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Abstract 
 
Clustering has been a widely applied approach to 
improve the computation efficiency of collaborative 
filtering based recommendation systems. Many techniques 
have been suggested to discover the item-to-item, user-to-
user, and item-to-user associations within user clusters. 
However, there are few systems utilize the cluster based 
topic-to-topic associations to make recommendations. 
This paper suggests a taxonomy-based recommender 
system that utilizes cluster based topic-to-topic 
associations to improve its recommendation quality and 
novelty.  
 
1. Introduction 
 

Hybrid recommenders combine the features of 
collaborative filtering and content based recommenders 
are very popular nowadays[1-3]. There are two major 
benefits about hybrid recommenders. Firstly, their 
recommendations are usually lesser content-centric than 
standard content based recommenders. Secondly, they are 
lesser prone to the data-sparsity problem than 
collaborative filtering based recommenders. Because the 
recommendations generated by hybrid recommenders (or 
collaborative-filtering based recommenders) are not based 
on the item content similarity, they are generally 
considered more novel than recommendations generated 
by standard content based recommenders.  However, this 
additional aid to the novelty aspect of the 
recommendations is not considered very effective [2, 3].  

In this paper, we proposed a taxonomy-based 
recommender to improve the novelty and quality of 
recommendations. Instead of the simple content similarity 
measurement used by most hybrid recommenders, our 
system uses association rule mining techniques to mine 
the taxonomy interest associations between different users, 
and the recommendations with high novelty and quality 
are generated based on the discovered user taxonomy 
interests. 
 
2. Definitions 

 
We envision a world with a finite set of users 

},,,{ 21 nuuuU …=  and a finite set of 

items },,,{ 21 mtttT …= . For each user Uu ∈ , he or 

she is associated with a set of items he or she has rated, 
we denote these items TuRTALL ⊆)( . These rated items 
can be further divided into two categories according to the 
rating method: implicitly rated items 

)()( uRTuRT ALLimpl ⊆ and explicitly rated 

items )()(exp uRTuRT ALLl ⊆  where 

φ=∩ )()(exp uRTuRT impll . 
In explicit ratings, users express their preferences to 

items in numeric form. We use ),( turating  to denote 

user u ’s rating to item )(exp uRTt l∈ , 

where 0.1),(0 ≤≤ turating .  
Our system uses taxonomy based descriptors to 

describe items. Specifically, for every Tti ∈ , 

}...,,{)( 21 ni dddtD = denotes a set of descriptors 

characterizing it ’s taxonomy.  Importantly, an item may 
possess more than one taxonomy descriptor to cover 
multiple taxonomic aspects of the item.  

A taxonomy descriptor is a sequence of ordered topics, 
denoted as ),,,( 10 qpppd …= where 

)( itDd ∈ and Tti ∈ . The topics within a descriptor are 
sequenced so that the former topics are super topics of the 
latter topics, specifically, jp is the direct super topic for 

1+jp where qj <≤0 .  

Let C be the set of all taxonomy topics such 
that }),(,|{ TttDddppC ii ∈∈∈= . In order to 
differentiate between super topics and sub-topic as well as 
impose the tree structure from the topic set, we define 
mapping CCE 2: → that retrieves all direct sub-topics 

CpE a ⊂)( for Cpa ∈ and ∅=∩ )()( ba pEpE  

for any Cpp ba ∈, , ba ≠ . With the mapping E  
we can recursively extract the taxonomy tree structure 
from the set C . Moreover, as in standard tree structures, 
the taxonomy tree has exactly one top-most element with 
zero indegree covering the most general topic, it is 
denoted by Γ in this paper. By contrast, for these bottom-
most elements with zero outdegree, they are denoted by 
set ⊥  and cover the most specific topic concepts.  In our 
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system, for any item descriptor ),,,( 10 qpppd …= , it 

is required Γ=0p  and ∈⊥qp . 
We define two functions to calculate the topic 

popularity. The function ),(__ upcounttopicuser  
returns the frequency of a given topic p appearing in an 
user u ’s past ratings. For example, assume u has rated 
only one book and this book contains two descriptors. If 
the given topic p appears in both descriptors, then 

),(__ upcounttopicuser  returns 2. Another 
function )',(_ Upcounttopic  returns the total 
frequency of the topic p within a given user set 

UU ⊆' . This function is simply the sum of topic 
frequencies (i.e. ),(__ upcounttopicuser )  of users 
in 'U . 

