

QUT Digital Repository:
http://eprints.qut.edu.au/

Kutty, Sangeetha and Nayak, Richi and Li, Yuefeng (2007) PCITMiner- Prefix-
based Closed Induced Tree Miner for finding closed induced frequent subtrees . In
Christen, P. and Kennedy, P. J. and Li, J. and Kolyshkina, I. and Williams, G. J.,
Eds. Proceedings Sixth Australasian Data Mining Conference (AusDM 2007)
CRPIT, 70, pages pp. 151-160, Gold Coast.

 © Copyright 2007 Australian Computer Society
Copyright © 2007, Australian Computer Society, Inc. This paper appeared at the
Sixth Australasian Data Mining Conference (AusDM 2007), Gold Coast,
Australia. Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 70. Peter Christen, Paul Kennedy, Jiuyong Li, Inna Kolyshkina and
Graham Williams, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10883294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PCITMiner – Prefix-based Closed Induced Tree Miner for finding
closed induced frequent subtrees

Sangeetha Kutty Richi Nayak Yuefeng Li
 Faculty of Information Technology

Queensland University of Technology
GPO Box 2434, Brisbane Qld 4001, Australia
{kutty,r.nayak,y2.li}@qut.edu.au

Abstract
Frequent subtree mining has attracted a great deal of
interest among the researchers due to its application in a
wide variety of domains. Some of the domains include bio
informatics, XML processing, computational linguistics,
and web usage mining. Despite the advances in frequent
subtree mining, mining for the entire frequent subtrees is
infeasible due to the combinatorial explosion of the
frequent subtrees with the size of the datasets. In order to
provide a reduced and concise representation without
information loss, we propose a novel algorithm,
PCITMiner (Prefix-based Closed Induced Tree Miner).
PCITMiner adopts the prefix-based pattern growth
strategy to provide the closed induced frequent subtrees
efficiently. The empirical analysis reveals that our
algorithm significantly outperforms the current state of
the art algorithm, PrefixTreeISpan(Zou, Lu, Zhang, Hu
and Zhou 2006b).

Keywords: Frequent subtree mining, closed, induced
trees, subtrees, frequent mining

1 Introduction
Recently, there have been an increasing number of
researches in frequent subtree mining due to the
simplicity of the mining process and the potential of its
application in various domains. Some of the domains
include bio informatics, XML processing, database
management, and web usage mining (Tatikonda,
Parthasarathy and Kur 2006). Additionally, frequent
subtree mining serves as the kernel function for other data
mining techniques such as association rules mining,
classification and clustering.
A number of algorithms have been proposed to extract
frequent subtrees efficiently from a given tree dataset.
However, there exists an immense disadvantage faced by
these algorithms. For instance, there are often situations
in which the number of frequent subtrees increases
exponentially with the size of the tree dataset causing

 Copyright © 2007, Australian Computer Society, Inc. This
paper appeared at the Sixth Australasian Data Mining
Conference (AusDM 2007), Gold Coast, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 70. Peter Christen, Paul Kennedy,
Jiuyong Li, Inna Kolyshkina and Graham Williams, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

