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Abstract 
Frequent subtree mining has attracted a great deal of 
interest among the researchers due to its application in a 
wide variety of domains. Some of the domains include bio 
informatics, XML processing, computational linguistics, 
and web usage mining. Despite the advances in frequent 
subtree mining, mining for the entire frequent subtrees is 
infeasible due to the combinatorial explosion of the 
frequent subtrees with the size of the datasets. In order to 
provide a reduced and concise representation without 
information loss, we propose a novel algorithm, 
PCITMiner (Prefix-based Closed Induced Tree Miner). 
PCITMiner adopts the prefix-based pattern growth 
strategy to provide the closed induced frequent subtrees 
efficiently. The empirical analysis reveals that our 
algorithm significantly outperforms the current state of 
the art algorithm, PrefixTreeISpan(Zou, Lu, Zhang, Hu 
and Zhou 2006b).  
 
Keywords:  Frequent subtree mining, closed, induced 
trees, subtrees, frequent mining 

1 Introduction 
Recently, there have been an increasing number of 
researches in frequent subtree mining due to the 
simplicity of the mining process and the potential of its 
application in various domains. Some of the domains 
include bio informatics, XML processing, database 
management, and web usage mining (Tatikonda, 
Parthasarathy and Kur 2006). Additionally, frequent 
subtree mining serves as the kernel function for other data 
mining techniques such as association rules mining, 
classification and clustering.  
A number of algorithms have been proposed to extract 
frequent subtrees efficiently from a given tree dataset. 
However, there exists an immense disadvantage faced by 
these algorithms. For instance, there are often situations 
in which   the   number of    frequent   subtrees   increases 
exponentially with the size of the tree dataset causing   
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difficulties for the end-user to analyse the results (Chi, 
Yang, Xia and Muntz 2004b). 
Due to the overwhelming number of frequent subtrees, 
the frequent subtree mining algorithms fail to provide a 
complete output. In order to provide a feasible solution as 
well as to improve the performance, the frequent subtree 
mining algorithms have focused on generating a concise 
but lossless representation of frequent subtrees. Two such 
popular representations of frequent subtrees are closed 
and maximal representations. One popular technique for 
generating the closed and maximal frequent subtrees is 
the CMTreeMiner (Chi et al. 2004b). However, this 
algorithm employs the “generate-and-test” technique to 
generate the closed frequent subtrees. Popularized by 
apriori-based algorithms(Agrawal, Mannila, Srikant, 
Toivonen and Verkamo 1996), the generate-and-test 
technique basically involves two processes namely the 
candidate generation from the smaller sized frequent 
subtrees and then the testing of the candidate frequent 
subtrees against the tree dataset. Unfortunately, the 
generate-and-test technique is an expensive operation 
when the numerous candidate frequent subtree checks are 
required (Termier, Rousset, Sebag, Ohara, Washio and 
Motoda 2005).  
On the other hand, studies on the frequent itemset and 
sequential mining have clearly demonstrated that the 
pattern-growth technique provides improved performance 
in comparison to the generate-and-test technique to 
generate the frequent itemsets or sub-sequences(Pei 2002; 
Han, Pei and Yan 2005)especially on dense datasets. 
Hence, in this paper we propose an efficient algorithm 
called PCITMiner (Prefix-based Closed Induced Tree 
Miner), which combines the strengths of pattern growth 
technique and the closure property to discover the 
frequent closed induced subtrees. The experimental 
results indicate that our proposed approach outperforms 
the base algorithm PrefixTreeISpan(Zou et al. 2006b) by 
resulting in a reduced number of frequent subtrees and 
with an improved time performance in generating the 
frequent induced subtrees. The experimental results also 
manifests that our proposed approach is a better 
performing algorithm for heavily branched trees. 
To the best of our knowledge, there exists no subtree 
mining algorithm using the pattern growth technique to 
identify the closed frequent induced subtrees. Hence, in 
this paper we develop the novel algorithm PCITMiner 
(Prefix-based Closed Induced Tree Miner) using the 
pattern growth technique for providing the closed 
frequent induced subtrees in a computationally efficient 
manner.  
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The rest of the paper is organized as follows. In Section 
2, we will be presenting the background of the frequent 
subtree mining and the problem definitions. Section 3 
contains a review of the frequent subtree mining 
algorithms. Section 4 details the description of 
PCITMiner, while Section 5 presents a performance 
comparison of running the PCITMiner algorithm against 
an implementation of PrefixTreeISpan algorithm(Zou et 
al. 2006b). PrefixTreeISpan was chosen as the baseline as 
it is the state-of-the-art algorithm in the area of frequent 
subtree mining using the pattern-growth technique. 