 
3. User cluster taxonomy profile 
 

In order to improve the efficiency of the system, we  
cluster the user set U into },,,{ 21 kucucucUC …= , a 
set of clusters based on users’ explicit ratings, where 

Uuc
UCuc

=
∈
∪ and ∅=

∈
∩

UCuc

uc . Moreover, for 

convenience, a user u ’s cluster is denoted as )(ucluster . 
3.1. Hot Topics 

For each cluster UCuc ∈ , we build a local cluster 
based taxonomy tree similar to the global taxonomy tree 
defined in previous section. Let  

}),(),(,|{ exp ucuuRTttDddppC luc ∈∈∈∈=
 be the topic set for cluster  uc and ucuc CpE ⊂)( be the 

sub topic set of ucCp ∈ .  We use the following equation 
to measure the distinctness of a topic in a local cluster 
with the global user set: 

),(_
),(_),(_

Upcounttopic
ucpcounttopicCpscoretopic uc =    (1) 

The higher the topic score, the higher the possibility 
that the topic is interested by the users in this cluster. We 
call the topics which have high scores hot topics as 
defined below:   

}),(_,|{
),(_

ς
ς

>∈
=

ucuc CpscoretopicCpp
uctopicshot

 (2) 

 
where ς is a user defined threshold. 

Items related to hot topics should be preferably 
recommended to the users in this cluster.  

 
3.2. Topic Associations  

 
For the topic taxonomy dataset, each transaction is a 

set of topics related to the items rated by a user. By 
applying data mining techniques to the topic taxonomy 
dataset, we can derive association rules among topics 
which describe how topics associate with each other 
within a cluster. By applying the association rules, we 
could be able to recommend items which are not rated by 
previous users based on user ratings but might be 
interested by the target user based on the topic taxonomy 
associations. For each user cluster uc , )(ucrules  is the 
set of association rules derived from the topic transactions 
related to the users in uc . )(ucrules  is defined below: 

})|(,
,,|){(

)(

ξρρρρ
ρρρρ

>∅=∩
⊆⊆→

=

abba

ucaucaba

P
CC

ucrules
 

where )|( abP ρρ is the confidence of the rule, ξ is the 
confidence threshold. The meaning of the rule 

)( ba ρρ →  can be interpreted as “the set of 

topics bρ might be interested by a user ucu ∈ if the 

user u is interested in the set of topics aρ ”.  

Based on the association rules )(ucrules  discovered 
from uc , we can then obtain a set of novel topics for a 
given user u . We firstly obtain the topic set from the 
user’s past ratings  

 

}),(),(,|{
)(_

∈⊥∈∈∈
=

puRTttDddpp
utopicsuser

ALL

 (3) 

Next, we observe how topics are associated with each 
other within u ’s belonging cluster uc by using 

)(ucrules . We loop through all topic association rules 
returned via )(ucrules , and check if there are any rule 
patterns matches u ’s topic interests (i.e. 

)(_ utopicsuser ). Specifically, let )( ba ρρ → be a 
rule, then this rule matches u ’s topic interests, if 

)(_ utopicsusera ⊆ρ . Based on the definition of a 

rule )( ba ρρ → described previously, it can be easily 

observed bρ  can be a potential set of topics that might be 
also interested by u .  

Specifically, we can compute the weight of a 
potentially associated topic (i.e. bp ρ∈ ,  )( ba ρρ →  

matches )(_ utopicsuser ) by:  
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∑
∈

×→
=

)(_

),(__
),(__))((

),(

utopicsuserq

ba

uqcounttopicuser
upcounttopicuserconf

upscore
ρρ  

The higher the computed weight indicates the higher 
the possibility that the user might be interested in the 
topic. Finally, we collect all these potential topics from 
the matched rules, and compute their weights.  

Formula )(_ utopicsnovel is used to denote the 
algorithm described above, where u is a given target user.  
The output of )(_ utopicsnovel is a set of pairs 

),( scorep , where p is a proposed novel topic and 
score is the topic score computed by ),( upscore . 
 
4. Taxonomy-based recommender 
.  
4.1. Item-based Collaborative Filtering (CF) 
 
The basic idea of item-based CF is to predict item t to 
user u based on the item similarity between t and the 
items that have been rated by u [9]. The similarity 
between two items is computed based on user explicit 
ratings as defined below: 

∑ −∑ −

∑ −−
=

∈∈

∈

Uu u
j

uUu u
i
u

Uu u
j

uu
i
u

ji
rrrr

rrrr
ttsimitem

ij

ij

22 )()(

))((
),(_  (4) 

where i
ur represents user u ’s rating to item ti, ur is user 

u ’s average explicit ratings: 
|)(| exp

)(exp

uRT

r
r

l

uRTt
t

u

u
l

∑ ∈
= , Uij is 

the set of users who have rated both ti and tj. Uij is defined 
as below: 
                   )}(},{|{ exp uRTttUuU ljiij ⊂∈=  
Note, it is possible that two items are never rated by more 
than one user, i.e., ∅=ijU . In such case, 

),(_ ji ttsimitem returns a special value NC  which is 
a label indicating “Not Computable”. 
 

As mentioned above, the prediction of t to user u is 
based on the similarities between t and the items 

)(exp uRTx l∈  rated by the user u, where xt ≠ . In 
order to achieve it, we  need to find the target user’s rated 
items which are computable with the target item t. That is, 

})!,(_|)({),( exp NCxtsimitemuRTxtucItems l =∈= .  
The prediction of t to u is computed as follows:  
 

∑
∑

∈

∈
•

=
),(

),(
,

|),(_|

)),(_(

iucItemsy

iucItemsy
y

u
tu

tysimitem

rtysimitem
η   (5) 

where 10 , ≤≤ tuη  . 
 