difficulties for the end-user to analyse the results (Chi,
Yang, Xia and Muntz 2004b).
Due to the overwhelming number of frequent subtrees,
the frequent subtree mining algorithms fail to provide a
complete output. In order to provide a feasible solution as
well as to improve the performance, the frequent subtree
mining algorithms have focused on generating a concise
but lossless representation of frequent subtrees. Two such
popular representations of frequent subtrees are closed
and maximal representations. One popular technique for
generating the closed and maximal frequent subtrees is
the CMTreeMiner (Chi et al. 2004b). However, this
algorithm employs the “generate-and-test” technique to
generate the closed frequent subtrees. Popularized by
apriori-based algorithms(Agrawal, Mannila, Srikant,
Toivonen and Verkamo 1996), the generate-and-test
technique basically involves two processes namely the
candidate generation from the smaller sized frequent
subtrees and then the testing of the candidate frequent
subtrees against the tree dataset. Unfortunately, the
generate-and-test technique is an expensive operation
when the numerous candidate frequent subtree checks are
required (Termier, Rousset, Sebag, Ohara, Washio and
Motoda 2005).
On the other hand, studies on the frequent itemset and
sequential mining have clearly demonstrated that the
pattern-growth technique provides improved performance
in comparison to the generate-and-test technique to
generate the frequent itemsets or sub-sequences(Pei 2002;
Han, Pei and Yan 2005)especially on dense datasets.
Hence, in this paper we propose an efficient algorithm
called PCITMiner (Prefix-based Closed Induced Tree
Miner), which combines the strengths of pattern growth
technique and the closure property to discover the
frequent closed induced subtrees. The experimental
results indicate that our proposed approach outperforms
the base algorithm PrefixTreeISpan(Zou et al. 2006b) by
resulting in a reduced number of frequent subtrees and
with an improved time performance in generating the
frequent induced subtrees. The experimental results also
manifests that our proposed approach is a better
performing algorithm for heavily branched trees.
To the best of our knowledge, there exists no subtree
mining algorithm using the pattern growth technique to
identify the closed frequent induced subtrees. Hence, in
this paper we develop the novel algorithm PCITMiner
(Prefix-based Closed Induced Tree Miner) using the
pattern growth technique for providing the closed
frequent induced subtrees in a computationally efficient
manner.

147

The rest of the paper is organized as follows. In Section
2, we will be presenting the background of the frequent
subtree mining and the problem definitions. Section 3
contains a review of the frequent subtree mining
algorithms. Section 4 details the description of
PCITMiner, while Section 5 presents a performance
comparison of running the PCITMiner algorithm against
an implementation of PrefixTreeISpan algorithm(Zou et
al. 2006b). PrefixTreeISpan was chosen as the baseline as
it is the state-of-the-art algorithm in the area of frequent
subtree mining using the pattern-growth technique.

2 Background concepts and Problem
Definition

Before, explaining about the frequent subtree mining
process we will look into what is meant by trees and the
types of trees and subtrees.
A tree is denoted as T = (V,v0, E, f), where V is the set of
nodes; v0 is the root node which does not have any edges
entering into it; E is the set of edges in the tree T; f is a
mapping function f: E → V × V.
There are different types of trees namely free trees or
rooted trees, ordered or unordered trees and labelled or
unlabelled trees. If a given tree T has a root node, v0,
then T is called as a rooted tree otherwise a free tree. An
ordered tree is a tree which preserves a pre-defined
ordering such as left-to-right among the set of nodes.
Finally, if a tree T has labels for its edges then T is a
labelled tree. The proposed technique will be applied on
the labelled rooted ordered trees.
In the frequent mining of trees, it has been noted that
often the entire tree will not be frequent rather there is a
good possibility that parts of the tree are frequent. The
parts of such trees are referred to as subtrees. A tree T' is
a subtree of T if there exists a subtree isomorphism from
T' to T. This implies that there is a one-to-one mapping
from the vertices of T' to the vertices of T and it preserves
the vertex labels, edge labels and adjacency then T' is a
subtree of T. There exist different perspectives about
subtrees and the two popular types of subtrees are the
induced and embedded subtrees(Chi, Nijssen, Muntz and
Kok 2005).

Embedded subtree
For a tree T with an edge set E and a vertex set V, a Tree
T' with a vertex set V' and an edge set E' is an embedded
subtree of T iff (1) V' V; (2) E' E; (3) the labelling of
nodes of V' in T' is preserved in T; (4) (v1,v2)

⊆ ⊆
∈E where

v1 is the parent of v2 in T' iff v1 is the parent of v2 in T;
and (5) for v1,v2 ∈ V', preorder(v1) < preorder(v2) in T'
iff preorder(v1) < preorder(v2) in T. An embedded
subtree T' preserves the ancestor-descendent relationships
among the vertices of the tree, T.

