QUT Digital Repository:

http://eprints.qut.edu.au/ QIJT

Denman, Simon P. and Chandran, Vinod and Sridharan, Sridha (2007) An
adaptive optical flow technique for person tracking systems. Pattern Recognition
Letters 28(10):pp. 1232-1239.

© Copyright 2007 Elsevier

An Adaptive Optical Flow Technique for
Person Tracking Systems

Simon Denman Vinod Chandran Sridha Sridharan

Image and Video Research Laboratory, Queensland University of Technology, GPO
Bozx 2434, Brisbane 4001, Australia

Abstract

Optical flow can be used to segment a moving object from its background provided
the velocity of the object is distinguishable from that of the background, and has
expected characteristics. Existing optical flow techniques often detect flow (and
thus the object) in the background. To overcome this, we propose a new optical
flow technique, which only determines optical flow in regions of motion. We also
propose a method by which output from a tracking system can be fed back into the
motion segmenter/optical flow system to reinforce the detected motion, or aid in
predicting the optical flow.

This technique has been developed for use in person tracking systems, and our
testing shows that for this application it is more effective than other commonly
used optical flow techniques. When tested within a tracking system, it works with
an average position error of less than six and a half pixels, outperforming the current
CAVIAR' benchmark system.

1 Overview

Tracking and surveillance applications require the segmentation of objects
(regions of interest separate to the background) from the scene. Typically,
systems divide the scene into two regions, foreground and background, where
only the foreground contains events of interest, and the background is rel-
atively unchanging over time. To achieve this separation of foreground and
background, techniques such as motion detection or optical flow are used.

! The CAVIAR database, and the associated ground truth data is available for
download at http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

Email addresses: s.denman@qut.edu.au (Simon Denman),
v.chandran@qut.edu.au (Vinod Chandran), s.sridharan@qut.edu.au (Sridha
Sridharan).

Preprint submitted to Elsevier Science 6 February 2007

Motion detection can be used to locate moving objects and segment them
from the background, resulting in a binary image showing the regions of mo-
tion. Optical flow provides a means to determine and represent motion within
an image sequence, where motion is represented as vectors beginning and/or
terminating at pixels. Typical optical flow techniques analyse the image as a
whole, calculating the flow for every pixel, regardless of motion. This results in
a large amount of unnecessary processing, and can result in flow being detected
in the background. While this can be overcome by separately applying motion
detection, running two processes across each frame can be computationally
prohibitive.

To address this, we propose a new technique that integrates optical flow di-
rectly into an adaptive background segmentation process. This ensures that
optical flow is only calculated for pixels that are in motion, reducing CPU
load and the presence of erroneous flow vectors. We also provide a feedback
mechanism, allowing results to be reinforced, or additional information to be
added based on output from a tracking system. Using this technique within
a tracking system allows both motion detection and optical flow to be used,
allowing more flexibility in the tracking, resulting in higher accuracy and an
improved ability to handle complex situations.

Results show that our algorithm outperforms other widely used optical flow
techniques for a surveillance application; where we are attempting to locate a
moving person within the flow images, given expected horizontal and vertical
movement. Person tracking results show that our system is able to track people
accurately, with an position error of less than four pixels (median position),
and that our system outperforms the current CAVIAR benchmark system.

2 Existing Work

Person detection systems such as [1][2][3] use motion detection as a first step
in tracking. Once objects have been located, a variety of methods can be used
to maintain tracking of an object, such as predicting the next position of the
object [1][2], or using the objects colour [3], with histogram matching or colour
clustering techniques.

Another common approach is to use optical flow as basis. Yamane et al.[4]
proposed a method using optical flow and uniform brightness regions (a section
where the optical flow cannot be detected) to track people. Okada et al.[5] uses
optical flow and depth information for tracking.

