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Abstract

Probabilistic logic combines the capability of binary logic
to express the structure of argument models with the ca-
pacity of probabilities to express degrees of truth of those
arguments. The limitation of traditional probabilistic logic
is that it is unable to express uncertainty about the prob-
ability values themselves. This paper provides a brief
overview subjective logic which is a probabilistic logic
that explicitly takes uncertainty about probability values
into account. More specifically, we describe equivalent
representations of uncertain probabilities, and their inter-
pretations. Subjective logic is directly compatible with bi-
nary logic, probability calculus and classical probabilistic
logic. The advantage of using subjective logic is that real
world situations can be more realistically modelled, and
that conclusions more correctly reflect the ignorance and
uncertainties about the input arguments.

Keywords: Subjective logic, probabilistic logic, uncer-
tainty, belief theory, opinion, Dirichlet, Beta,

1 Introduction

In standard logic, propositions are considered to be either
true or false. However, a fundamental aspect of the human
condition is that nobody can ever determine with absolute
certainty whether a proposition about the world is true or
false. In addition, whenever the truth of a proposition is
assessed, it is always done by an individual, and it can
never be considered to represent a general and objective
belief. This indicates that important aspects are missing in
the way standard logic captures our perception of reality,
and that it is more designed for an idealised world than for
the subjective world in which we are all living.

Probabilistic logic was first defined by Nilsson [12]
with the aim of combining the capability of deductive
logic to exploit the structure and relationship of arguments
and events, with the capacity of probability theory to ex-
press degrees of truth about those arguments and events.
This results in more realistic models of real world situa-
tions than is possible with binary logic.

The additivity principle of classical probability re-
quires that the probability of mutually disjoint elements
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in a state space add up to 1. This requirement makes it im-
possible to express ignorance about the likelihoods of pos-
sible states or outcomes. If somebody wants to express ig-
norance as “I don’t know” this would be impossible with
a simple scalar probability value. A probability 0.5 would
for example mean that the event will take place 50% of the
time, which in fact is quite informative, and very different
from ignorance. Alternatively, a uniform probability den-
sity function over all possible states would more closely
express the situation of ignorance about the outcome of an
event, and it will be shown below that this can be inter-
preted as equivalent to the type of belief functions which
we will study here.

Belief theory represents an extension of classical prob-
ability by allowing explicit expression of ignorance. Be-
lief theory has its origin in a model for upper and lower
probabilities proposed by Dempster in 1960. Shafer later
proposed a model for expressing beliefs [15]. The main
idea behind belief theory is to abandon the additivity prin-
ciple of probability theory, i.e. that the sum of probabili-
ties on all pairwise disjoint states must add up to one. In-
stead belief theory gives observers the ability to assign so-
called belief mass to any subset of the state space, i.e. to
non-exclusive possibilities including the whole state space
itself. The main advantage of this approach is that igno-
rance, i.e. the lack of information, can be explicitly ex-
pressed e.g. by assigning belief mass to the whole state
space.

Uncertainty about probability values can be interpreted
as ignorance, or second order uncertainty about the first
order probabilities. In this paper, the term “uncertainty”
will be used in the sense of “uncertainty about the proba-
bility values”. A probabilistic logic based on belief theory
therefore represents a generalisation of traditional proba-
bilistic logic.

Classical belief representation is quite general, and al-
lows complex belief structures to be expressed on arbitrary
large state spaces. Shafer’s book [15] describes many as-
pects of belief theory, but the two main elements are 1)
a flexible way of expressing beliefs, and 2) a method for
combining beliefs, commonly known as Dempster’s Rule.
We will not be concerned with Dempster’s rule here.

In order to have a simpler representation of beliefs,
which also can be mapped to probability density func-
tions, special types of belief functions called “opinions”
will be used. We will show that the definition of logic op-
erators on opinions is very simple, thereby resulting in a
rich set of operators that defines subjective logic. Through
the equivalence between opinions and probability density
functions, subjective logic also provides a calculus for
probability density functions.



In previous presentations of subjective logic, operators
are defined with binomial opinions as input and with a bi-
nomial opinion as output. A binomial opinion is a belief
function defined over a binary state space. In this paper we
describe the general principles of subjective logic, and we
show how operators can be generalised to take multino-
mial opinions as input and thereby produce a multinomial
opinion as output. We also describe three different but
equivalent representations of opinions, and discuss their
interpretation. This allows uncertain probabilities to be
seen from different angles, and allows an analyst to de-
fine models according to the formalisms that they are most
familiar with, and that most naturally represents a spe-
cific real world situation. Subjective logic contains the
same set of basic operators known from binary logic and
classical probability calculus, but also contains some non-
traditional operators which are specific to subjective logic.

The advantage of subjective logic over traditional
probabilistic logic is that real world situations can be mod-
eled and analysed more realistically. The analyst’s par-
tial ignorance and lack of information can be taken into
account during the analysis, and explicitly expressed in
the conclusion. Applications can for example be deci-
sion making, where the decision makers will be better in-
formed about uncertainties underlying a given model.

