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ABSTRACT of 0 only. A bootstrap based procedure to achieve this task

We propose a new resampling scheme that takes literally usually consists of the following steps:
the concept of the non-parametric bootstrap in which new 1. Given observations Yi.. . .yYn, we calculate the least-
samples are generated from the empirical distribution func- squares estimate t, and derive the residual
tion. The introduced resampling concept is totally heuris-
tic, but already shows promising results when applied to Zt = Yt - atta t 1,...
model selection. We show that for a range of linear mod-
els, the proposed resampling scheme outperforms the clas- where a = { 1, . . ., p} is the full model and x' t is the
sical model selection techniques as well as its predecessor, tth row of x.
the non-parametric bootstrap. It also simplifies the practi-
cal problem of choosing residual scaling or the length of 2. Next, we resample with replacement from n/m(^t-
the subsample that exists in the traditional bootstrap based .)/1p to obtain 2t. Here a scaling parameter
model selection approach. mn is introduced such that rn/n 0 and

1. INTRODUCTION '-m t<n (x <x) -*

The main motivation behind this work has been the problem for all /3 [9].
in finding an appropriate scaling of the residuals in a prac- 3. In the next step we compute
tical setting of a bootstrap based model selection. To make
this point clearer, let us briefly review the problem of lin- + Zt, t 1,..., n
ear model selection while for the general case and for more
detail the reader is referred to [IO10 I].^*[10,11]. and the least-squares estimate 0 from (y*, xot)Consider the following linear model

4. The steps 2 and 3 are then repeated B times to obtain
Yt +Z; , t =1,.. , n, 0,(i) and the bootstrap estimate of the residual squred

where 0 is an unknown p vector-valued parameter and Zt is error [2]
a noise sequence that is assumed to be a collection of i.i.d. 2
random variables of unknown distribution Fz (z) with mean (Y - XII 0,m i 1, B
zero and variance az. In a vector form, the above equation n,m - n
can be written as

Y xO + Z. 5. Finally, we average f<(im(/3) over i 1,... B to

Further, let us denote the model / as a subset of {1, . p} obtain mm and minimise over / to obtain
that results in the following linear equation In practical cases of model selection, the choice of the

Y = x0 + z. scaling parameter m is not always obvious. In some cases

this choice may become critical if one aims to show the su-
The problem of model selection is to choose the optimal periority of the bootstrap methods to other classical model
model /30 such that 0t} contains all non-zero components selection techniques [4]. A popular alternative to scaling
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is based on subsampling [7] in which rather than using full
0.~~~~~~~~~~~~ .._.

data record of n samples, subsamples ofm are used to achieve
0~~~~~~~~~~~~~~~~.the consistency in the estimation of the residual squared er-

ror F*m Nevertheless, the choice of the subsample length 0.
nmm

m may also be a problem in particular when n is small. 0. .
In this work we introduce a new heuristic resampling -I r

scheme that shows promising results in the application of O.r
bootstrap based model selection while at the same time al- 0.

leviates the problems of scaling residuals. 0.

0r...

2. THE "HOOK AND LOOP" RESAMPLING 0-3 2 1 0 1 2 3

SCHEME Random Sample

In a classical non-parametric bootstrap scheme the data are
resampled from the empirical distribution Fz (z) with re-
placement to form a pseudo sample. In a parametric boot-
strap, on the other hand, a particular form of the cumula-
tive distribution function is chosen on the basis of its pa-
rameter estimates that are derived from the original sam-
ple. Subsequently, new sets of data are generated from this °
distribution using a pseudo-random number generator. In 0L
the proposed "hook and loop" (HL) resampling scheme, we 0 I

suggest the concept of the non-parametric bootstrap of sam- 0

pling from the empirical distribution function is taken rather Random Sample
literally. Specifically, given a collection of n observations
Zl Z2.... Zn of a random sample with unspecified distrib- Fig. 1. The estimated ECDFs for a sample of length n

ution Fz (z) we first estimate the empirical cumulative dis- 100 from a standard Gaussian random variable using 100
tribution functions (ECDF) bootstrap resamples (top) and 100 "hook and loop" resam-

I Iz) n ples (bottom). The thick solid lines show the theoretical
Fn (Z) =-E 1 (zi < Z) CDF.ni=1

where I(.) is the indicator function. The ECDF is then used To see the differences between bootstrap samples and the
to generate a new set of samples of size n - 1 in which HL samples consider the following simple simulation
each of the new samples lies between each of the two con-
secutive original samples that form the ECDF. Figuratively >> x=randn(5,1);
speaking, the original and the new sample form a kind of a >> x_b=bootrsp (x);
zipper or a "hook and loop" fastener. Note also that similar >> x_hp=hprsp(x)
to the classical case ofjackknife [6], the new resample is of >> [x x_b [x_hp;NaN]]
smaller size than that of the original sample. ans =

The HL resamples can be generated in a following two -0.3851 0.9915 -0.0588
steps: 0.2574 0.2574 0.2442

0.7475 0.2310 0.4301
1. Given the original sample zl, Z2... .. Zn sort the data 0 . 2 3 1 0 0 . 7 4 7 5 0.8805

in an increasing order to obtain Z(1), Z(2).* * * Z(n) 0. 9915 0. 9915 NaN

2. Generate a new HL sample using, for example, and the estimated ECDFs for a sample of length n 100
1 from a standard Gaussian random variable and 100 resam-