These systems [4][5] rely on averaging the flow for the located object and
searching for a region of similar flow vectors in the next frame. Systems use

a mix of gradient based methods [6][7] and block matching based methods
[8][9]. Both methods perform best when determining flow at or around clearly
defined features, and make assumptions such as constant luminance for a given
region across multiple frames. As a result, when objects are not clearly defined
or the lighting conditions vary, person tracking systems using these methods
tend to struggle, and require additional cues to maintain tracking.

However if the only requirement of the system is to detect changes (or motion),
then a background subtraction method can be used. Butler et al. [10] proposed
an adaptive background segmentation algorithm where each pixel’s luminance
and chrominance components are modeled as a group of clusters, providing
a multi-modal distribution for each pixel. The motion detection uses colour

v,cb|Y,Cr|Y,cb|Y,Cr| Cluster Cluster | ||[[Ciuster | [Cluster
(y1,y2) tv1.y2) | |l evtv2) [l ov1.vz2)
(cb, cr) Cb,Cr) (Cb,Cr) (Cb,Cr)
v,cb|Y,cr|Y,cb|Yy, Cr—4[\\ | (Compare Clusters — / 1 Jeight weight weight
L / umDiff = |y1 - Y1]| + [y2 - Y¥2| \
V chrDiff = |cb — Cb| + |er - CR|

ﬂ Background Model

~— -

Apply
Thresholds

Fig. 1. Pixels are grouped into clusters, which have a centroid formed by a pair of

luminance values and a pair chrominance values and a weight. Clusters built from

the incoming image are compared with the appropriate group of clusters in the

background model.

images in Y’CbCr 4:2:2 format as input. Pixels are matched as illustrated by
figurel. Once a match is made, the matching clusters centroid and the weights
of all clusters in the pixels group are adapted to incorporate the information
in the matching pixel. If there is no match, then the lowest weighted cluster
is replaced with a new cluster representing the incoming pixel, and the pixel
is classified as being in motion.

The clusters and their weights gradually change as more frames are processed,
allowing the system to adapt to changes in the background. New objects can
thus be added to the scene, and over time they will be incorporated into the
background model.

3 Optical Flow Algorithm

The optical flow algorithm, discussed here, is based upon the motion detection
algorithm proposed by Butler et al.[10], as described in section 2.

We avoid the need for comparison with the previous frame by storing the
index of the matching cluster (for each pixel) for the last frame, essentially

storing an approximation of the last frame. The accuracy of the approximation,
depends on the thresholds used in the motion detection, explained in the next
subsection.

Each pixel starts as being stationary. When motion is detected at a pixel, its
surrounding region is examined to determine the optical flow for that pixel.
The size of the area examined is governed by the maximum allowed acceler-
ation for a pixel. For the scenes we are analysing, we have found that 7 and
3, for the = and y accelerations respectively work well (though these values
are dependent on the requirements of the scene, and are likely to change for
different datasets). The surrounding area is analysed outwards in rings. The
centre pixel is checked first, and if a suitable match is found, searching stops.
If there is no match, then the next 'ring’ (at a distance of one pixel) is searched
in full, and so on until a match is found. Rings may be ’truncated’ to a pair
of rows (or columns) if the maximum horizontal and vertical accelerations are
not equal.

Flow is determined to integer precision, we do not concern ourselves with
sub-pixel precision, as this level of accuracy is not required for a tracking
application. Once movement for a pixel has been determined, its next position
is predicted. We assume a constant velocity model, so the location of the pixel,
p, in the next frame will be

Pt =pi+ (o —p7) (1)
vyt =y + () —p)) (2)
where p”~! and p"~! are the positions of the pixel p in the previous frame;

Yy
p; and py are the positions of the pixel p in the current frame; and pt! and

pZ“ are the expected positions of the pixel p in the next frame. If the pixel
has previously been in movement, then the expected position is used as the
position at which to start the searching.