2 Background concepts and Problem 
Definition 

Before, explaining about the frequent subtree mining 
process we will look into what is meant by trees and the 
types of trees and subtrees. 
A tree is denoted as T = (V,v0, E, f), where  V is the set of 
nodes; v0 is the root node which does not have any edges 
entering into  it;   E is the set of edges in the tree T;  f is a 
mapping function  f: E → V × V.  
There are different types of trees namely free trees or 
rooted trees, ordered or unordered trees and labelled or 
unlabelled trees. If a given tree T has a root node, v0, 
then T is called as a rooted tree otherwise a free tree. An 
ordered tree is a tree which preserves a pre-defined 
ordering such as left-to-right among the set of nodes. 
Finally, if a tree T has labels for its edges then T is a 
labelled tree. The proposed technique will be applied on 
the labelled rooted ordered trees. 
In the frequent mining of trees, it has been noted that 
often the entire tree will not be frequent rather there is a 
good possibility that parts of the tree are frequent. The 
parts of such trees are referred to as subtrees. A tree T' is 
a subtree of T if there exists a subtree isomorphism from 
T' to T. This implies that there is a one-to-one mapping 
from the vertices of T' to the vertices of T and it preserves 
the vertex labels, edge labels and adjacency then T' is a 
subtree of T. There exist different perspectives about 
subtrees and the two popular types of subtrees are the 
induced and embedded subtrees(Chi, Nijssen, Muntz and 
Kok 2005).  
 
Embedded subtree 
For a tree T with an edge set E and a vertex set V,  a Tree 
T' with a vertex set V' and an edge set E' is an embedded 
subtree of T iff (1) V' V; (2) E' E; (3) the labelling of 
nodes of V' in T' is preserved in T; (4) (v1,v2) 

⊆ ⊆
∈E where 

v1 is the parent of v2 in T'  iff v1 is the parent of v2 in T; 
and (5) for v1,v2 ∈  V', preorder(v1) < preorder(v2) in T' 
iff preorder(v1) < preorder(v2) in T. An embedded 
subtree T' preserves the ancestor-descendent relationships 
among the vertices of the tree, T.  
 
Induced subtree 
For a tree T with an edge set E and a vertex set V, a Tree 
T' with a vertex set V' and an edge set E' is an induced 
subtree of T iff (1) V' V; (2) E' E; and (3) the 
labelling of the nodes of V' and E' in T' is preserved in T. 
An induced subtree T' is a subtree which preserves the 

parent-child relationships among the vertices of the tree, 
T.   

⊆ ⊆

 

 
   
Figure 1: (a) A Tree, T (b) Induced subtree, I (c) 
Embedded subtree, E with their respective pre-order 
string in curly braces   

For a given Tree, T (in Figure 1(a)), Figures 1(b) and 1(c) 
show the induced and embedded subtrees of T. It can be 
seen that the induced subtree, I preserves the parent-child 
relationships, and the embedded subtree, E preserves only 
the ancestor-descendent relationships. Hence, though A is 
not the parent of C, D and F, the embedded subtree, E has 
A as the root node as it is the ancestor of the three nodes 
C, D and F.  
The curly braces in Figure 1 below the Tree, T and the 
subtrees, I and E, are their respective pre-order string 
format (as defined in (Chi et al. 2005)). The pre-order 
string format represents the pre-order traversal of a tree in 
a string like format where every node has a “–1” as its 
end flag. For a rooted ordered tree T with only one node r, 
the pre-order string of T is S(T) = lr –1 where l is the label 
of the root node r. On the other hand, for multiple nodes 
for the rooted ordered tree T, where r is the root node and 
the children nodes of r are r1,...,rk  preserving left to right 
ordering.  Then the pre-order string for T is S(T)= lr S 
(Tr1

) …S (Trk
)-1.  

Having explained the background concepts about trees 
and subtrees, we will now detail the frequent subtree 
mining problem. 

Problem definition for the frequent subtree 
mining 
Given a tree dataset D = {T1, T2, T3,…,Tn} with  n number 
of trees, there exists a subtree T'  T⊆ k preserving the 
relationships (either the parent-child relationship or the 
ancestor-descendent relationship) among the nodes as that 
of the tree Tk. Support(T') (or frequency(T')) is defined as 
the percentage (or the number) of trees in D where T' is a 
subtree. A subtree T' is frequent if its support is not less 
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than a user-defined minimum support threshold. In other 
words,  T' is a frequent subtree of the trees in D such that 
(frequency (T')/|D|) ≥ min_supp, where min_supp is the 
support threshold and |D| is the number of trees in the tree 
dataset D. 
Mining for the frequent induced subtrees from a huge tree 
dataset causes difficulties in analysing the result due to 
the combinatorial explosion in the number of frequent 
subtrees generated at lower support, consequently the 
frequent subtree mining algorithms become intractable. 
Hence, it is essential to control the number of subtrees 
generated. In order to reduce the number of subtrees 
without any information loss, two concise representations 
of frequent subtrees namely maximal and closed were 
proposed(Chi et al. 2004b). 

Problem definition for Closed and Maximal 
subtree 
In a given tree dataset, D = {T1, T2, T3 ,…,Tn}, if there 
exists two frequent subtrees  T' and T'',   T'  is said to be 
maximal of T'' iff ∀  T'  T'', supp(T')  supp(T''); and 
a frequent subtree T' is closed of T'' iff for every T'

⊇ ≤
⊇  T'', 

supp(T') = supp(T''). The latter property is called as 
closure. Based on the definition, it can be said that 