2 Representing Beliefs

2.1 Classical Belief Representation

Belief representation in classic belief theory[15] is based
on an exhaustive set of mutually exclusive atomic states
which is called the frame of discernment denoted by Θ. In
our presentation below we will use the term state space in
the sense of frame of discernment. The power set 2Θ is the
set of all sub-sets of Θ. A bba (basic belief assignment1)
is a belief mass distribution function mΘ mapping 2Θ to
[0, 1] such that

∑

x⊆Θ

mΘ(x) = 1 , where mΘ(∅) = 0 . (1)

The bba distributes a total belief mass of 1 amongst the
subsets of Θ such that the belief mass for each subset is
positive or zero. Each subset x ⊆ Θ such that mΘ(x) > 0
is called a focal element of mΘ. In the case of total igno-
rance, mΘ(Θ) = 1, and mΘ is called a vacuous bba. In
case all focal elements are atoms (i.e. one-element subsets
of Θ) then we speak about Bayesian bba. A dogmatic bba
is when mΘ(Θ) = 0 [16]. Let us note that, trivially, every
Bayesian bba is dogmatic.

The Dempster-Shafer theory [15] defines a belief func-
tion b(x). The probability transformation [1]2 projects a
bba onto a probability expectation value denoted by p(x).
These functions are defined as:

b(x) =
∑

∅6=y⊆x

mΘ(y) ∀ x ⊆ Θ , (2)

p(x) =
∑

y⊆Θ

mΘ(y)
|x ∩ y|

|y|
∀ x ⊆ Θ . (3)

In subjective logic, opinions express specific types of
beliefs, and represent the input and output parameters of

1Called basic probability assignment in [15].
2Also known as the pignistic transformation [17, 18]

the subjective logic operators. Opinions expressed over
binary state spaces are called binomial. Opinions defined
over state spaces larger than binary are called multinomial.
Multinomial opinions will be defined first.

2.2 Belief Notation of Opinions

As a specialisation of the general bba, we define the
Dirichlet bba, and its cluster variant, as follows.

Definition 1 (Dirichlet bba) A bba where the possible
focal elements are Θ and/or singletons of Θ, is called a
Dirichlet belief mass distribution function.

Definition 2 (Cluster Dirichlet bba) A bba where the
possible focal elements are Θ and/or mutually disjoint
subsets of Θ (singletons or clusters of singletons), is called
a cluster Dirichlet belief mass distribution function.

It can be noted that Bayesian bbas are a special case of
Dirichlet bbas.

The name “Dirichlet” bba is used because bbas of this
type can be interpreted as equivalent to Dirichlet probabil-
ity density functions under a specific mapping described
below. The same mapping in the case of binary state
spaces is described in [3].

The probability transformation of Eq.(3) assumes that
each element in the state space gets an equal share of be-
lief masses that are assigned to (partly) overlapping ele-
ments. In case of Dirichlet bbas, the belief mass on the
whole state space is the only belief mass to be distributed
in this way. Let a(x) represent the relative share that each
element x receives. The function a will be called the base
rate function, as defined below.

Definition 3 (Base Rate Function) Let Θ = {xi|i =
1, . . . k} be a state space and let a be a function from Θ to
[0, 1] representing a priori probability expectation before
any evidence has been received, satisfying:

a(∅) = 0 and
∑

x∈Θ

a(x) = 1 . (4)

Then a is called a base rate function.

The combination of a Dirichlet bba and a base rate
function can be contained in a composite function called
an opinion. In order to have a simple and intuitive nota-
tion, the Dirichlet bba is split into a belief vector ~b and an
uncertainty parameter u. This is defined as follows.
Definition 4 (Belief Vector and Uncertainty Parameter)
Let mΘ be a Dirichlet bba. The belief vector ~bΘ and the
uncertainty parameter uΘ are defined as follows:

bΘ(xi) = mΘ(xi) , where xi 6= Θ (5)
uΘ = mΘ(Θ) (6)

It can be noted that uΘ +
∑k

x=1 bΘ(xi) = 1 because
of Eq.(1). The belief vector ~bθ and the uncertainty param-
eter uθ are used in the definition of multinomial opinions
below.

Definition 5 (Belief Notation of Opinions) Let Θ =
{xi|i = 1 . . . k} be a frame of discernment. Assume mΘ

to be a Dirichlet bba on Θ with belief vector ~bθ and un-
certainty parameter uΘ, and assume ~aΘ to be a base rate
vector on Θ. The composite function ωΘ = (~bΘ, uΘ,~aΘ)
is then an opinion on Θ represented in belief notation.



We use the convention that the subscript on the multi-
nomial opinion symbol indicates the state space on which
the opinion applies, and that a superscript indicates the
subject owner of the opinion. Subscripts can be omitted
when it is clear to which state space an opinion applies,
and superscripts can be omitted when it is irrelevant who
the owner is.