This method of searching attempts to minimise the acceleration of a pixel, by
taking the first good match when searching outwards, rather than taking the
best match in the whole search area. Although we look to minimise acceler-
ation, we do not restrict the velocity, as the pixel can continue to accelerate
gradually over the course of several frames. If no suitable match for the pixel
can be found, then the detection of motion at the pixel is assumed to be an
error, and the motion detection is corrected.

Matching is performed between the incoming pixel (for the pixel in motion)
and the last matching cluster (for the search region), simulating matching be-
tween the current and previous frame. Matching is performed using clusters, in
the same way that is used for the motion detection. This process is illustrated
in a numeric example in figure A.1.

3.1 Adaptive Thresholding and Feedback

An adaptive threshold is used in the motion detection to allow the system to
handle different lighting conditions within the same scene. Regions that are in
shadow have a different contrast to regions that are in full sun (or are lit by
artificial lights) thus having different ideal thresholds for motion detection.

The adaptive threshold is dependent on the probability of the most likely clus-
ter. The learning rate of the motion detection is such that the more frequently
a colour occurs, the higher its corresponding clusters weight (representative
of its probability) becomes.

wp =i+ 7 (My —) [10] (3)

where wy, is the weight of the being adjusted; L is the inverse of the traditional
learning rate, o; and My, is 1 for the matching cluster and 0 for all others. We
assume that the more likely the probability, the more consistent and stable the
background colour is, allowing a tighter threshold to be applied. This process
is shown in a numeric example in figure A.1.

T = Tmaac - (wmaac X (Tmaac - Thmzn)) (4)

where T is the threshold to be used for matching the pixel; Th,,., is the
maximum threshold; w,,., is the weight of the highest weighted cluster; and
T hpnin is the minimum threshold. The learning rate is such that lower weighted
clusters will increase in weight faster than higher weighted clusters, so that if
the threshold is pulled too low resulting in motion being detected, the weight
of the large cluster will be lowered substantially, returning the pixel to a
state of no motion. This results in the thresholds for each pixel being able
to reach, and approximately remain at, a natural equilibrium. We also allow
the weights to be adjusted by feedback from an external source (see figure
2). Feedback can be used to reinforce motion detection in regions of interest.
Matching clusters have their weight reduced to prevent the cluster from being
incorporated into the background model, while non-matching clusters have
their weight increased, to tighten the threshold and increase their sensitivity
to motion. This can be used to prevent a slow moving or stationary foreground
object being incorporated into the background model.

where wy, is the weight of the cluster; A is the adaption rate and M is 1 if

the pixel in motion, or -1 if it is not. The feedback process is illustrated in a
numeric example in figure A.1.

Tracking
\:> BT \::>

Input Image
] Fra
Motion Image Objegt Map
Feedback
Background
Model

Fig. 2. Example of how the motion detection system fits into a tracking framework -
Images are compared to the background model to generate a motion mask, which is
used for tracking. The background model then has feedback applied to the regions
containing the tracked objects.

3.2 Post Processing

We use morphological close operations to ’clean’ the motion image, removing
noise and filling holes in objects. However these changes do not follow through
to the optical flow.

Initial Motion Motion Image Update Process for
Image After Morphology Optical Flow Image
M M M M M M Q1 Q2 Qs
M M| M| M| M| Q|10 @
M M M M M M Qo Q7 Qs

Table 1

The Motion Image contains 8 pixels in motion (M) and one not in motion. After
morphological processing, all pixels are in motion. In the optical flow image, the pixel
that has changed motion state is assigned the average of the surrounding known
flow values, @1 to Qg. If a pixel had been changed from motion to no motion, then
the flow would be set to 0.

The optical flow is updated as described by table 1. This process results in a
more complete and consistent optical flow image. Whilst it may not be strictly
accurate (depending on the subtle motions of the objects), it is ideal for our
purposes as any holes in an object will take on a value close to that of the rest
of the object, making the object detection more complete.