, where FCM ≤≤
M = Number of Maximal frequent subtrees 
C = Number of Closed frequent subtrees  
F =Number of Frequent subtrees  
Let us analyse the two concise representations, maximal 
and closed frequent subtrees. Firstly, we will apply 
closure on frequent subtrees generated from a given tree 
dataset D. Before that, we will define the frequent 
subtrees for a given min_supp of k. Let us assume that the 
frequent subtree mining result set O= {T'1, T'2, T'3} 
contains three frequent subtrees having a support of k, 
k+1 and k respectively. Also consider, T'1 ⊆  T'3, T'2 ⊆  
T'3 and T'3 does not have any superset. Applying the 
definition of the closed frequent subtrees on the frequent 
subtrees result set, O, it is found that T'1 and T'3 have the 
same support and T'3 ⊇  T'1. As a result, T'1 is not closed 
and it can be removed from the output as its superset, T'3, 
includes the information contained in T'1. Also, there 
exists no superset of T’3 therefore T'3 is closed. Hence, T'2 
and T'3 are the two closed frequent subtrees. 
On the contrary, let us check whether T'2 and T'3 are 
maximal or not. We have not included T'1 as the number 
of maximal frequent subtrees is less than the number of 
closed frequent subtrees and hence T'1 cannot be maximal 
as it is not closed.  According to the definition of 
maximal frequent subtrees, T'3 is the maximal frequent 
subtree due to the reason that T'3   T'⊇ 2 . There is only 
one maximal frequent subtree, which is a reduced number 
in comparison to the closed subtrees (that is two). The 
total number of output patterns are less considering the 
maximal frequent subtree representation, however, this 
representation suffers from information loss. Considering 
the above example, the frequent subtree T'2 has a support 
of k+1 which implies that T'2 occurs more than T'3 but, 
based on the final output maximal pattern, it can be 

inferred that the support of T'2 is k as the extra occurrence 
information has not been included in the output. 
Therefore, the comparison of these two concise 
representations reveals that though the maximal frequent 
subtree representation provides reduced pattern set it 
results in information loss. Alternatively, the closed 
frequent subtree representation provides a concise pattern 
set without any information loss as the closure property 
eliminates only the redundant information. This reason is 
attributed for the popularity of closed frequent subtrees 
over the maximal frequent subtrees. 

3 Related Research 
Research on the frequent subtree mining spans from the 
frequent mining on different types of subtrees namely 
induced and embedded using various performance tuning 
techniques to the recent researches focusing on efficiently 
generating concise representations such as closed and 
maximal. 
The seminal work on the embedded subtrees were 
conducted by the TreeMinerV(Zaki 2005), 
TreeMinerH(Zaki 2005) to generate the frequent 
embedded subtrees. Some of the earlier works on the 
frequent induced subtree mining include 
TreeFinder(Termier, Rousset and Sebag 2002), 
Freqt(Asai, Abe, Kawasoe, Arimura, Satamoto and 
Arikawa 2002), uFreqt(Asai, Arimura, Uno and Nakano 
2003), HybridTreeMiner (Chi, Yang and Muntz 2004a), 
Unot(Asai et al. 2003) to generate the frequent induced 
subtrees.  
The frequent subtree mining algorithms can be broadly 
classified into two groups namely (1) generate and test  
and (2) pattern-growth based on the strategy they adopt 
to identify the frequent subtrees. Algorithms such as 
TreeMiner(Zaki 2002) and Freqt(Asai et al. 2002)  fall 
into the category of generate-and-test in which  the 
candidate frequent subtrees are generated from the 
previous step and tested whether they are frequent or not 
using the tree dataset. These algorithms adopt a level-wise 
mining methodology where at each level the size of the 
newly discovered subtree is increased by one by joining 
or extending frequent subtrees generated from the 
previous level. For instance, the (K+1)-Length candidate 
frequent subtrees  are generated by extending or joining 
the frequent K–Length subtrees where K refers to the 
number of levels in the subtree. A candidate (K+1)-
Length frequent subtree is tested against the dataset to 
verify whether the candidate (K+1)-Length subtree is 
frequent or not. If it is frequent, then the (K+1)-Length 
subtree is included in the result set and it is used to 
generate (K+2)-Length subtree and this process is 
repeated until there are no more candidate subtrees that 
could be found.  
The Pattern-growth strategy was adopted by 
Xspanner(Wang, Hong, Pei, Zhou, Wang and Shi 2004), 
Chopper(Wang et al. 2004), PrefixTreeISpan(Zou et al. 
2006b) and PrefixTreeESpan(Zou, Lu, Zhang and Hu 
2006a). These algorithms utilize the strategy of extending 
the discovered subtrees recursively until there are no 
frequent subtrees that could be found. As the extension of 
the discovered subtree is conducted by identifying the 
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extensions from the tree dataset, pattern-growth strategy 
does not involve any generation and testing of candidates. 
Though Xspanner and Chopper are included in the 
pattern-growth category, it adopts the generate-and-test 
techniques to generate candidates and hence it cannot be 
considered as a true candidate of the pattern-growth 
strategy. Experimental results of the frequent subtree 
mining algorithms such as PrefixTreeISpan utilizing the 
pattern-growth strategy shows improved runtime over the 
generate-and-test algorithms such as FreqT(Zou et al. 
2006b).  
With the increase in the dataset size there is an explosion 
in the number of frequent subtrees generated. In order to 
reduce the number of subtrees without any information 
loss, two popular concise representations namely 
maximal and closed were proposed. Some of the 
algorithms which generate these concise representations 
are PathJoin (Xiao and Yao 2003) and CMTreeMiner(Chi 
et al. 2004b). PathJoin (Xiao and Yao 2003) utilize a 
compact data structure called FST-forest to generate only 
the maximal frequent subtrees. PathJoin (Xiao and Yao 
2003) faces a serious disadvantage as it does not utilize 
the maximal subtree generation to improve the 
performance. This is due to the fact that the pruning of 
frequent subtrees is applied as a post-processing step. On 
the other hand, CMTreeMiner(Chi et al. 2004b) was 
proposed to generate both closed and maximal frequent 
structures efficiently.  As indicated by (Termier et al. 
2005) that CMTreeMiner fails to produce satisfactory 
results for trees that have the high branching factor. 
A parallel field to closed frequent subtree mining is the 
closed frequent subsequences. These closed frequent 
subsequences are extracted by mining sequential datasets. 
Some of the popular closed frequent sequence mining 
algorithms are BIDE(Wang and Han 2004) and 
CloSpan(Yan, Han and Afshar 2003). In contrast to 
sequences, trees have branches and hence the techniques 
to employ the closure property for sequential patterns 
could not be applied to trees. The sequences include 
extensions only in either the forward or backward 
direction in the same branch, it is difficult to utilize 
sequential pattern mining techniques to trees as it 
contains several branches. 
It is evident from the previous research works that the 
generate and test algorithms are not an efficient vehicle 
for exploiting the full strength of closure. Additionally 
the existing techniques for itemsets and sequential 
patterns frequent mining cannot be naturally extended to 
deploy the closure property due to the structure of the 
trees. The impressive performance improvement obtained 
for the pattern-growth based techniques, PrefixTreeISpan 
and PrefixTreeESpan, as reported in (Zou et al. 2006b; 
Zou et al. 2006a) over the generate-and-test based 
techniques, FreqT and TreeMiner, inspired us to 
investigate the effect of deploying closure on the pattern-
growth technique.  
In this paper, we will be focusing only on the frequent 
induced subtrees and not on the emedded subtrees. The 
reason for this choice is two fold: Firstly, the application 
of the closure property on the frequent embedded subtrees 
will not reduce the result set significantly as the ancestor-
descendant relationship is maintained in the frequent 