Induced subtree
For a tree T with an edge set E and a vertex set V, a Tree
T' with a vertex set V' and an edge set E' is an induced
subtree of T iff (1) V' V; (2) E' E; and (3) the
labelling of the nodes of V' and E' in T' is preserved in T.
An induced subtree T' is a subtree which preserves the

parent-child relationships among the vertices of the tree,
T.

⊆ ⊆

Figure 1: (a) A Tree, T (b) Induced subtree, I (c)
Embedded subtree, E with their respective pre-order
string in curly braces

For a given Tree, T (in Figure 1(a)), Figures 1(b) and 1(c)
show the induced and embedded subtrees of T. It can be
seen that the induced subtree, I preserves the parent-child
relationships, and the embedded subtree, E preserves only
the ancestor-descendent relationships. Hence, though A is
not the parent of C, D and F, the embedded subtree, E has
A as the root node as it is the ancestor of the three nodes
C, D and F.
The curly braces in Figure 1 below the Tree, T and the
subtrees, I and E, are their respective pre-order string
format (as defined in (Chi et al. 2005)). The pre-order
string format represents the pre-order traversal of a tree in
a string like format where every node has a “–1” as its
end flag. For a rooted ordered tree T with only one node r,
the pre-order string of T is S(T) = lr –1 where l is the label
of the root node r. On the other hand, for multiple nodes
for the rooted ordered tree T, where r is the root node and
the children nodes of r are r1,...,rk preserving left to right
ordering. Then the pre-order string for T is S(T)= lr S
(Tr1

) …S (Trk
)-1.

Having explained the background concepts about trees
and subtrees, we will now detail the frequent subtree
mining problem.

Problem definition for the frequent subtree
mining
Given a tree dataset D = {T1, T2, T3,…,Tn} with n number
of trees, there exists a subtree T' T⊆ k preserving the
relationships (either the parent-child relationship or the
ancestor-descendent relationship) among the nodes as that
of the tree Tk. Support(T') (or frequency(T')) is defined as
the percentage (or the number) of trees in D where T' is a
subtree. A subtree T' is frequent if its support is not less

148

than a user-defined minimum support threshold. In other
words, T' is a frequent subtree of the trees in D such that
(frequency (T')/|D|) ≥ min_supp, where min_supp is the
support threshold and |D| is the number of trees in the tree
dataset D.
Mining for the frequent induced subtrees from a huge tree
dataset causes difficulties in analysing the result due to
the combinatorial explosion in the number of frequent
subtrees generated at lower support, consequently the
frequent subtree mining algorithms become intractable.
Hence, it is essential to control the number of subtrees
generated. In order to reduce the number of subtrees
without any information loss, two concise representations
of frequent subtrees namely maximal and closed were
proposed(Chi et al. 2004b).

Problem definition for Closed and Maximal
subtree
In a given tree dataset, D = {T1, T2, T3 ,…,Tn}, if there
exists two frequent subtrees T' and T'', T' is said to be
maximal of T'' iff ∀ T' T'', supp(T') supp(T''); and
a frequent subtree T' is closed of T'' iff for every T'

⊇ ≤
⊇ T'',

supp(T') = supp(T''). The latter property is called as
closure. Based on the definition, it can be said that