Assuming that the state space Θ has cardinality k, the
belief vector ~bΘ and the base rate vector ~aΘ will have k
parameters each. The uncertainty parameter uΘ is a sim-
ple scalar. A multinomial opinion in belief notation over
a state space of cardinality k will thus contain 2k + 1 pa-
rameters. However, given the constraints of Eq.(1) and
Eq.(4), the multinomial opinion will only have 2k − 1 de-
grees of freedom. A binomial opinion will for example be
3-dimensional.

The introduction of the base rate function allows the
probabilistic transformation to be independent from the
internal structure of the state space. The probability trans-
formation of multinomial opinions can be expressed as a
function of the belief and the base rate vectors.

Definition 6 (Probability Expectation Function) Let
Θ = {xi|i = 1, . . . k} be a state space and let ωΘ be an
opinion on Θ with belief vector ~b and uncertainty u. Let
~a be a base rate vector on Θ. The function pΘ from Θ to
[0, 1] representing the a posteriori probability expectation
expressed as:

pΘ(xi) = bΘ(xi) + aΘ(xi)uΘ . (7)

is then called the probability expectation function.

It can be shown that p satisfies the additivity principle:

pΘ(∅) = 0 and
∑

x∈Θ

pΘ(x) = 1 . (8)

It is interesting to notice that the base rate function of
Def.3 expresses a priori probability, where as the proba-
bility expectation function of Eq.(7) expresses a posteriori
probability.

Given a state space of cardinality k, the default base
rate function for each element in the state space is 1/k,
but it is possible to define arbitrary base rates for all mu-
tually exclusive elements of the state space, as long as the
additivity constraint is satisfied.

Two different multinomial opinions on the same state
space will normally share the same base rate functions.
However, it is obvious that two different observers can as-
sign different base rate functions to the same state space,
and this could naturally reflect two different analyses of
the same situation by two different persons.

2.3 Binomial Opinions

A special notation will be used to denote a binomial opin-
ion which consists of an ordered tuple containing the three
specific belief masses belief, disbelief, uncertainty as well
as the base rate of xi.

Definition 7 (Binomial Opinion) Let Θ = {xi|i =
1 . . . k} be a state space. Assume mΘ to be a Dirichlet

bba on Θ, and aΘ to be a base rate function on Θ. The
ordered quadruple ωxi

defined as:

ωxi
= (bxi

, dxi
, uxi

, axi
) ,

where











Belief: bxi
= mΘ(xi)

Disbelief: dxi
= mΘ(xi)

Uncertainty: uxi
= mΘ(Θ)

Base rate: axi
= aΘ(xi))

(9)

is then called a binomial opinion on the binary state space
Xi = {xi, xi}.

Binomial opinions represent a special case of multi-
nomial opinions. Binomial opinions can be defined for
binary state spaces or for state spaces larger that binary
when coarsened to binary.

Binomial opinions are used in traditional subjective
logic operators defined in [3, 4, 8, 9, 6, 13].

The probability expectation value of a binomial opin-
ion can be derived from Eq.(7), is:

p(ωxi
) = bxi

+ axi
uxi

(10)
Binomial opinions can be mapped to a point in an

equal-sided triangle. The relative distances from the left
side edge to the point represent belief, from the right side
edge to the point represent disbelief, and from the base
line to the point represents uncertainty. For an arbitrary
opinion ωx = (bx, dx, ux, ax), the three parameters bx, dx

and ux thus determine the position of the opinion point in
the triangle. The base line is the probability axis, and the
base rate value can be indicated as a point on the probabil-
ity axis.

Fig.1 illustrates an example opinion about x with the
value ωx = (0.7, 0.1, 0.2, 0.5) indicated by a black dot
in the triangle.

a

ω  = (0.7, 0.1, 0.2, 0.5)x

x

xω

xp(  )

0.5 00

1

0.5 0.5

Disbelief1 Belief10
0 1

Uncertainty

Probability axis

Example opinion:

Projector

Figure 1: Opinion triangle with example opinion

The projector going through the opinion point, parallel
to the line that joins the uncertainty corner and the base
rate point, determines the probability expectation value
p(x) = bx + axux.

Although a binomial opinion has 4 parameters, it only
has 3 degrees of freedom because the three components
bx, dx and ux are dependent through Eq.(1). As such they
represent the traditional Bel(x) (Belief) and Pl(x) (Plau-
sibility) pair of Shaferian belief theory through the corre-
spondence Bel(x) = bx and Pl(x) = bx + ux.

The reason why a redundant parameter is kept in the
opinion representation is that it allows for more compact



expressions of opinion operators than otherwise would
have been possible.

Various visualisations of opinions are possible to
facilitate human interpretation. See for example
http://sky.fit.qut.edu.au/∼josang/sl/demo/BV.html

General binomial opinions are equivalent to Beta dis-
tributions. Given that binomial opinions represent a spe-
cial case of multinomial opinions, this fact is derived from
the fact that Beta distributions represent a special case of
Dirichlet distributions, and that multinomial opinions are
equivalent to Dirichlet distributions.