embedded subtrees. Secondly, the application of the 
closure property incurs a huge overhead due to the 
numerous closure checks required. Hence, in this paper 
we will focus only on generating the closed frequent 
induced subtrees using the pattern-growth technique. The 
following section details about the description of our 
proposed method PCITMiner (Prefix-based Closed 
Induced Tree Miner). 

4 PCITMiner - Closure using Prefix Pattern 
Growth 

In this section, we introduce PCITMiner for mining the 
closed induced subtrees from a tree dataset, D.  Before we 
go into the details of PCITMiner, we will briefly 
introduce how the frequent induced subtrees are 
generated using the pattern growth technique.  
 

Tree Id Pre-order string of Trees 

1 ABC-1D-1-1EF-1-1-1 
2 ABC-1-1D-1-1 
3 ABC-1-1C-1-1 
4 ABC-1-1C-1-1 

                  Table 1: Tree dataset 

 We will be using the tree dataset, D provided in Table 1 
as our running example in this paper. The tree dataset, D 
contains Tree Ids and the trees which are represented in 
the pre-order string format as defined in Section 2. The 
Tree Id in Table 1 is the unique id for the trees in D. In 
this tree dataset, D, we have four trees and they contain 
the nodes labelled as A, B, C, D, E and F.  The pictorial 
representation of the tree with Tree Id 1 is illustrated in 
Figure 2(a). This tree dataset is mined for the frequent 
subtrees with a min_supp of 2.  

4.1 The frequent subtree generation 
As we are using the pattern growth technique for the 
frequent subtree generation, we will explain the prefix-
based pattern growth technique where the patterns are 
subtrees. There are three phases involved in the prefix-
based frequent subtree generation and they are: 

1. The 1-Length frequent subtree generation 
2. Projecting the dataset using prefix trees 
3. Mining the projected instances dataset 

4.1.1 The 1-Length frequent subtree generation 
The prefix-based subtree growth technique starts with a 
scan of the tree dataset, D to determine the 1-Length 
frequent subtrees. A 1-Length frequent subtree contains 
only one node and is represented using the following 
format SubX =(<Xa–1>: Supp) where X represents the 
node label, the superscript ‘a’ specifies the position in the 
pre-order traversal of the subpattern SubX, ‘–1’ is used for 
the end flag for the node labelled X, and Supp is the 
support of the subtree. For a K-Length subtree, the 
representation can be obtained by replacing X in the SubX 
with the pre-order traversal and including a superscript 
for the pre-order positions. Hence the subtree 
representation is (<Xa   Yb Zc -1… Kn  -1 -1>: Supp) where 
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X, Y, Z and K are node labels and superscripts a, b, c...n 
are the increasing positions of  nodes in the pre-order 
traversal of the subtree. 
By scanning the tree dataset, D in Table 1 for a given 
min_supp of 2, the four 1-Length frequent subtrees 
generated are (<A1-1>:4), (<B1-1>:4), (<C1-1>:4), (<D1-
1>:2) where A, B, C and D are node labels. The 
superscript ‘1’ on the node labels represents its position 
in the pre-order traversal of each of the subtrees. The ‘–1’ 
in each of the subtrees represent the end flag for the node. 
Finally, the number after a ‘:’(colon) gives support of 
each of the subtrees. The subtrees having node labels A, 
B or C individually has a support of 4 and the subtree 
having node labelled D has a support of 2. 
The tree dataset, D is scanned again and partitioned into 
four subsets using each of the four subtrees serving as the 
prefix-tree. Using the definition of the prefix-tree in (Zou 
et al. 2006b) we will explain what is meant by a prefix-
tree using the first tree in our example dataset D from 
Table 1. 