, where FCM ≤≤
M = Number of Maximal frequent subtrees
C = Number of Closed frequent subtrees
F =Number of Frequent subtrees
Let us analyse the two concise representations, maximal
and closed frequent subtrees. Firstly, we will apply
closure on frequent subtrees generated from a given tree
dataset D. Before that, we will define the frequent
subtrees for a given min_supp of k. Let us assume that the
frequent subtree mining result set O= {T'1, T'2, T'3}
contains three frequent subtrees having a support of k,
k+1 and k respectively. Also consider, T'1 ⊆ T'3, T'2 ⊆
T'3 and T'3 does not have any superset. Applying the
definition of the closed frequent subtrees on the frequent
subtrees result set, O, it is found that T'1 and T'3 have the
same support and T'3 ⊇ T'1. As a result, T'1 is not closed
and it can be removed from the output as its superset, T'3,
includes the information contained in T'1. Also, there
exists no superset of T’3 therefore T'3 is closed. Hence, T'2
and T'3 are the two closed frequent subtrees.
On the contrary, let us check whether T'2 and T'3 are
maximal or not. We have not included T'1 as the number
of maximal frequent subtrees is less than the number of
closed frequent subtrees and hence T'1 cannot be maximal
as it is not closed. According to the definition of
maximal frequent subtrees, T'3 is the maximal frequent
subtree due to the reason that T'3 T'⊇ 2 . There is only
one maximal frequent subtree, which is a reduced number
in comparison to the closed subtrees (that is two). The
total number of output patterns are less considering the
maximal frequent subtree representation, however, this
representation suffers from information loss. Considering
the above example, the frequent subtree T'2 has a support
of k+1 which implies that T'2 occurs more than T'3 but,
based on the final output maximal pattern, it can be

inferred that the support of T'2 is k as the extra occurrence
information has not been included in the output.
Therefore, the comparison of these two concise
representations reveals that though the maximal frequent
subtree representation provides reduced pattern set it
results in information loss. Alternatively, the closed
frequent subtree representation provides a concise pattern
set without any information loss as the closure property
eliminates only the redundant information. This reason is
attributed for the popularity of closed frequent subtrees
over the maximal frequent subtrees.

3 Related Research
Research on the frequent subtree mining spans from the
frequent mining on different types of subtrees namely
induced and embedded using various performance tuning
techniques to the recent researches focusing on efficiently
generating concise representations such as closed and
maximal.
The seminal work on the embedded subtrees were
conducted by the TreeMinerV(Zaki 2005),
TreeMinerH(Zaki 2005) to generate the frequent
embedded subtrees. Some of the earlier works on the
frequent induced subtree mining include
TreeFinder(Termier, Rousset and Sebag 2002),
Freqt(Asai, Abe, Kawasoe, Arimura, Satamoto and
Arikawa 2002), uFreqt(Asai, Arimura, Uno and Nakano
2003), HybridTreeMiner (Chi, Yang and Muntz 2004a),
Unot(Asai et al. 2003) to generate the frequent induced
subtrees.
The frequent subtree mining algorithms can be broadly
classified into two groups namely (1) generate and test
and (2) pattern-growth based on the strategy they adopt
to identify the frequent subtrees. Algorithms such as
TreeMiner(Zaki 2002) and Freqt(Asai et al. 2002) fall
into the category of generate-and-test in which the
candidate frequent subtrees are generated from the
previous step and tested whether they are frequent or not
using the tree dataset. These algorithms adopt a level-wise
mining methodology where at each level the size of the
newly discovered subtree is increased by one by joining
or extending frequent subtrees generated from the
previous level. For instance, the (K+1)-Length candidate
frequent subtrees are generated by extending or joining
the frequent K–Length subtrees where K refers to the
number of levels in the subtree. A candidate (K+1)-
Length frequent subtree is tested against the dataset to
verify whether the candidate (K+1)-Length subtree is
frequent or not. If it is frequent, then the (K+1)-Length
subtree is included in the result set and it is used to
generate (K+2)-Length subtree and this process is
repeated until there are no more candidate subtrees that
could be found.
The Pattern-growth strategy was adopted by
Xspanner(Wang, Hong, Pei, Zhou, Wang and Shi 2004),
Chopper(Wang et al. 2004), PrefixTreeISpan(Zou et al.
2006b) and PrefixTreeESpan(Zou, Lu, Zhang and Hu
2006a). These algorithms utilize the strategy of extending
the discovered subtrees recursively until there are no
frequent subtrees that could be found. As the extension of
the discovered subtree is conducted by identifying the