3 Probabilistic Notation of Opinions

A disadvantage of the belief notation described in Sec.2.2
and Sec.2.3, is that it does not directly reflect the probabil-
ity expectation values of the various elements in the state
space. The classical probabilistic representation has the
advantage that it is used in all areas of science and that
people are familiar with it. The probability expectation
can easily be derived with Eq.(7), but this still represents
a mental barrier to a direct intuitive interpretation of opin-
ions. An intuitive representation of multinomial opinions
could therefore be to represent the probability expectation
value directly, together with the degree of uncertainty and
the base rate function. This will be called the probabilistic
notation of opinions:

Definition 8 (Probabilistic Notation of Opinions) Let
Θ be a state space and let ωΘ be an opinion on Θ in
belief notation. Let p(x) be a multinomial probability
expectation function on Θ defined according to Def.6, let
a(x) be a multinomial base rate function on Θ defined
according to Def.3, and let u be the uncertainty function
on Θ as defined in Eq.(9). The probabilistic notation
of opinions can then be expressed as the ordered tuple
ω = (~p, u,~a).

In case u = 0, then ~p is a frequentist probability dis-
tribution. In case u = 1, then ~p = ~a, and no evidence has
been received, so the posterior probability is equal to the
prior probability.

The equivalence between the belief notation and the
probabilistic notation of opinions is defined below.

Theorem 1 (Probabilistic Notation Equivalence) Let
ωΘ = (~bΘ, uΘ,~aΘ) be an opinion expressed in belief
notation, and ω = (~p, u,~a) be an opinion expressed in
probabilistic notation, both over the same state space Θ.
Then the following equivalence holds:

{

p(xi) = bΘ(xi) + aΘ(xi)uΘ

u = uΘ

~a = ~aΘ

(11)

m

{

bΘ(xi) = p(xi) − aΘ(xi)u
uΘ = u
~aΘ = ~a

(12)

Binomial opinions in probabilistic notation will be
written as ω = (p, u, a) where p represents the probabil-
ity expectation value, u represents the uncertainty and a
represents the base rate.

4 Beliefs from Observation of Evidence

The evidence notation of opinions is centered around the
Dirichlet multinomial probability distribution. For self-
containment, we briefly outline the Dirichlet multinomial
model below, and refer to [2] for more details.

4.1 The Dirichlet Distribution

We are interested in knowing the probability distribution
over the disjoint elements of a state space. In case of
a binary state space, it is determined by the Beta distri-
bution. In the general multinomial case it is determined
by the Dirichlet distribution, which describes the prob-
ability distribution over a k-component random variable
p(xi), i = 1 . . . k with sample space [0, 1]k, subject to the

simple additivity requirement
k
∑

i=1

p(xi) = 1.

The Dirichlet distribution captures a sequence of ob-
servations of the k possible outcomes with k positive real
parameters α(xi), i = 1 . . . k, each corresponding to one
of the possible outcomes. In order to have a compact no-
tation we define a vector ~p = {p(xi) | 1 ≤ i ≤ k} to
denote the k-component random probability variable, and
a vector ~α = {αi | 1 ≤ i ≤ k} to denote the k-component
random observation variable [α(xi)]

k
i=1.

The Dirichlet probability density function is then given
by Eq.(13) below.

f(~p | ~α) =
Γ
(

∑k

i=1 α(xi)
)

∏k

i=1 Γ(α(xi))

k
∏

i=1

p(xi)
α(xi)−1 , (13)

where



















p(x1), . . . , p(xk) ≥ 0

∑k
i=1 p(xi) = 1

α(x1), . . . , α(xk) > 0.

The probability expectation value of any of the k ran-
dom variables is defined as:

E(p(xi) | ~α) =
α(xi)

∑k

i=1 α(xi)
. (14)

Because of the additivity requirement
∑k

i=1 p(xi) =
1, the Dirichlet distribution has only k−1 degrees of free-
dom. This means that knowing k−1 probability variables
and their density uniquely determines the last probability
variable and its density.

The elements in a state space of cardinality k can have
a base rate different from the default value a = 1/k. It is
thereby possible to define a base rate vector with arbitrary
distribution over the k mutually disjoint elements xj with
j = 1 . . . k, as long as the simple additivity requirement is
satisfied, expressed as:

∑

xj∈Θ

a(xj) = 1. (15)

The total evidence α(xj ) for each element xj can then
be expressed as:

α(xj) = r(xj) + a(xj) (16)

In order to distinguish between the base rate, and the
evidence, we introduce the augmented notation for Dirich-
let distribution over a set of k singletons.



Definition 9 (Augmented Dirichlet Notation)
Let Θ be a state space consisting of k mutually disjoint
elements. Let ~r represent the evidence vector over the el-
ements of Θ and let ~a represent the base rate vector over
the same elements. Then the multinomial Dirichlet density
function over Θ can be expressed in augmented notation
as:

f(~p | ~r,~a) = (17)

Γ

(

k
∑

j=1

(r(xj ) + Ca(xj))

)

k
∏

j=1

Γ (r(xj ) + Ca(xj))

k
∏

j=1

p(xj)
(r(xj)+Ca(xj)−1)

where



















































p(x1), . . . , p(xk) ≥ 0,

∑k
j=1 p(xj) = 1,

α(x1), . . . , α(xk) > 0,

∑k

j=1 a(xj) = 1,

C = 2.