4 Person Tracking and Detection

The optical flow algorithm has been integrated into an existing person tracking
system described in [11]. The modified system is able to use either motion
detection or optical flow to detect people. To use optical flow, we need to be
able to estimate the velocity of the person. As a result, the initial detection
and early tracking of people is done using motion detection.

The system processes the optical flow first, detecting any people that have
been tracked for sufficient time to predict velocity. Person detection using
motion follows. It is preferable to detect people using optical flow, as it does
not truncate a detected persons limbs by forcing them into an fixed elliptical
shape, resulting in a more complete detection.

Optical flow detection is performed by using the expected horizontal and ver-
tical movements to segment the person. Expected movement is obtained by
observing the persons position and average flow over a series of frames. The
use of the two modes ensures that inaccuracies in flow, or a small error in
person position, does not corrupt the expected velocity. When extracting the
person region, a small tolerance is allowed within the expected velocity.

Im, = ((vy —ty) < Hf < (vp + 1))+ ((vy —t,) < Vi < (v,+1t,)) (6)

where Hy and V; are the horizontal and vertical flow images; v, and v, are
the expected movements; ¢, and ¢, are the allowed tolerances for the velocities
and Im, is the extracted object image. Small, isolated, regions are removed
from the object map. The located object is tested for a match to the person
that was being detected. We use a modified fit equation, that only considers
position and shape (direction is considered via the optical flow segmentation).

FitPosition

(7)

FitObject = Fitgh
ape

Provided there is a match, the detected object is assigned to its intended
person. Regions that are detected by this process are removed from the motion
image, as this motion has been accounted for.

5 Results

The optical flow algorithm described here is intended for use in an intelligent
surveillance system. Testing was conducted with this in mind. Four tests were
carried out. The first looked at the motion detection performance; the second

Algorithm

High Contrast (GL210)

False Negative

False Positive

Medium Contrast (GL150)

False Negative

False Positive

Low Contrast (GL80)

False Negative

False Positive

Butler

0.22%

24.20%

0.18%

38.96%

0.20%

29.01%

Ours

0.25%

20.01%

0.24%

25.34%

0.25%

19.50%

Table 2
Motion Detection Performance

at the performance of the optical flow; the third at the speed of the system
and the fourth at its performance when used in a tracking system.

The CAVIAR database was used to provide input for the testing. This database
provides typical surveillance footage with ground truth information.

5.1 Motion Detection Performance

Whilst optical flow is in many ways a more informative method of motion
detection, from the point of view of our surveillance application it is important
that the motion detection performs well. We compare Butler’s[10] original
system against ours to determine what effect our changes have had on the
motion detection. We used a portion the ACV Motion Detection Database 2
to evaluate our system. We used three sets at different contrasts from sequence
3 (office environment) to compare the systems. Table 2 shows that there is a
performance increase when using our algorithm. There is a small increase in
the false negative rate, but a significant decrease in the false positive rate as
a result of the variable threshold. Thresholds for the detectors were set the
same across the three tests. Butler’s algorithm had thresholds set to 80 and
50 for luminance and chrominance respectively, while ours used 30 and 20 as
the minimum luminance and chrominance and 150 and 120 as the maximum.
Each system used 6 clusters and had L (inverse learning rate) set to 9.

5.2 Optical Flow Performance

To evaluate the performance of our optical flow algorithm, we attempt to
extract people from a test sequence. Expected motion is determined using the
ground truth data from the CAVIAR database. We use the difference between
the median locations in the previous and current frame as the expected average
velocity of the object. Extraction is performed by looking for regions with the
expected horizontal movement, regions with expected vertical movement and
applying a logical 'or’ operation to the two images.