4.2.   Topic Preference 
 

As discussed in Section 3, users in the same cluster 
have similar topic interests and most likely prefer items 
that relate to the hot topics of this cluster. Under this 
assumption, in this paper we propose to take topic 
preferences into consideration in predicting items to a 
given user.  The prediction is computed not only based on 
item similarities (i.e. equation (5)) but also based on the 
given user’s topic preference which will be discussed 
below.  

Let tu ,ψ  denote the degree of user u ’s preference 

towards to item t ’s topics. The value of tu ,ψ is computed 
differently according to three different conditions. Firstly, 
if the topic of t  is considered very popular in u ’s cluster, 
that is 

 ∅≠∩ )),((_)( ςδ uclustertopicshott  

then tu ,ψ ’s value indicates the degree of popularity of 

t ’s topics in  )(ucluster . Specifically, 
                      

),(_max
))),((_)((

,

uc
uclustertopicshottp

tu

Cpscoretopic
ςδ

ψ

∩∈

=
 

 
In the case that t ’s topics are not popular in  u ’s 

cluster, we then check if the topics are considered novel 
in the cluster, that is 

∅≠=∈∈ }),(_),(|)({ qputopicsnovelsqtp δ
. If the predicates returns true, we then assign  tu ,ψ  the 

degree of novelty for t ’s topics in )(ucluster .  
Specifically,  

s
tp

utopicsnovelsptu
∅≠∩

∈
=

)(}{
),(_),(, max

δ

ψ . 

Finally, if t ’s topics are neither popular nor novel in  
u ’s cluster, we will simply not recommend this item, so 
that 0, =tuψ . 
 
4.3.   Incorporation of Topic Preference with 
Item-based CF  

 
In order to recommend a set of k items to a target 

user Uu ∈ , we firstly form a candidate item list 
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containing all items rated by u ’s neighbors but not yet 
rated by u .   Next, for each item t  in the candidate list, 
we compute the item preference score (i.e. tu ,η ) and  

topic preference score (i.e. tu ,ψ ) for them. The proposed 
preference ranking for each candidate item can then be 
computed by combining the item preference score and 
topic preference score together. Finally, k candidate 
items with highest preference rankings are recommended 
to the user u , and these recommended items are sorted 
by the ranking values in descending order. The completed 
algorithm is listed below:  

 
Algorithm ),(_ kurrecommendetaxonomy  

where Uu ∈ is a given target user 
            k is the number of items to be recommended 
 
1) SET )(\)]([

)(

uRTwRT ALL
uclusterw

ALLu ∪
∈

=γ , the 

candidate item list 
2) FOR EACH ut γ∈  

3)    SET tututurank ,,, )1( ψααη −+=  
4) END FOR 
5) Return the top k items with highest turank ,  

score tou . 
 

It can be seen in line (3) of the algorithm, the predicted 
ranking for an item is computed based on the linear 
combination of item preference score tu ,η  and topic 

preference score tu ,ψ . The coefficient α  used in the 

formula is used to adjust the weights of tu ,η  and tu ,ψ  in 
the final ranking score, and it can is computed by:  

)1)(1( ϑϖϖϑ
ϖϑα

−−+
=   (6) 

where, 
|)(|
|),(|

exp uRT
tucItem

l

=ϖ  and 

    10 ≤≤ ϑ , is a user controlled variable. 
In the computation of α , it can be seenϖ reflects 

the  quality confidence of tu ,η , because the more the 
target user’s past rated items related to the target item, 
the higher the accuracy of the item preference prediction 
(i.e. tu ,η ) will be.  Thus, when ϖ increases α  will 

increase too, and therefore tu ,η  will receive higher 

weight in the final score (i.e. turank , ). Variableϑ , on 
another hand, is used to adjust the weights of ϖ in α , 
thus, if ϑ is large (e.g. 0.9) tu ,η will still receive high 
weight even ϖ is small.  

The proposed algorithm can also be used to solve the 
cold start and data sparsity problems [4, 5]. For datasets 
with very few explicit ratings, the proposed algorithm can 
still use the item taxonomy information and the users’ 
implicit ratings to make quality recommendations.  
 
5. Conclusion 

 
A taxonomy-based recommender is proposed in this 

paper aim for solving the recommendation novelty 
problem. The proposed recommender utilizes techniques 
from association rule mining to find how different topics 
are associated with each other in a given user cluster. 
Based on the discovered topic associations, the 
recommender suggests items with topics that are strongly 
linked to the taxonomy profile of the target user.  Besides 
considering only the topic similarities as suggested by 
many other systems, the proposed system improves 
recommendation novelties by recommending items with 
novel topics strongly associated to the target user profiles. 
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