 
 
 
 
Definition 1 (Prefix-Tree) 
Let there be a tree T with m nodes, T' be a tree with n 
nodes, where n ≤ m. The pre-order scanning of tree T 
from its root until its n-th node results in a tree T'. If the 
tree T' is isomorphic to tree T then T' is called the prefix 
of Tree T (Zou et al. 2006b).  
The Figure 2(b) shows the prefix-trees for the tree T 
illustrated in Figure 2(a). The 6 prefix-trees containing 1, 
2, 3, 4, 5 and 6 nodes are identified for the tree T. 

4.1.2 Projecting the dataset using the prefix 
trees 

The next step in this process involves projecting the 
dataset using the prefix trees generated. Consider the 
example tree dataset, D in Table 1, there are four prefix-
trees having a single node. Using these four 1-node 
prefix-trees, the dataset D is partitioned into four prefix-
projected datasets namely (i) <A1 -1 >:4) (ii) (<B1-1>:4) 
(iii) (<C1-1> :4) and (iv) (<D1-1>:2). To build the prefix-
projected dataset for a given prefix-tree T', every tree in 
D is checked whether it contains the prefix-tree T'. If a 
tree T contains the prefix-tree T', then the projected 
instance of T is included in the T'-prefix-projected 
instances dataset.   
Definition 2 (The Prefix projected instance) 
Consider a tree dataset D = {T1, T2, T3,…,Tn} and a prefix 
subtree T' with n nodes. If there exists a tree Tx ∈  D with 
m nodes which contains the prefix-tree T', then the T'-
prefix projected instance of Tx is the pre-order scanning of 
Tx from n+1 node to m.  
 

Tree  Id Pre-order string of Trees 

1 BC-1D-1 -1 

2 BC-1-1 
D-1 

3 
3 

BC-1-1 
C-1 

4 
4 

BC-1-1 
C-1 

Table 2: <A1-1> projected instances dataset 

Tree Id Pre-order string of Trees 

1 C-1D-1 
2 C-1 
3 C-1 
4 C-1 

Table 3: <B1-1> projected instances dataset 

Tree Id Pre-order string of Trees 

1 C-1 
D-1 

2 C-1 
3 C-1 
4 C-1 (b) 

Figure 2:  Prefix Trees of Tree T (in (a)) Table 4: <A1B2-1-1> projected instances dataset 

Tree Id Pre-order string of Trees 

1 C-1 

2 C-1 

Table 5: <A1B2-1C3-1-1> projected instances dataset 

Tables 2, 3, 4, and 5 provide the projected instances 
dataset of the prefix-trees <A1-1>, <B1-1>, <A1B2-1-1>, 
<A1B2-1C3-1-1> respectively.  To improve the efficiency, 
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the projected instances from the infrequent Length-1 
subtrees are eliminated. It can be noted in Table 2 that the 
tree with Tree Id1 does not contain the nodes E and F as 
they are infrequent and hence they were eliminated in 
projection. The generated projected instances are mined 
using the technique detailed in the following subsection. 

4.1.3 Mining the projected instances dataset 
As a next step in the prefix-pattern growth, each of the 
projected instances dataset is mined to identify the 
Growth Element (GE) (Zou et al. 2006b), which is 
defined as follows. 
 
Definition 3: Growth Element (GE) 
Given two trees T' and T with m and m+1 nodes 
respectively, where T' is the prefix of T. If there occurs a 
node n in Tree T but not in T' then the node n is the 
Growth Element (GE) of T' w.r.to T. 
If there is any frequent GE then the corresponding 
projection is partitioned and mined recursively until there 
are no more frequent GEs. For instance, for the 
partitioned dataset <A1 -1 > provided in Table 2, the GEs 
are nodes labelled B, C and D as they occur as first nodes 
in the projected instance. The support of GEs, B, C and D 
is 4, 2 and 1 respectively in the <A1 –1 > prefix-projected 
dataset. Hence only B and C are frequent GEs. Since the 
mining process outputs the induced subtrees, the position 
of nodes is important in counting the support. For 
example, the node labelled D occurs twice in the dataset 
in Table 2 but it occurs in different positions that is why it 
is not frequent. In other words, the subtrees should have 
parent-child relationship.  In Tree Id 1, the parent of D is 
B and in the second tree (Tree Id 2), the parent of D is A. 
Hence, the support of D is 1 in the <A1 –1 > prefix-
projected dataset. Using the two GEs, B and C, two 
separate projections are constructed and mined for the 
frequent subtrees. Tables 4 and 5 give the projection for 
<A1B2 –1 –1 > and < A1B2-1C3-1-1> respectively. 

4.2 Closure  
So far we have seen how the frequent subtrees are 
generated using the prefix-pattern growth technique. 
Table 6 lists the frequent subtrees using this approach. It 
can be seen from Table 6 that subtrees such as (<A1-1 
>:4), (<B1-1>:4), (<C1-1>:4), (<A1B2-1 –1>:4), (<B1C 2-
1-1>:4) are subsets of (<A1B2C3-1-1-1>: 4) with the same 
support. Hence, instead of generating all the frequent 
subtrees, only a superset of the frequent subtrees with the 
same support can be represented as output. By doing so, 
the number of the frequent induced subtrees is reduced by 
eliminating only the redundant frequent subtrees and 
hence there is no information loss. This property of 
reducing the redundant frequent subtrees is called as the 
closure property as discussed in Section 2. From Table 6, 
the subtree (<A1C2-1-1>: 2)  (<A⊆ 1B2C3-1 -1C4-1-1>: 
2), and hence using the closure property the subtree 
(<A1C2-1-1>: 2) can be safely removed from the result 
set. As the node labelled D is not included in other closed 
frequent induced subtrees, subtree (<D1-1>:2) is included 
in the output.  
 