149

extensions from the tree dataset, pattern-growth strategy
does not involve any generation and testing of candidates.
Though Xspanner and Chopper are included in the
pattern-growth category, it adopts the generate-and-test
techniques to generate candidates and hence it cannot be
considered as a true candidate of the pattern-growth
strategy. Experimental results of the frequent subtree
mining algorithms such as PrefixTreeISpan utilizing the
pattern-growth strategy shows improved runtime over the
generate-and-test algorithms such as FreqT(Zou et al.
2006b).
With the increase in the dataset size there is an explosion
in the number of frequent subtrees generated. In order to
reduce the number of subtrees without any information
loss, two popular concise representations namely
maximal and closed were proposed. Some of the
algorithms which generate these concise representations
are PathJoin (Xiao and Yao 2003) and CMTreeMiner(Chi
et al. 2004b). PathJoin (Xiao and Yao 2003) utilize a
compact data structure called FST-forest to generate only
the maximal frequent subtrees. PathJoin (Xiao and Yao
2003) faces a serious disadvantage as it does not utilize
the maximal subtree generation to improve the
performance. This is due to the fact that the pruning of
frequent subtrees is applied as a post-processing step. On
the other hand, CMTreeMiner(Chi et al. 2004b) was
proposed to generate both closed and maximal frequent
structures efficiently. As indicated by (Termier et al.
2005) that CMTreeMiner fails to produce satisfactory
results for trees that have the high branching factor.
A parallel field to closed frequent subtree mining is the
closed frequent subsequences. These closed frequent
subsequences are extracted by mining sequential datasets.
Some of the popular closed frequent sequence mining
algorithms are BIDE(Wang and Han 2004) and
CloSpan(Yan, Han and Afshar 2003). In contrast to
sequences, trees have branches and hence the techniques
to employ the closure property for sequential patterns
could not be applied to trees. The sequences include
extensions only in either the forward or backward
direction in the same branch, it is difficult to utilize
sequential pattern mining techniques to trees as it
contains several branches.
It is evident from the previous research works that the
generate and test algorithms are not an efficient vehicle
for exploiting the full strength of closure. Additionally
the existing techniques for itemsets and sequential
patterns frequent mining cannot be naturally extended to
deploy the closure property due to the structure of the
trees. The impressive performance improvement obtained
for the pattern-growth based techniques, PrefixTreeISpan
and PrefixTreeESpan, as reported in (Zou et al. 2006b;
Zou et al. 2006a) over the generate-and-test based
techniques, FreqT and TreeMiner, inspired us to
investigate the effect of deploying closure on the pattern-
growth technique.
In this paper, we will be focusing only on the frequent
induced subtrees and not on the emedded subtrees. The
reason for this choice is two fold: Firstly, the application
of the closure property on the frequent embedded subtrees
will not reduce the result set significantly as the ancestor-
descendant relationship is maintained in the frequent

embedded subtrees. Secondly, the application of the
closure property incurs a huge overhead due to the
numerous closure checks required. Hence, in this paper
we will focus only on generating the closed frequent
induced subtrees using the pattern-growth technique. The
following section details about the description of our
proposed method PCITMiner (Prefix-based Closed
Induced Tree Miner).

4 PCITMiner - Closure using Prefix Pattern
Growth

In this section, we introduce PCITMiner for mining the
closed induced subtrees from a tree dataset, D. Before we
go into the details of PCITMiner, we will briefly
introduce how the frequent induced subtrees are
generated using the pattern growth technique.