Imobj = (HFlow - Ux) + (VFlow - Uy)

(8)

2 This database was provided by Advanced Computer Vision GmbH - ACV

where Hpy, and Vi, are the horizontal and vertical flow images; v, and
vy are the expected movements and Im; is the extracted object image. We
compare the performance of our algorithm with that of three other optical flow
algorithms; the Lucas-Kanade [6] algorithm, the Horn-Schunck [7] algorithm,
and a block matching algorithm; from the OpenCV library 3. For these other
optical flow techniques, the input images were first converted to gray scale.
Due to practical considerations, we have not hand segmented the people within
the images to test the segmentation performance. Instead, we have simply
visually compared the performance of the various algorithms. Figure 3 shows

5
-
O e
i

Fig. 3. Optical Flow Performance - Performance of our algorithm and three other
methods. Top row shows our algorithm. Second row shows the Lucas-Kanade
method [6], third row shows the Horn-Schunck method [7] and the fourth row shows
a simple block matching method. Columns are (from left to right) the input frame,
horizontal flow, vertical flow and extracted object image, based on the movement
of the person obtained from the ground truth data supplied with the dataset. The
technique was compared over a whole sequence, but results are only shown for a
single frame due to size constraints

the extraction results from a single frame of our test sequence. As figure 3
shows, our algorithm is significantly better at extracting a moving object from
the scene, however the segmentation is unable to extract the entire object, as

3 The Open Source Computer Vision Library is used courtesy of the Intel Cor-
poration and is available for public download from the World Wide Web at

”*http://www.intel.com /research /mrl/research /opencv/”’.

Method Motion Adaptive Optical Lucas-Kanade Horn-Schunck Block
Detection Flow Matching
ms/Frame 16.0 20.8 33.6 30.2 192.0

Table 3
Processing Times per Frame

not all pixels within the object meet the flow criteria. This could be overcome
by either using a morphological close operation, or adding a tolerance to the
object extraction (i.e. detect pixels that fall within a range of flow values).

The other methods suffer from discontinuities around the edge of the per-
son (moving object), and struggle with patches of movement that are a single
colour (i.e. the persons clothes). Perhaps their biggest problem however is that
they fail to distinguish background from foreground, resulting in the detec-
tion of movement in the background. These errors are brought about by the
assumptions made by these techniques. Due to the lighting in the scene, there
are slight fluctuations in the colour of background regions from frame to frame.
Lucas et al.[6] and Horn et al.[7] use spatial intensity gradient information,
where as the block matching technique uses correlation between image regions
to obtain the flow. However both methods rely on the intensity of correspond-
ing regions in the images being very similar, and the small fluctuations result
in the average intensity of these corresponding regions varying from frame to
frame. When this occurs on a uniform, featureless surface (i.e. floors, walls),
these fluctuations can result motion being detected.

As is shown by the extracted object images, these errors result in pieces of
background being detected as part of the person, which could lead to large
inaccuracies in tracking. Whilst this could be overcome by masking the optical
flow with a motion detector, this would only produce results that are at best
as good as our algorithm, for a large increase in processor requirements.

5.3 Speed

With this algorithm aimed at use in surveillance, speed is critical. Table 3
shows the average time taken per frame for a 2000 frame video sequence for
the original motion detection; our algorithm; and the Lucas-Kanade, Horn-
Schunck and block matching optical flow algorithms. This test was performed
on a 3Ghz workstation. Input images were 384x288 pixels in size and were
loaded from disk for the tests. As the results show (see table 3), all except
the block matching algorithm are capable of real time performance, however
the original motion detection, and our algorithm significantly outperform the
Lucas-Kanade and Horn-Schunck algorithms.

10

5.4 Tracking Performance

Dataset Track X-Error Y-Error Occurrences Motion Op-Flow Predictions False Tracking
Detections Detections Detections Errors
EECP1 1 1.59 1.77 152 85 44 22 0 0
2 1.52 4.32 114 35 73 5
OLS1 1 2.14 3.59 156 37 78 40 0 0
OLSR1 1 1.18 5.59 280 136 135 8 1 0
2 2.17 1.80 36 12 23 0
OSE1 1 1.99 6.95 528 222 279 26 5 0
2 1.57 4.35 145 27 89 28
OSE2 1 4.13 3.96 158 81 50 26 8 0
2 1.68 10.21 725 327 386 11
OSME2 1 1.56 6.93 896 307 504 14 4 0
OSOW1 1 1.28 9.16 366 210 118 37 21 0
2 1.70 6.78 780 434 320 25
3 3.36 4.09 157 68 46 42
4 2.87 7.04 200 74 88 37
Overall N/A 1.56 6.16 4693 45.6% 47.6% 6.8% 39 0
Performance
Table 4