Number of nodes Frequent Subtrees 

1 
 

(<A1-1 >:4),  
(<B1-1>:4), 
 (<C1-1>:4), 
 (<D1-1>:2) 

2 (<A1B2-1 –1>:4),  
(<B1C 2-1-1>:4), 
(<A1C2-1-1>:2) 

3 (<A1B2C3-1-1-1>: 4) 
(<A1B2-1C3-1-1>: 2) 

4 (<A1B2C3-1 -1C4-1-1>: 2) 

Table 6: Frequent induced subtrees from prefix-
pattern growth algorithm 

 Table 7 summarizes the closed frequent induced subtrees 
with only 3 closed frequent induced subtrees in 
comparison to 10 frequent induced subtrees (as shown in 
Table 6). On comparing Tables 6 and 7 it is interesting to 
note that closure has reduced the number of frequent 
induced subtrees by three-fold. 

 
Number of nodes Frequent Subtrees 
1 (<D1-1>:2) 
3 (<A1B2C3-1-1-1>: 4) 
4 (<A1B2C3-1 -1C4-1-1>: 2) 

   Table 7: Closed frequent induced subtrees  

Now the challenge is to impose closure on the frequent 
induced subtrees using the prefix-based subtree mining. A 
naïve approach to impose closure is to first generate all 
the frequent induced subtrees and then eliminate the 
subtrees based on their support by checking the closure 
property, as shown in Tables 6 and 7. It is an expensive 
task when there are a large number of frequent subtrees 
generated and hence, it is essential to identify an efficient 
method, which provides the closed result set. There are a 
number of approaches proposed in the frequent itemset 
and sequential mining (Wang and Han 2004; Yan et al. 
2003). Unlike, the itemset or sequential mining, trees 
have branches and hence we cannot apply closure using 
these techniques. Hence, we propose two methods to 
apply closure efficiently and they are: 

1. Search Space reduction using the backward scan 
2. Bi-directional Extension Closure checking 

4.2.1. Search space reduction using the backward 
scan 
This technique does a backward scan to reduce the search 
space using the following lemma: 
 
Lemma 1: 
Let there be two 1-length frequent subtrees Lk and Lk' in a 
given tree dataset, D. If Lk' is the parent node of Lk in all 
trees in D then the projection of Lk is stopped as the 
parent node Lk' will include all the subtrees generated 
using the prefix-tree Lk.  
Using the running example tree dataset D in Table 1, we 
will explain, how to reduce the search space using the 
backward scan technique. This technique is applied after 
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the first scan of the dataset where the 1-Length frequent 
subtrees are known. The 1-Length frequent induced 
subtrees are (<A1-1 >:4), (<B1-1>:4), (<C1-1>:4), (<D1-
1>:2). As the node labelled A is a root node in all the 
trees it is not checked for its parents. Hence, this 
technique is applied for the subtrees  (<B1-1>:4), (<C1-
1>:4) and (<D1-1>:2). 
The checking of the parent node of <B1-1> in each of the 
trees in the tree dataset D reveals that the parent node is 
<A1-1> in all the trees. This information state that the 
parent node of <B1-1>  (i.e. <A1-1>) and <B1-1> have the 
same support. Consequently, <B1-1> can be pruned from 
growing since the projections for the parent node <A1-1> 
will include the projections for <B1-1>. By doing so, the 
number of subtrees and the number of projections 
required are reduced. Due to the reduced search space, 
the efficiency of the algorithm is improved. 

4.2.2. The Bi-directional Extension Closure 
checking 
After reducing the search space using the backward scan, 
there occurs some of the subtrees which are not closed. In 
order to check the closeness of the generated frequent 
subtrees, the bi-directional extension closure checking is 
performed.  
According to the definition of a frequent closed induced 
subtree, a prefix-tree, Tp=e1,e2,…en  is non-closed if there 
exist at least one extension event, e' which can be used to 
create a prefix-tree Tp' having the same support as that of 
Tp.  The prefix-tree Tp can be extended in the following 
ways: 

1. Predecessor node extension as in Tp' = e1,e2 
,…,en e' 

2. Internal node extension as in Tp'= e1,e2 e',…,en 
3. Successor node extension as in Tp'= e1,e2,… e',en 

The bi-directional extension closure checking involves 
two events namely the forward-extension event and the 
backward-extension event. With reference to the event n 
given by en, in the situation 1, e' occurs after the event en 
and hence it is a forward extension event. On the other 
hand, in the situation 2 and 3, e' occurs before the event 
en and hence it is a backward extension event. 
Theorem 1: 
If there exists neither the forward-extension event nor the 
backward extension event in regard to a prefix-tree Tp' 
then Tp' must be a closed frequent subtree. 
A naive approach to check whether there occurs any 
forward-extension closure checking is enumerating all the 
frequent sub-trees and then checking their support. 
However, this is an expensive operation due to very large 
number of checks required. The following lemma is 
utilised to check for the forward-extension event 
efficiently. 
Lemma 2: Forward-extension event 
For a prefix tree Tp', its complete set of forward-extension 
events is equivalent to the set of its frequent GEs whose 
supports are equal to the support of Tp'. If any of the GE 
for given projection has same support as Tp' then Tp' is 
not closed.  
Using the running example provided in Table 1, the GE is 
C for the prefix-tree <A1B2-1-1>. The support of <A1B2-