The augmented notation of Eq.17 is useful, because
it allows the determination of the probability distribution
over state spaces where each element can have an arbi-
trary base rate as long as the simple additivity principle
is satisfied. Given the augmented Dirichlet distribution of
Eq.(17), the probability expectation of any of the k ran-
dom probability variables can now be written as:

E(p(xj) | ~r,~a) =
r(xj ) + Ca(xj)

C +
∑k

j=1 r(xj)
. (18)

4.2 Visualising Dirichlet Distributions

Visualising Dirichlet distributions is challenging because
it is a density function over k − 1 dimensions, where k
is the state space cardinality. For this reason, Dirichlet
distributions over ternary state spaces are the largest that
can be practically visualised.

With k = 3, the probability distribution has 2 degrees
of freedom, and the equation p(x1) + p(x2) + p(x3) = 1
defines a triangular plane as illustrated in Fig.2.

0
0.2

0.4
0.6

0.8
1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

PSfrag
replacem

ents

p(x1)p(x1)
p(x2)p(x2)

p(x3)p(x3)p(x3)p(x3)

Figure 2: Triangular plane

In order to visualise probability density over the tri-
angular plane, it is convenient to lay the triangular plane

horizontally in the X-Y plane, and visualise the density
dimension along the Z-axis.

Let us consider the example of an urn containing balls
of the three different colours: red, black and yellow (i.e.
k = 3). Let us first assume that no other information
than the cardinality is available, meaning that the default
base rate is a = 1/3, and that r(red) = r(black) =
r(yellow) = 0. Then Eq.(18) dictates that the expected
a priori probability of picking a ball of any specific colour
is the default base rate probability, which is 1

3 . The a pri-
ori Dirichlet density function is illustrated in Fig.3.
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Figure 3: Prior Dirichlet distribution in case of urn with
balls of 3 different colours

Let us now assume that an observer has picked (with
return) 6 red, 1 black and 1 yellow ball, i.e. r(red) =
6, r(black) = 1, r(yellow) = 1, then the a posteriori ex-
pected probability of picking a red ball can be computed
as E(p(red)) = 2

3 . The a posteriori Dirichlet density func-
tion is illustrated in Fig.4.
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Figure 4: A posteriori Dirichlet distribution after picking
6 red, 1 black and 1 yellow ball



4.3 Coarsening Example: From Ternary to Binary

We reuse the example of Sec.4.2 with the urn containing
red, black and yellow balls, but this time we create a bi-
nary partition of x1 = {red} and x2 = {black, yellow}.
The base rate of picking a red ball is set to the relative
atomicity of red balls, expressed as a(x1) = 1

3 .
Let us again assume that an observer has picked (with

return) 6 red balls, and 2 “black or yellow” balls, i.e.
r(x1) = 6, r(x2) = 2.

Since the state space has been reduced to binary, the
Dirichlet distribution is reduced to a Beta distribution
which is simple to visualise. The a priori and a posteriori
density functions are illustrated in Fig.4.3 and Fig.4.3 .
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Figure 5: A priori Beta distribution
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Figure 6: Updated Beta distribution after 6 red balls

The a posteriori expected probability of picking a red
ball can be computed with Eq.(18) as E(p(x1)) = 2

3 ,
which is the same as before the coarsening, as illustrated
in Sec.4.2. This shows that the coarsening does not influ-
ence the probability expectation value of specific events.

4.4 Evidence Notation of Opinions

Dirichlet distributions translate observation evidence di-
rectly into probability density functions. The representa-
tion of evidence, together with the base rate, can be used
to denote opinions.

Definition 10 (Evidence Notation of Opinions) Let Θ
be a state space with a Dirichlet distribution f(~p | ~r,~a).
The evidence notation of opinions can then be expressed
as the ordered tuple ω = (~r,~a).

Let ω = (~r,~a) be an opinion in evidence notation over
a state space with cardinality k. Then all the k parameters
of ~r are independent, whereas only k − 1 parameters of
~a are independent because of Eq.(4). As expected, the
evidence notation therefore has k − 1 dimensions, as do
the belief and probabilistic notations.

It is possible to define a bijective mapping between
opinions expressed in evidence notation based on the
probability distributions described in Sec.4.1, and opin-
ions expressed in belief notation as described in Sec.2.2.

Let Θ = {xi | i = 1, · · · , k} be a state space. Let
ωΘ = (~bΘ, uΘ,~aΘ) be an opinion on Θ in belief nota-
tion, and let ω = (~r,~a) be an opinion on Θ in evidence
notation.

