Cor®(r + h)?
k=n s=n

= Ch(— > ug) "o (r + )2
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Using (64) and (67), we obtain

le™|? < Con°T(1 — a)7*(7 + h)?
< COTOT(1 — a)(r + h)?
= C?*(1 + h)2.

Therefore, we obtain

le™]l < C(7 + h).

(2) Now, we prove the convergence of the L1-CDIA defined by (13)-(15).
According to the results from discussing consistency of the L1-CDIA in Section
3, we obtain the error equation.

n—1
T« n k 0
Faay |6 = 2 (n—k—1 — Gn_p)€} — an_16€;

fitrel  —fi1e} er —2el+el
= +12h 1 +Ka +1 = 1 ~|>7‘?, (68)
i=1,2,--, M —1,

ed =0, 1<i< M, (69)

where |r'| < C3(727* + h?), Cs is a positive constant.

Multiplying (68) by hel' and summing up for ¢ from 1 to M — 1, we obtain

o M-1 n—1 i .
ﬁh ; el — k§1(an_k_1 — Qp_g)e; — ap_16;| el
Mt fi:;” 7fi713n7 M_1en  —2enyen M1 <71>
=h 3 el + Koh Y e + h X el
i=1 i=1 i=1
Eq. (71) can be rewritten in the following form
M1, M—1n-1 i
h ; (ef)*=nh 21 kzl(an—k—l — Qp_p)e; €}
a M1 m or
fi €, —fi— €1 . n
+ Ph Z; L e (72)
Mter 12t tet  n M n,n
+ PK,h ; s —=tel + Ph ; rier.
It follows from the proven procedure of Theorem 1 that
M-1
2 n|2
hy o (ef) = e (73)
i=1
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and

M—-1n-—1 &
> Y (an-p-1 — ap_p)efe}
i=1 k=1 (74)

n
< 3 Z (ko1 = an-p)llef]* + 5 (a0 — an-i)lle™ |,

>

—

M-1 n n
1€t — fi—i€]
Ph Z fz+1 i+1 fz 1 Z_IG?:O,

75

i=1 2h (75)
Mler  —2eP +e,

PK.h Y - ~ Lel <0. (76)

=1

To discuss the right fourth term in (72), let us first discuss the coefficient a,,.
Since we have for n > 2

liw  l=a (1=a)(a), 1, (l—a)(—a)(—a=1), 1,
_ e _ - _
(1 n) n 2! ( n) 3! ( n)+
So we can obtain for n > 2
11—«
Ap—1 —
na
11—« 1
—nl |1 — (1 — 2\l-«
e
| A=), 1, (I—o)(-a)(-a-1) 1.,
- [ 2! ( n) 3! ( n>
>0
For n =1, we have a,,_1 — 17:aa:a>0.
Therefore
11—«
Ap-1> ——, neN (77)
n
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Using (77) we have

M-1

Ph i riter
i=1

SPR'S [ () + fat(eny?
= 2 T 2p \&

2an-1

2, M1 o n Mz
= -k z‘§1 (7"1‘ )2 + 21 ‘21 (ei )2 (78)

2an-1 =

—a 27_2ano¢ —« Ap— n
(LS R (M — 1)C3 (727 + B2)? 4 2t |2

(CTQo0IT? por( 20 2)2 4 Snct |2

— %TQ(TQ_O‘ + h2)2 4 %\\6”\\2

IN

IN

According to (72)-(77) and (78), we get

n—1
le"[1* < D (an-r-1 = an—i)[[e"]]* + Car® (727 + h?)%. (79)
k=1

It follows from (79) by induction that

le™||? < Cya, t,7(T27“ + h?)?, Vn € N. (80)

In fact, for n = 1, (80) is fulfilled obviously. Suppose that
HekHQ < C4al;fll7-a(7—27a+h2)27 k= 1,2,"',71/— 17
then

n—1
le™]]* < 2 (@n—k-1 = )| e"]]* + Car® (727 + h?)?

n—1

< Y (an—g-1— an_k)C4a,;_117'°‘(T2_a + h%)? 4+ Cyr(777 + h?)?
k=
n—1

(An-p—1 — Qi) Chay L 7777 4+ h2)2 4 Cyr(727 + h?)?

IN
7]

Ed

=1
1 — ap_1)Cya, 70 (7272 + h2)2 + Cyr (127 + h?)?

= Cya, b 7(127> + h?)2.

—~

According to (77) and (80), we can obtain

Hen”z S 04%7_(1(7_2—0( + h2)2
< 6;4_275 (7_2—a + h2)2

= C2(r2* 4 h2)2,
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Therefore
le"]] < C(r*7* + h?).

Similar to the proof of Theorem 4, we have the following results:

Theorem 5 (1) If the function f(x) is not positive and decreases monotonously
in the interval [d,b], the L1-BDIA defined by (16)-(18) is convergence, and
there exists a positive constant C' > 0, such that

le™|| < C(r** + h).

(2) If the function f(x) is not negative and decreases monotonously in the
interval [d,b], the GL-FDIA defined by (19)-(21) is convergence, and there

exists a positive constant C' > 0, such that
le"|| < C(7 + h).

(3) If the function f(x) is not negative and decreases monotonously in the
interval [d,b], the L1-FDIA defined by (22)-(24) is convergence, and there
exists a positive constant C' > 0, such that

le”|| < C(7*™* + h).