1-1> is 4 and the support of the GE C is 4 and hence 
<A1B2C3-1-1-1> is not closed. On the other hand, 
consider the prefix-tree <A1B2C3-1-1-1> having the GE 
C. The support of <A1B2C3-1-1-1> is 4 and the support of 
the GE C is 2 and hence <A1B2C3-1-1-1> may be closed. 
We say <A1B2C3-1-1-1> may be closed, as we need to 
check for closure using the backward extension event to 
confirm the closure. This forward event checking is not a 
computational expensive step and hence it is used for 
reducing the number of closed frequent induced subtrees. 
In order to check for the backward extension event, the 
following lemma is used. 
Lemma 3: Backward-extension event 
If there exists a prefix-tree Tp with m nodes and a prefix-
tree Tp’ with the common m nodes and an additional node 
b having the same support as that of Tp then Tp is not 
closed and b is a backward extension event w.r.to Tp 

There are two types of backward-extension events:  
1. The parent extension of GE 
2. The sibling extension of GE 

The backward extension event to GE is the extension of 
the parent of GE and hence it is handled by the backward 
scan technique. On the other hand, the backward 
extension to sibling extension is the extension of sibling 
nodes of GEs. For instance, in the prefix-tree <A1B2-1C3-
1-1>, the sibling extension event is the node labelled C, 
which is an extension of the node <B2-1> and it is in a 
different branch resulting in <A1B2C3-1C4-1-1-1>. Unlike 
the sequential mining, due to the existence of branches in 
trees, there occurs the sibling extension event in a 
different branch from <A1B2-1C3-1-1>. Hence, it requires 
the closure checking across several branches. 
In order to efficiently check for closure for backward 
extension events across several branches, a technique 
called “maintain-and-test” is deployed to check for 
closure. A naïve approach to check for closure is to check 
for all the backward extension events having the same 
support. However, it is an expensive operation and hence 
to reduce the number of checks, a parameter, which is the 
sum of the tree ids, is included to check for closure. To 
apply this technique, we first check whether for a given 
subtree T', there exists a backward extension to edge E 
resulting in T'' having the same support and sum of tree 
ids as T'. If it exists then they are checked for closure. 
Figures 3 and 4 outline the algorithm PCITMiner and the 
subroutine Fre respectively. PCITMiner starts with the 
scan of the database and identifies the 1-Length frequent 
subtrees b. After finding the 1-Length frequent subtrees, it 
employs the backScan property by checking the support 
of the predecessor of each b and the support of each b. If 
they are same, then the projection for b could be pruned, 
as the predecessor for b will include b in its output. 
Otherwise, using the recursive subroutine Fre outlined in 
Figure 4, recursively identifies all the occurrences of b in 
the dataset D to construct <b-1> projected database by 
collecting all the corresponding project-instances in D. 
The subroutine Fre checks for the forward extension 
event and the backward extension event against the 
projected database. This subroutine is recursively called 
until there are no more frequent GEs to form the 
projected dataset. 
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Algorithm PCITMiner 
 
Input: A tree dataset D, minimum support threshold   
(min_supp) 
Output: All closed induced frequent subtrees 
 
Methods: 
1.  Scan D and find all 1-length frequent label b. 
2.  For each frequent label b 
   2.1 If the supp (predecessor of b) = = supp(b) then 
         Do not project the dataset.  
   2.2 else, 
       2.2.1 Find all occurrences of b in dataset D, and 
construct <b−1>-projected dataset (i.e. ProDB(D,<b 
− 1 >)) through collecting all corresponding Project- 
Instances in D. 
       2.2.2  Call Fre (< b − 1 >, 1, ProDB(D,< b − 1 
> ), min sup, supp(b)) to mine the projected dataset 
and obtain frequent induced subtrees until no more 
subtrees that could be found. 

Figure 3: Algorithm PCITMiner 

Figure 4: Recursive function Fre 

5 Experimental evaluation 
All the experiments were conducted on the Intel Pentium-
4 PC with 2.39GHz processor and 1GB main memory, 
running Windows XP. Both the algorithms 
PrefixTreeISpan and PCITMiner were written in C++ 
with the STL library support and compiled with the 
Microsoft Visual C++ .Net compiler.  The experiments 
were conducted on the synthetic datasets generated.  
The Zaki’s treegenerator1 has been often used to generate 
the synthetic datasets for benchmarking the tree mining 
algorithms. Using the Zaki’s tree generator there are two 
datasets generated namely the F5 and D10 datasets with 
the parameters as indicated in Table 8 where “f” 
represents the fan out factor, “d” the depth of the tree, “n” 
the number of unique labels for the trees, “m” the total 
number of nodes in a parent tree and “t” indicates the 
number of trees.   
             