For the bijective mapping between ωΘ and ω, we re-
quire equality between the pignistic probability values
pΘ(xj) derived from ωΘ, and the probability expectation
values E(p(xj)) derived from ω = (~r,~a). This constraint
is expressed as:

For all xj ∈ ΘX :

pΘ(xj) = E( p(xj) | ~r,~a) (19)
m

bΘ(xj) + aΘ(xj)uΘ =
r(xj )

C +
∑k

j=1 r(xj)
(20)

+
Ca(xj)

C +
∑k

j=1 r(xj)

We also require that bΘ(xj) be an increasing func-
tion of r(xj), and that uΘ be a decreasing function of

k
∑

j=1

r(xj ). In other words, the more evidence in favour

of a particular outcome, the greater the belief mass on
that outcome. Furthermore, the less evidence available,
the less certain the opinion (i.e. the greater uΘ).

In case uΘ −→ 0, then
k
∑

j=1

bΘ(xj) −→ 1, and

k
∑

j=1

r(xj ) −→ ∞, meaning that at least some, but not

necessarily all, of the evidence parameters r(xj ) are infi-
nite. We define η(xj) as the the relative degree of infinity
between the corresponding infinite evidence parameters

r(xj) such that
k
∑

j=1

η(xj) = 1. When infinite evidence

parameters exist, any finite evidence parameter r(xj ) can
be assumed to be zero in any practical situation because it
will have η(xj) = 0, i.e. it will carry zero weight relative
to the infinite evidence parameters.

These intuitive requirements together with Eq.(21)
imply the following bijective mapping:



Table 1: Example values with the three equivalent notations of binomial opinion, and their interpretations.

Belief notation Probabilistic notation Density notation Interpretation
ω = (b, d, u, a) ω = (p, u, a) ω = (r, s, a)

(1, 0, 0, a) (1, 0, a) (∞, 0, a) Binary logic TRUE, and probability p = 1

(0, 1, 0, a) (0, 0, a) (0,∞, a) Binary logic FALSE, and probability p = 0

(0, 0, 1, a) (a, 1, a) (0, 0, a) Vacuous opinion, Beta distribution with prior a

(0, 0, 1, 1
2 ) ( 1

2 , 1, 1
2 ) (0, 0, 1

2 ) Vacuous opinion, uniform Beta distribution over
binary state space

( 1
4 , 1

4 , 1
2 , 1

2 ) ( 1
2 , 1

2 , 1
2 ) (1, 1, 1

2 ) Symmetric Beta distribution after 1 positive and
1 negative observation, binary state space

Theorem 2 (Evidence Notation Equivalence) Let
ωΘ = (~bΘ, uΘ,~aΘ) be an opinion expressed in belief
notation, and ω = (~r,~a) be an opinion expressed in
evidence notation, both over the same state space Θ.
Then the following equivalence holds:

For uΘ 6= 0:











bΘ(xj) =
r(xj)

C +
P

k
i=1

r(xi)

uΘ = C

C +
P

k
i=1

r(xi)

(21)

m














r(xj ) =
CbΘ(xj)

uΘ

1 = uΘ +
k
∑

i=1

bΘ(xi)

(22)

For uΘ = 0:

{

bΘ(xj) = η(xj)

uΘ = 0
(23)

m






























r(xj) = η(xj)
k
∑

i=1

r(xi)

= η(xj)∞

1 =
k
∑

j=1

m(xj)

(24)

In case η(xj) = 1 for a particular evidence parameter
r(xj ), then r(xj) = ∞ and all the other evidence param-
eters are finite. In case η(xj) = 1/k for all j = 1 . . . k,
then all the evidence parameters are all equally infinite.

Binomial opinions in evidence notation will be written
as ω = (r, s, a), where r and s represent the amount of
positive and negative evidence respectively, and a repre-
sents the base rate.

5 Basic Properties of Subjective Logic

Subjective logic consists of a set of operators where opin-
ions are input and output parameters. Table 2 provides a
brief overview of the main operators. Additional opera-
tors exist for modeling special situations such as fusion of
evidence from multiple observers. Most of the operators
correspond to well-known operators from binary logic and
probability calculus, whereas others are specific to subjec-
tive logic. An online demonstration of subjective logic can
be accessed at: http://sky.fit.qut.edu.au/∼josang/sl/.

Subjective logic is a generalisation of binary logic and
probability calculus. This means that when a correspond-
ing operator exists in binary logic, and the input parame-
ters are equivalent to binary logic TRUE or FALSE, then
the result opinion is equivalent to the result that the corre-
sponding binary logic expression would have produced.

For example consider the case of binary logic AND,
which corresponds to multiplication of opinions which is
described in [8]. Assume the pair of binomial opinions in
probabilistic notation

{

ωx = (1, 0, ax)
ωy = (0, 0, ay)

then wx∧y = (0, 0, axay) (25)

which corresponds to TRUE ∧ FALSE = FALSE.
Similarly, when a corresponding operator exists in

probability calculus, then the probability expectation
value of result opinion is equal to the result that the corre-
sponding probability calculus expression would have pro-
duced with input parameters equal to the probability ex-
pectation values of the input opinions.