Our System Performance - Testing was conducted on seven datasets, columns show
the average x position error and y position error for the median (centre of bounding
box) pixel, number of total tracked occurrences, number of detection via motion
detection, number of detections via predictions, number of false detections, and the
number tracking errors.

Testing has been performed using the CAVIAR database. We have used the
second set of data (captured in a shopping mall) for our testing, and use the
ground truth data as well as the number of incidents of incorrect detections
and tracking errors to determine the quality of our results.

We compare our results to those provided on the CAVIAR website 4. We
use the historical performance statistics as a basis for comparison, comparing
against the best result obtained to date, and most recent result. However,
results are not provided for individual datasets, so these comparisons only act
as a guide.

As table 4 shows, our system is able to track people with a high accuracy,
averaging a euclidean error of 6.36 pixel across the seven tested datasets. The
best performance achieved by CAVIAR to date has been an average error of
five pixels, with the systems current performance recorded at 15. Our results
also show a high detection rate, with a 6.80% missed detection rate (false
negative) recorded across the five tested datasets. The CAVIAR benchmarks
have a best performance of 10%, with the current system operating at over

20%.

Table 4 shows the number of tracking errors that occurred during testing.

4 Performance data can be found at ’http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

PERFORMANCE/’

11

As the results show, there were no instances of a persons track being lost or
swapped, and the instance of false positives was very low, with only 39 oc-
currences (0.9%) in the whole of the testing, compared to a best performance
of 5% for the CAVIAR system. Figures 4 and 5 show occlusion scenarios.
The system is able to handle these correctly and the object ID’s remain cor-
rectly assigned as the tracks cross over. Throughout the testing no errors were
recorded during occlusions. Although handled correctly, the occlusions did re-
sult in an increase in the position error of the tracks (see figures 4 and 5) while
the occlusion was taking place.

'(h) 330

Fig. 4. System Output - Output from the dataset 'Enter Exit Crossing Paths 1’.
One persons exists the shop as another enters, crossing paths. Average Euclidean
error for the set is 3.26 pixels, but this increases during the occlusion (frames 250
to 290) to 3.35 pixels. Frame numbers are shown under each image.

6 Conclusions

We have described a novel optical flow algorithm designed specifically for
surveillance systems where the extraction of moving objects is required. The
algorithm is capable of running in real-time (25 fps) at 50% processor utili-
sation on a 3GHz workstation with images loaded from disk. We have shown
that our algorithm sets a new benchmark for the task of moving object ex-
traction when compared to other optical flow algorithms, and demonstrated
its ability to perform well as part of a person detection system.

The algorithm is robust to small variations in intensity (such as those caused
by fluorescent lighting), due to an inbuilt tolerance obtained by using a colour
model that separates intensity from chrominance, and applies thresholds to
each separately; and by calculating optical flow in a manner that minimises

12

| (e) 492

Fig. 5. System Output - Output from the Dataset ’One Shop One Wait 1°. Two
people enter the scene, one stops while one goes into the shop, a third person walks
in front of the other two. Average Euclidean error for the set is 7.36 pixels, but this
increases during the occlusions (frames 450-470, and 500-520) to 7.97 pixels. Frame
numbers are shown under each image.

the acceleration by searching outwards from an expected position based on a
constant velocity assumption.

Future work will include using the tracking system to track people and faces
in surveillance, and using the optical flow to aid in super-resolution tasks to
improve the quality of facial images.