Name Description 

F5 -f 5 -d  10 -n 100 -m 100  -t 100000 

D10 -f  10 -d  10 –n 100 -m 100 -t 100000 

Function Fre (Tp, n, ProDB(D,  Tp), 
min_supp,prepat_supp) 

 
Input: A prefix-tree Tp, the length of Tp(n),  <Tp>-

projected dataset(ProDB(D,Tp)), the 
minimum support threshold (min_supp), the 
support of the previous pattern used to 
generate this projected dataset (prepat_supp) 

Output: C:  Closed frequent induced subtrees 
 
Methods: 
1.  Scan ProDB(D,  Tp ) once to find all the 1-length 

frequent GEs(GE0, … ,k) according to Lemma 1. 
2.  output=true. 
3. Count the support of all GEs. 
4.  If  supp(GE0 || GE1,…,|| GEk) == supp( Tp ) then  
        Do not output the subtree, output = false. 
5. For each GEb  
     5.1 if GEb is frequent then 

5.1.1 Extend Tp with b to form a subtree pattern  
Tp'. 

            5.1.2  if (output) then 
                         Insert Tp' into C. 
      5.2  else  
            5.2.1 Check Tp' for occurrence of any of its 

subset with the same support and sum of 
tree ids in the output C. If there exists any 
subset for Tp'  then remove the subset of 
Tp' and insert Tp' into C. 

6.  Find all occurrences of GEb in ProDB(D,  Tp), 
construct the <Tp'>-projected database (i.e. 
ProDB(D, Tp' )) through collecting all 
corresponding Project-Instances in ProDB(D,  Tp). 

7.  Call Fre( Tp' , n + 1, ProDB(D,  Tp' ), min_supp 
prepat_supp)  

Table 8: Datasets and their parameters 

Studies have indicated that the performance of some of 
the existing closed frequent subtree mining algorithm 
degrades for datasets having a high branching factor 
(Termier et al. 2005). To evaluate the performance of 
PCITMiner with high branched trees, two datasets F5 and 
D10 with varied branches, fan out factors of 5 and 10 
respectively, are generated.  
The proposed algorithm, PCITMiner is compared with 
the prefix-based pattern-growth algorithm 
PrefixTreeISpan (Zou et al. 2006b) to show the benefit of 
closure. The output of the PrefixTreeISpan algorithm is 
frequent induced subtrees. Experimental studies on 
PrefixTreeISpan (Zou et al. 2006b) with FreqT (the 
generate-and-test based frequent subtree mining method) 
already has shown that PrefixTreeISpan outperforms 
FreqT (Zou et al. 2006b). So in this paper, we do not 
conduct any empirical analysis with the generate-and-test 
method. As the objective of this study is to apply closure 
on the pattern growth algorithms hence CMTreeMiner is 
also not used as a benchmark as the latter algorithm is 
based on the candidate “generate-and-test” approach. 
Figures 5 and 6 presents the experimental results on the 
number of subtrees and the run time in seconds for 
PCITMiner and PrefixTreeISpan on the F5 dataset. 
Figure 5 reveals that the PCITMiner reduces the number 
of subtrees by about three-fold in comparison to 
PrefixTreeISpan. The benefit is larger for the relatively 
lower support-threshold (where a large number of 
subtrees are generated).  

                                                 
1 http://www.cs.rpi.edu/~zaki/software 
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Figure 6 reveals that with the reduced number of subtrees, 
PCITMiner mines the frequent subtrees faster than the 
base algorithm PrefixTreeISpan. The improvement 
obtained in F5 dataset can be attributed to the number of 
back scan pruning. Figure 7 shows the increase in the 
number of projections pruned with the reduced support 
threshold.  
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Figures 8 and 9 presents the experimental results on the 
run time in seconds and the number of subtrees for 
PCITMiner and PrefixTreeISpan on D10 dataset 
respectively. The PCITMiner achieves improved 
performance over PrefixTreeISpan by reducing the 
number of subtrees by about seven-fold at lower support 
values.  
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Figure 5: Number of subtrees of PCITMiner
and PrefixTreeISpan against various min_supp
on F5 dataset 

 
 
 

Figure 8: Run times PCITMiner against
PrefixTreeISpan against various min_supp on
D10 dataset

The comparison of experimental results of the F5 and 
D10 datasets clearly indicates that PCITMiner remains 
unaffected with high branched trees (large fan out factor). 
PCITMiner shows the improved performance in run time 
as well as reducing the number of subtrees efficiently in 
both the data sets. Moreover, the saving in terms of the 
number of output patterns is more apparent with the high-
branched trees. Figure 6: Run times of PCITMiner against

PrefixTreeISpan against various min_supp on F5
dataset On D10 dataset
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 Figure 9: Number of subtrees of PCITMiner and 

PrefixTreeISpan against various min_supp on 
D10 dataset

 
 

6 Conclusions and Future work 
In this paper, we have proposed PCITMiner for 
generating the closed frequent induced subtrees using the 
pattern-growth technique. The experimental results 
clearly indicate that PCITMiner performs faster and 
produces reduced number of frequent subtrees without 
any information loss. Contrary to the existing closed 
frequent subtree mining algorithms the proposed 

Figure 7: Number of projections of PCITMiner
against PrefixTreeISpan against various
min_supp on F5 dataset 
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algorithm PCITMiner performs efficiently for high 
branched trees. We would like to apply this closure 
technique for embedded subtrees and to graph-based 
frequent mining as a future work. 
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