For example, assume the following pair of argument
opinions in probabilistic notation:

{

ωx = (px, 0, ax)
ωy = (py, 0, ay)

then ωx∧y = (pxpy, 0, axay)

(26)

which corresponds to p(x ∧ y) = p(x)p(y).
Table 1 provides the equivalent interpretation in binary

logic and probability for a small set of binomial opinions
represented in belief notation, probabilistic notation and
in evidence notation.

It can be seen that certain values correspond to binary
logic and probability values, whereas other values corre-
spond to probability density distributions. This richness



Table 2: Correspondence between probability, set and logic operators.
Opinion operator Symbol Set operator Logic operator Symbol Notation
Addition[11] + Union XOR 3 ∪ ωx∪y = ωx + ωy

Subtraction[11] - Difference n.a. \ ωx\y = ωx − ωy

Multiplication[8] · Conjunction AND ∧ ωx∧y = ωx · ωy

Division[8] / Unconjunction UN-AND ∧ ωx∧y = ωx/ωy

Comultiplication[8] t Disjunction OR ∨ ωx∨y = ωx t ωy

Codivision[8] t Undisjunction UN-OR ∨ ωx∨y = ωxtωy

Complement[3] ¬ Negation NOT x ωx = ¬ωx

Deduction[9] } Conditional Inference MP ‖ ωY ‖X = ωX } ωY |X

Abduction[13] } Reverse conditional Inference MT ‖ ω
Y ‖X

= ωY }ωX|Y

Discounting[10] ⊗ Transitivity n.a. : ωA:B
x = ωA

B ⊗ ωB
x

Cumulation[5, 10] ⊕ Cumulative Fusion n.a. � ωA�B
X = ωA

X ⊕ ωB
X

Average[10] ⊕ Averaging Fusion n.a. � ω
A�B
x = ωA

x ⊕ωB
x

of expression represents the advantage of subjective logic
over other probabilistic logic logic frameworks.

It is interesting to note that subjective logic represents
a calculus for Dirichlet distributions because opinions are
equivalent to Dirichlet distributions. Analytical manipula-
tions of Dirichlet distributions is complex but can be done
for simple operators, such as multiplication in which case
it is called a joint distribution.

The multiplicative product of two opinions is not equal
to the joint distribution of Dirichlet distributions in gen-
eral, but it can be shown that the approximation is very
good. This means that the simplicity of some subjective
logic operators comes at the cost of reducing those oper-
ators to approximations of the analytically correct opera-
tors.

The analytical result of joint Dirichlet distributions
will in general involve the Gauss hypergeometric func-
tion, see e.g. [14] for the details. However, this analytical
method will quickly become unmanageable when applied
to the more complex operators of Table 2 such as con-
ditional deduction and abduction. Subjective logic there-
fore has the advantage of providing advanced operators
for Dirichlet distributions for which no practical analyti-
cal solutions exist.

6 Fusion of Multinomial Opinions

In many situations there will be multiple sources of evi-
dence, and fusion can be used to combine evidence from
different sources.

In order to provide an interpretation of fusion in sub-
jective logic it is useful to consider a process that is ob-
served by two sensors. A distinction can be made between
two cases.

1. The two sensors observe the process during disjoint

time periods. In this case the observations are inde-
pendent, and it is natural to simply add the observa-
tions from the two sensors, and the resulting fusion is
called cumulative fusion.

2. The two sensors observe the process during the same
time period. In this case the observations are depen-
dent, and it is natural to take the average of the obser-
vations by the two sensors, and the resulting fusion is
called averaging fusion.

Fusion of binomial opinions have been described in
[3, 4]. The two types of fusion for multinomial opinions
are described in the following subsections. When obser-
vations are partially dependent, a hybrid fusion operator
can be defined [10].

6.1 Cumulative Fusion

The cumulative fusion rule is equivalent to a posteriori
updating of Dirichlet distributions. Its derivation is based
on the bijective mapping between the belief and evidence
notations described in Sec.4.4.

Assume a state space Θ containing k elements. As-
sume two observers A and B who observe the outcomes
of the process over two separate time periods.

Let the two observers’ respective observations be ex-
pressed as ~rA and ~rB . The evidence opinions resulting
from these separate bodies of evidence can be expressed
as (~rA,~a) and (~rB ,~a)

The cumulative fusion of these two bodies of evidence
simply consists of vector addition of ~rA and ~rB , expressed
as:

(~rA,~a) ⊕ (~rB ,~a) = ((~rA + ~rB),~a) . (27)

The symbol “�” denotes the fusion of two observers A
and B into a single imaginary observer denoted as A �B.



All the necessary elements are now in place for presenting
the cumulative rule for belief fusion.

Theorem 3 (Cumulative Fusion Rule)
Let ωA and ωB be opinions respectively held by agents A
and B over the same state space Θ = {xj | j = 1, · · · , l}.
Let ωA�B be the opinion such that:

Case I: For uA 6= 0 ∨ uB 6= 0 :










bA�B(xj) =
bA(xj)u

B+bB(xj)u
A

uA+uB−uAuB

uA�B = uAuB

uA+uB−uAuB

(28)

Case II: For uA = 0 ∧ uB = 0 :






bA�B(xj) = γA bA(xj) + γBbB(xj)

uA�B = 0
(29)

where γA = lim
uA→0
uB→0

uB

uA+uB

and γB = lim
uA→0
uB→0

uA

uA+uB

Then ωA�B is called the cumulatively fused bba of
ωA and ωB , representing the combination of independent
opinions of A and B. By using the symbol ‘⊕’ to designate
this belief operator, we define ωA�B ≡ ωA ⊕ ωB.