Tree Id Pre-order string of Trees

1 ABC-1D-1-1EF-1-1-1
2 ABC-1-1D-1-1
3 ABC-1-1C-1-1
4 ABC-1-1C-1-1

 Table 1: Tree dataset

 We will be using the tree dataset, D provided in Table 1
as our running example in this paper. The tree dataset, D
contains Tree Ids and the trees which are represented in
the pre-order string format as defined in Section 2. The
Tree Id in Table 1 is the unique id for the trees in D. In
this tree dataset, D, we have four trees and they contain
the nodes labelled as A, B, C, D, E and F. The pictorial
representation of the tree with Tree Id 1 is illustrated in
Figure 2(a). This tree dataset is mined for the frequent
subtrees with a min_supp of 2.

4.1 The frequent subtree generation
As we are using the pattern growth technique for the
frequent subtree generation, we will explain the prefix-
based pattern growth technique where the patterns are
subtrees. There are three phases involved in the prefix-
based frequent subtree generation and they are:

1. The 1-Length frequent subtree generation
2. Projecting the dataset using prefix trees
3. Mining the projected instances dataset

4.1.1 The 1-Length frequent subtree generation
The prefix-based subtree growth technique starts with a
scan of the tree dataset, D to determine the 1-Length
frequent subtrees. A 1-Length frequent subtree contains
only one node and is represented using the following
format SubX =(<Xa–1>: Supp) where X represents the
node label, the superscript ‘a’ specifies the position in the
pre-order traversal of the subpattern SubX, ‘–1’ is used for
the end flag for the node labelled X, and Supp is the
support of the subtree. For a K-Length subtree, the
representation can be obtained by replacing X in the SubX
with the pre-order traversal and including a superscript
for the pre-order positions. Hence the subtree
representation is (<Xa Yb Zc -1… Kn -1 -1>: Supp) where

150

X, Y, Z and K are node labels and superscripts a, b, c...n
are the increasing positions of nodes in the pre-order
traversal of the subtree.
By scanning the tree dataset, D in Table 1 for a given
min_supp of 2, the four 1-Length frequent subtrees
generated are (<A1-1>:4), (<B1-1>:4), (<C1-1>:4), (<D1-
1>:2) where A, B, C and D are node labels. The
superscript ‘1’ on the node labels represents its position
in the pre-order traversal of each of the subtrees. The ‘–1’
in each of the subtrees represent the end flag for the node.
Finally, the number after a ‘:’(colon) gives support of
each of the subtrees. The subtrees having node labels A,
B or C individually has a support of 4 and the subtree
having node labelled D has a support of 2.
The tree dataset, D is scanned again and partitioned into
four subsets using each of the four subtrees serving as the
prefix-tree. Using the definition of the prefix-tree in (Zou
et al. 2006b) we will explain what is meant by a prefix-
tree using the first tree in our example dataset D from
Table 1.

Definition 1 (Prefix-Tree)
Let there be a tree T with m nodes, T' be a tree with n
nodes, where n ≤ m. The pre-order scanning of tree T
from its root until its n-th node results in a tree T'. If the
tree T' is isomorphic to tree T then T' is called the prefix
of Tree T (Zou et al. 2006b).
The Figure 2(b) shows the prefix-trees for the tree T
illustrated in Figure 2(a). The 6 prefix-trees containing 1,
2, 3, 4, 5 and 6 nodes are identified for the tree T.

4.1.2 Projecting the dataset using the prefix
trees

The next step in this process involves projecting the
dataset using the prefix trees generated. Consider the
example tree dataset, D in Table 1, there are four prefix-
trees having a single node. Using these four 1-node
prefix-trees, the dataset D is partitioned into four prefix-
projected datasets namely (i) <A1 -1 >:4) (ii) (<B1-1>:4)
(iii) (<C1-1> :4) and (iv) (<D1-1>:2). To build the prefix-
projected dataset for a given prefix-tree T', every tree in
D is checked whether it contains the prefix-tree T'. If a
tree T contains the prefix-tree T', then the projected
instance of T is included in the T'-prefix-projected
instances dataset.
Definition 2 (The Prefix projected instance)
Consider a tree dataset D = {T1, T2, T3,…,Tn} and a prefix
subtree T' with n nodes. If there exists a tree Tx ∈ D with
m nodes which contains the prefix-tree T', then the T'-
prefix projected instance of Tx is the pre-order scanning of
Tx from n+1 node to m.