References

[1] Tao Zhao and R. Nevatia, “Tracking multiple humans in complex situations”,
IEEFE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no.
9, pp. 1208-1221, 2004.

[2] I. Haritaoglu, D. Harwood, and L.S. Davis, “W4: real-time surveillance of people
and their activities”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 809 — 830, 2000.

[3] Wenmiao Lu and Yap-Peng Tan, “A color histogram based people tracking
system”, in 2001 IEEE International Symposium on Circuits and Systems,
2001, vol. 2, pp. 137 — 140.

[4] T. Yamane, Y. Shirai, and J. Miura, “Person tracking by integrating optical
flow and uniform brightness regions”, in IEEFE International Conference on
Robotics and Automation, 1998, vol. 4, pp. 3267-3272 vol.4.

[5] R. Okada, Y. Shirai, and J. Miura, “Tracking a person with 3-d motion by
integrating optical flow and depth”, in Fourth IEEE International Conference
on Automatic Face and Gesture Recognition, 2000, pp. 336-341.

13

[6]

B Lucas and T Kanade, “An iterative image registration technique with an
application to stereo vision”, in 7th International Joint Conference on Artificial
Intelligence (IJCAI), 1981, pp. 674—679.

Berthold K.P. Horn and Brian G. Schunck, “Determining optical flow”,
Artificial Intelligence, vol. 17, pp. 185-203, 1981.

J.R. Bergen, P.J. Burt, R. Hingorani, and S. Peleg, “Computing two motions
from three frames”, in 8rd Int. Conf. on Computer Vision, 1990, pp. 27-32.

P.J. Burt, J.R. Bergen, R. Hingorani, R.J. Kolczynski, W.A. Lee, A. Leung,
J. Lubin, and J. Shvaytser, “Object tracking with a moving camera; an
application of dynamic motion analysis”, in IEEE Workshop on Visual Motion,
Irvine, CA, 1989, pp. 2-12.

[10] D Butler, S Sridharan, and V. M Bove Jr, “Real-time adaptive background

segmentation”, in ICASSP ’03, 2003, pp. 349-352.

[11] S. Denman, V. Chandran, and S. Sridharan, “Tracking people in 3d using

position, size and shape”, in 8th Internation Symposium on Signal Processing
and Its Applications, 2005, pp. 611-614.