The proof below provides details about how the ex-
pression for the cumulative rule can be derived.

Proof 1 Let ωA and ωB be opinions held by observer A
and B respectively. The mapping from opinions in belief
notation to opinions in evidence notation is done accord-
ing Eq.(2) and Eq.(24), expressed as:

ωA
Θ 7−→ (~rA,~a)

ωB
Θ 7−→ (~rB ,~a)

(30)

These opinions in evidence notation can now be fused
according to Eq.(27), expressed as:

(~rA,~a) ⊕ (~rB ,~a) = ((~rA + ~rB),~a) (31)

Finally, the result of Eq.(31) is mapped back to
an opinion in belief notation again using Eq.(21) and
Eq.(23). This can be written as:

((~rA + ~rB),~a) 7−→ ωA�B
Θ (32)

By inserting the full expressions for the parameters in
Eqs.(30), (31) and (32), the expressions of Eqs.(28) and
(29) in Theorem 3 emerge.

2

It can be verified that the cumulative rule is commuta-
tive, associative and non-idempotent. In Case II of The-
orem 3, the associativity depends on the preservation of
relative weights of intermediate results, which requires the
additional weight variable γ. In this case, the cumulative
rule is equivalent to the weighted average of probabilities.

It is interesting to notice that the expression for the cu-
mulative rule is independent of the a priori constant C.
That means that the choice of a uniform Dirichlet distribu-
tion in the binary case in fact only influences the mapping
between Dirichlet distributions and Dirichlet bbas, not the
cumulative rule itself. This shows that the cumulative rule
is firmly based on classical statistical analysis, and not de-
pendent on arbitrary and ad hoc choices.

The cumulative rule represents a generalisation of the
consensus operator [4, 3] which emerges directly from
Theorem 3 by assuming a binary state space.

6.2 The Average Rule of Belief Fusion

The average rule is equivalent to averaging the evidence
of Dirichlet distributions. Its derivation is based on the bi-
jective mapping between the belief and evidence notations
described in Sec.4.4.

Assume a state space Θ containing k elements. As-
sume two observers A and B who observe the outcomes
of the process over the same time periods.

Let the two observers’ respective observations be ex-
pressed as ~rA and ~rB . The evidence opinions resulting
from these separate bodies of evidence can be expressed
as (~rA,~a) and (~rB ,~a)

The averaging fusion of these two bodies of evidence
simply consists of averaging ~rA and ~rB . Expressed in
terms of Dirichlet distributions, this can be expressed as:

(~rA,~a)⊕(~rB ,~a) = ((
~rA + ~rB

2
),~a) . (33)

The symbol “�” denotes the averaging fusion of two
observers A and B into a single imaginary observer de-
noted as A � B.

Theorem 4 (Averaging Fusion Rule)
Let ωA and ωB be opinions respectively held by agents A
and B over the same state space Θ = {xj | j = 1, · · · , l}.
Let ωA�B be the opinion such that:

Case I: For uA 6= 0 ∨ uB 6= 0 :










bA�B(xj) =
bA(xj)u

B+bB(xj)u
A

uA+uB

uA�B = 2uAuB

uA+uB

(34)

Case II: For uA = 0 ∧ uB = 0 :






bA�B(xj) = γA bA(xj) + γBbB(xj)

uA�B = 0
(35)

where γA = lim
uA→0
uB→0

uB

uA+uB

and γB = lim
uA→0
uB→0

uA

uA+uB

Then ωA�B is called the averaged opinion of ωA and
ωB, representing the combination of the dependent opin-
ions of A and B. By using the symbol ‘⊕’ to designate
this belief operator, we define ωA�B ≡ ωA⊕ωB .



The proof of Theorem 4 is very similar to that of The-
orem 3 and is omitted here.

It can be verified that the averaging fusion rule is com-
mutative, associative and non-idempotent.

The cumulative rule represents a generalisation of the
consensus rule for dependent opinions defined in [7].

7 Conclusion

Subjective logic represents a generalisation of probabil-
ity calculus and logic under uncertainty. Subjective logic
will always be equivalent to traditional probability cal-
culus when applied to traditional probabilities, and will
be equivalent to binary logic when applied to TRUE and
FALSE statements.

While subjective logic has traditionally been applied
to binary state spaces, we have shown that it can easily be
extended and be applicable to state spaces larger than bi-
nary. The input and output parameters of subjective logic
are beliefs in the form of opinions. We have described
three different equivalent notations of opinions which pro-
vides rich interpretations of opinions. This also allows the
analyst to choose the opinion representation that best suits
a particular situation.
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