Z(i) = (Z(i) + Z(i+l)) + £i ples as shown in Figure 1.
The estimated bootstrap ECDFs follow closely a result

where that would be achieved with a Monte Carlo simulation. The

/ 120 HP resampling scheme, on the other hand, follows closely
Ei X 0 (z(i+) -(i))]) the ECDF estimated from the original sample. This brings

6 the requirement of the original sample being representative
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to a stricter level than that in the case of bootstrap resam-
pling [12]. At the same time, however, the HP resampling frTable 1. The percentages of selecting the correct model
scheme results in the ECDF variance that is less dependent forethe ample oftrt n e noise sequen. . ~~~~modelled as \V(0, 1) (upper part of table) and as t (loweron the length and the variance of the original sample, a char-

t bots pp pa )
w

acteistc tats uefu inmodl slecion part). In the bootstrap the scaling parameter m was set to 2.acteristic that is useful in model selection.

n Boot. HL AIC MDL
3. EXAMPLE OF TREND ESTIMATION 64 100 100 91 98

32 73 94 79 84
Consider first a simple example of trend estimation from [11], 161 1 31 3 2
inwhichtheparametervectort = (0,0,0.035,-0.0005)' 64 100 97 89 97
and n = 64. For the scaling parameter m = 2 it was shown 32 27 81 61 61
that the bootstrap based approach outperforms the classical 16 0 19 2 1
model selection techniques such as the Akaike information
criterion (AIC) [1] and the one based on Rissanen's mini-
mum distance length (MDL) [8]. However, for a different
sample length, one would need to tune the parameter m to where Zp(p, 0) is the single indexed p-th Zernike polyno-
achieve equally impressive result. Often, for a smaller num- mial and E represents the measurement and modelling error.
ber of samples this task is not possible. When D discrete samples of the surface S(pd, Od) are avail-

The HL resampling routine described in Section 2 is able, the equation above can be easily written in a linear
used to generate new residuals Zt, t = 1, 2,. . ., n that are form as
used in the model selection in a similar way to those used in S = Za + E
the bootstrap model selection as described in Section 1. The

difference~~~~~~~~~~ista.heiulsaeadtoal r where S is a D-element column vector, Z is a D x P ma-only difference is that the HL residuals are additionally or-
trix of discrete, orthogonalized Zernike polynomials, a is adered according to the strength of the signal yt resembling P-element column vector of Zernike coefficients, and E is athe weighted bootstrap [3].Ine Tei 1,tweb

sho t lei D-element column vector of measurement and modeling er-
InTal.,w hwterslso oe eeto o

ror. In such modeling, a fundamental problem arises of howthis particular trend estimation problem using the bootstrap, ror. Inisc tmodlng fundamen problemoarisesiof
the ilL, AIC,and MDL for m 64, m 32, and~~~~ many Zernike terms one should use. Traditionally, vision

16inthe case theanoiseLmodel=is 4and G and in researchers have chosen to use the first 15 or 32 Zernike16 in the case the noise model is standard Gaussian and in temalhuhisoercnrprshnddsftrs.. .. ~~~~~~~~termsalthough in some recent reports hundreds of termsthe case where it is t3 distributed. The results are based on g
1000 independent Monte Carlo runs, and the percentages of have been used.1000 ineenet otCrousadth ecetgef A simple, although not rigorous, way of selecting theselecting the correct model are rounded.

number of Zernike terms is to minimize the residual vari-It is clear that the proposed HlL resampling procedure ance and determine a suitable cut-off threshold value. This,achieves much better results than the classical model selec- however, often leads to over-parameterization. An alterna-
tion techniques as well as its bootstrap predecessor. Note

tive approach is to use a suitable penalty function that in-also that in the case of the HL approach we did not need to
.. ~~~~creases with the number of parameters to form a model or-scale the residuals. There are two additional steps that we

had o emloyintis ew rsamlingschme. irs, wehad der selection criterion. In ophthalmic application of corneal
hadto emakelt inLhisnewresamplelengthnequalgtot fthe. orinal modelling, the use of classical model selection criteria suchto sample achieve absp adding rand l as AIC and the MDL results in an unrealistic situation where

onpe.pointfrom teeoginresidu sample Second,wha hundreds or even thousands of Zernike polynomial terms
one point frm tcan be fitted to the corneal elevation data. This problem hasto re-order it according to the strength of the original noisy been resolved in [4] with a bootstrap based model order se-signal. This second step is performed to match the strength lection procedure, although it was later found that it often

of the HL residual that is sorted to that of the signal. underestimated the clinically expected model order.
The bootstrap routine form [4] has been recently im-

4. MODELLING OPHTHALMIC SURFACES proved by incorporating the knowledge of the spatially non-
uniformity of the measurement noise in the resampling pro-

An ophthalmic surface such as the cornea or a wavefront cedure [5]. This was achieved by performing resampling
error can be modelled by a finite series of Zernike polyno- in semi-rings of data where the noise distribution can be
mials [4] assumed constant. However, this procedure is even more

p numerically complex than its predecessor and has limited
S(p, 0) =X apZp(p, 0) + E(p, 0) practical applicability. We were interested whether the HL

p=i resampling procedure used for selecting the optimal model
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sented in [5] but with a computational cost similar to that of
Table 2. The optimal order of the Zernike polynomial ex- thsanrdbotaprceu.
pansion selected by the bootstrap and the HL (number in Inthis view,twe predi hep
brackets) methods for several types of corneal surfaces and Ing paewi beuseful inX apitioseinwi tesnis
a range of corneal diameters. For a keratoconic subject the datanshws hetrskedastiit atiossomehow corel
maximum available corneal diameter was 7.1 mm, hence no with thews amplitude.
data in the last column of the table.
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