14

A Worked Example

Input Image Match to Background Foreground Probability Map
P
% L2 Get Thresholds
Y=150 Y =190 Y =90 Y =90 | _ T Fgnd Prb Fgnd Prb
_ ~ _ - umThr = 150 — (150 - 50)*0.8 = 70
Cb=70 Cr=50 | Cb=40 Cr=140 chrThr = 120 — (120 — 40)°0.8 = 56 0.8 0.0
Compare To Cluster 1 —
p3 pa |150-105| + |190-105| = 130 —
Y=100 Y=110 | Y=140 Y=130 |7°'ﬁ°k;|ﬁ1°;l§°| =8 Fgnd Prb Fgnd Prb
Cb=50 Cr=150 | Cb=90 Cr=40 Compare To Cluster 2 0.0 1.0
1150-145| + |190-180| = 15
J |70-70] + |50-55| = 5
Match Found Appl
Background Model l //:> P2 Th,s:him
= — = = Get Thresholds) of0.75
Pt Y1=105Y2=105 1pp Y1=100¥2=105 | | . o o s0y0.75=75 | Motion Image
C1 Cb=60Cr=120 |C1 Cb=55Cr=125 | | (o o o0 0w 75 - 60
W=0.8 W=0.75 Compare To Cluster 1
Y1=145 Y2=180 Y1=210 Y2=185 90-100] + [90-105] = 25
C2 Cb=70Cr=55 |C2 Cb=165 Cr=70 D501 » 1140125 = 30
W=0.2 W=0.25 P3
— — = = Get Thresholds
P3 Y1=105Y2=105pg Y1=80Y2=50 | | . 1o 0 s0y08=70
C1 Cb=60Cr=120 |C1 Cb=160 Cr=20 chrThr = 120 — (120 — 40)*0.8 = 56
W=0.8 W=0.85 Compare To Cluster 1
Y1=200 Y2=205 Y1=110 Y2=180 |1gg-;g5L+1|;;0{;g5L130 Apply
C2 Cb=170Cr=50 [C2 Cb=90 Cr=110 (50-601 - [198-1201 = Detaction
latch Found
W=0.2 W=0.15 P4 Routines
Get Thresholds Object Map
Update Clusters lumThr = 150 — (150 - 50)*0.85 =65
And Weights chrThr = 120 — (120 — 40)*0.85 = 52
Compare To Cluster 1
[140-80| + [130-50] = 140
Updated Background Model |90-160| + [40-20| = 90
P1 Y1=105Y2=105 |P2 Y1=98.8 Y2=103.1 No Match
C1 Cb=60Cr=120 |C1 Cb=55Cr=125 Compare To Cluster 2
W=0.675 W=0.875 |140-110] + |130-180] = 80
|90-90| + 40-110] = 70
Y1=145.6 Y2=181.3 ¥1=210 Y2=185 No Match
C2 Cb=70Cr=54.4 |C2 Cb=165Cr=70
W=0.325 W=0.125 Update Weights
Y1=104.4 _ _ P4
¥1=80 Y2=50
P3 Y2=105.6 s _ - Adjust Weight For Cluster 2
Cc1 . _ Cc1 Cb=160 Cr=20
Cb=60 Cr=120 W=0.945 W=0.105"05=0.0525
wW=0.925 Feedback Normalise
¥1=200 Y2=205 Y1=140 Y2=130 C1 Weight = 0.945
C2 Cb=170Gr=50 [C2 Cb=90 Cr=40 G2 Weight = 0.055
W=0.075 W=0.055
Update Clusters and Weights
P1 P2 P3 P4
Update Cluster 2 Update Cluster 1 Update Cluster 1 Replace Cluster 2
Y1 =145+ (150-145)/2"3 = 145825 Y1 =100 + (90-100)/2"3 =98.75 Y1 =105 + (100-105)/2"3 = 104.375 Y1=140
Y2 =180 + (190-180)/2*3 = 181.25 Y2 =105 + (90-105)/2"3 = 103.125 Y2 =105 + (110-105)/2"3 = 105.625 Y2 =130
Cb = 70 + (70-70)/2%3 = 70 Cb = 55 + (40-55)/2"3 = 53.125 Cb =60 + (50-60)/2*3 = 58.75 Cb =90
Cr =55+ (50-55)/2"3 = 54.375 Cr =125 + (140-125)/2"3 = 126.875 Cr = 120 + (150-120)/2"3 = 126.25 Cr=40
Update Weights Update Weights Update Weights Update Weights & Normalise
C1 Weight = 0.675 C1 Weight = 0.875 C1 Weight = 0.925 C1 Weight = 0.895
G2 Weight = 0325 C2 Weight = 0.125 C2 Weight = 0.075 C2 Weight = 0.105

Fig. A.1. Numeric example of motion detection, showing adaptive thresholding and
feedback (optical flow not shown). Example based on a system with maximum and
minimum luminance thresholds of 150 and 50, maximum and minimum chrominance
thresholds of 120 and 40, inverse learning rate (L) of 3, 2 clusters per pixel pair, and a
foreground threshold of 0.75. It should be noted that these parameters (particularly
the values of L and number of clusters) are unlikely to be used in a working system.
A 4x2 pixel image is supplied as input (2x2 clusters). Two clusters are detected
as being in motion (P1 - matched to a foreground cluster (C2), P4 - no matching
cluster). Pixels P2 and P3 each match to a background cluster. Using the motion
image, the object detection finds an object at a single cluster (P4). Feedback is used
to adjust the weight of the matching cluster for P4.

15