4  Numerical examples

To demonstrate the effectiveness of these methods for solving fractional Fokker-
Planck equation, we consider the following two examples.

Example 1 Consider the following FFPE
ow(z,t) o]0 0?
=D, | —(-1)+ — t
o M lax( ) ¥ g | @)

0<ax<1, t>0,

subject to the initial condition

w(z,0) =z(1 —x), 0<z<1,

and the boundary conditions

3t 22«
0,t) = — — t > 0.
w00 = —Ta e T TA £ 20)
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(1,%) r 20 t>0
w =— —
’ 'l4+a) T'(1l+2a) ’

where f(z) =—-1, x €[0,1], K, =1, [ =1.
The exact solution of the above problem is
t® 212

w(z,t) =2(1—2z)+ (22 — 3)F(1 ta) T(I+2a)

which may be verified by direct differentiation and substitution in the frac-
tional differential equation, using the formula

_ F(p+1) _
Dl af,.p] — pta 1'
oD = e

Table 1
The maximum error ||| for the GL-BDIA defined by (10)-(12) and the L1-CDIA
defined by (13)-(15) and the effect of the grid size reduction at time ¢ = 100 (« = 0.5)

7 | h | The error ||€"| for the | The error ||e"| for the

the GL-BDIA (10)-(12) | L1-CDIA (13)-(15)

% % 1.68e-002 2.69e-006
L& 8.77¢-003 1.02e-006
= | 55 4.49e-003 3.98e-007
=1 & 2.27e-003 1.59e-007

In Table 1, we using the GL-BDIA defined by (10)-(12) and the L1-CDIA
defined by (13)-(15) in Example 1 with @ = 0.5 and ¢t = 100 by setting
1

T=h= %, %, 25 4—10, respectively. We compare the error |[e”|| of tthe GL-BDIA
defined by (10)-(12) with the error ||e™|| of L1-CDIA defined by (13)-(15). It
is observed that the numerical result coincides with the theoretical analysis.

Example 2 Consider the following FFPE

ow(x,t) .10 ( 1 0
o P [8x (531) * 9z | we:0)

0<x <1, t >0,

subject to the initial condition
w(x,0) = (z+ 1), 0<z<1,

and the boundary conditions

22



0,t) =1 t>0
w(?) +F(1+&>7 9
16t~
1,t) =84 —— t>0
w(7> +F(]_—|—O[)’ Y

where f(z) = x%rl, re|0,1], Ko=1,1=1.

The exact solution of the above problem is
tOC

w(r,t) = (z+1)* + 8(z + 1)m.

w(x,10)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 1. A comparison of the numerical solution of the L1-FDIA defined by (22)-(24))
and exact solution for the Example 2.

In Figure 1 , we compute up to time level t = 10 by setting 7 = h = 0.1
and using L1-FDIA defined by (22)-(24)) for the Example 2 with a = 0.6.
The diamonds denote the results of the numerical tests and the solid lines
correspond to the exact analytical solution. It is observed that the numerical
solution (L1-FDIA) is in good agreement with exact solution.

5 Conclusion

In this paper several finite difference implicit approximations for the frac-
tional Fokker-Planck equation in a bounded domain have been described and
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demonstrated. We prove that these finite difference implicit approximations
are unconditionally stable and convergent. These techniques can be applied

to solve fractional partial differential equations.

6 Appendix

To prove that the (3) is equivalent to the (9), let us first introduce some
properties of the Riemann-Liouville fractional derivative (see[19]). For 0 <

a < 1, the following conclusions hold

ta—l
=0 ()

0D; " (oDfg(t) = g(t) — [oDfg(t)]

oD; (oD; 9(t)) = g(t)

and

o1 (A9 o g(0)t™
oD; (dt) =0 Dig(t) — T(l—a)

Theorem 6 [f w(z,t) € C’i:tl([d, bl x [0,T], then can rewrite

ow 0 0?

B =0 D}~ [%f(x) + K“aﬁ] w(x,t)

in the following equivalent form
w(w, 0)t~ 0 2
D¢ - = | — K,—
Dputat) - FEVE D ) 4 K wte
PROOF. (1) If (84) holds, then

o1 [Ow o o]0 0?
oDy ((‘%) = D {thl l@xf(x) + Ka@ﬁ} w(x,t)}

Using (81) and (83), (86) becomes
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(82)

(84)

(85)

(86)



oDfw(x,t) — m = L,fxf(x) + Kaaaﬂl w(x,t)

0 0?
ST+ K| wta

If the function g(¢) is one times continuously differentiable in the closed inter-
val [0, ¢], then

t—Oé

— D@ -
0% [ t:()F(l—Oé)

0D 9()l=0 = t—>0+0 F(a 0 tgs(sl o
=ty | r79(0) + ey Jo 0/ ()(¢ — 5)ds]
=0

Since w(z,t) € C2¢([d,b] x [0,T], so we have

—oD; ¢ Ef(:c)—l—[(a—2 w(z,t)] =0
07 ax aax2 ) +=0 -
Therefore (85) holds.
(2) If (85) holds, then
11—« a _ ’w(ilj',O)t_a — 1-a 2 872
oD, [th w(z,t) Ti—a) ] = D, [axf(:r) + K, 52 w(zx,t)

According to (82) and (83), therefore (84) holds.
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