Tree Id Pre-order string of Trees

1 BC-1D-1 -1

2 BC-1-1
D-1

3
3

BC-1-1
C-1

4
4

BC-1-1
C-1

Table 2: <A1-1> projected instances dataset

Tree Id Pre-order string of Trees

1 C-1D-1
2 C-1
3 C-1
4 C-1

Table 3: <B1-1> projected instances dataset

Tree Id Pre-order string of Trees

1 C-1
D-1

2 C-1
3 C-1
4 C-1 (b)

Figure 2: Prefix Trees of Tree T (in (a)) Table 4: <A1B2-1-1> projected instances dataset

Tree Id Pre-order string of Trees

1 C-1

2 C-1

Table 5: <A1B2-1C3-1-1> projected instances dataset

Tables 2, 3, 4, and 5 provide the projected instances
dataset of the prefix-trees <A1-1>, <B1-1>, <A1B2-1-1>,
<A1B2-1C3-1-1> respectively. To improve the efficiency,

151

the projected instances from the infrequent Length-1
subtrees are eliminated. It can be noted in Table 2 that the
tree with Tree Id1 does not contain the nodes E and F as
they are infrequent and hence they were eliminated in
projection. The generated projected instances are mined
using the technique detailed in the following subsection.

4.1.3 Mining the projected instances dataset
As a next step in the prefix-pattern growth, each of the
projected instances dataset is mined to identify the
Growth Element (GE) (Zou et al. 2006b), which is
defined as follows.

Definition 3: Growth Element (GE)
Given two trees T' and T with m and m+1 nodes
respectively, where T' is the prefix of T. If there occurs a
node n in Tree T but not in T' then the node n is the
Growth Element (GE) of T' w.r.to T.
If there is any frequent GE then the corresponding
projection is partitioned and mined recursively until there
are no more frequent GEs. For instance, for the
partitioned dataset <A1 -1 > provided in Table 2, the GEs
are nodes labelled B, C and D as they occur as first nodes
in the projected instance. The support of GEs, B, C and D
is 4, 2 and 1 respectively in the <A1 –1 > prefix-projected
dataset. Hence only B and C are frequent GEs. Since the
mining process outputs the induced subtrees, the position
of nodes is important in counting the support. For
example, the node labelled D occurs twice in the dataset
in Table 2 but it occurs in different positions that is why it
is not frequent. In other words, the subtrees should have
parent-child relationship. In Tree Id 1, the parent of D is
B and in the second tree (Tree Id 2), the parent of D is A.
Hence, the support of D is 1 in the <A1 –1 > prefix-
projected dataset. Using the two GEs, B and C, two
separate projections are constructed and mined for the
frequent subtrees. Tables 4 and 5 give the projection for
<A1B2 –1 –1 > and < A1B2-1C3-1-1> respectively.

4.2 Closure
So far we have seen how the frequent subtrees are
generated using the prefix-pattern growth technique.
Table 6 lists the frequent subtrees using this approach. It
can be seen from Table 6 that subtrees such as (<A1-1
>:4), (<B1-1>:4), (<C1-1>:4), (<A1B2-1 –1>:4), (<B1C 2-
1-1>:4) are subsets of (<A1B2C3-1-1-1>: 4) with the same
support. Hence, instead of generating all the frequent
subtrees, only a superset of the frequent subtrees with the
same support can be represented as output. By doing so,
the number of the frequent induced subtrees is reduced by
eliminating only the redundant frequent subtrees and
hence there is no information loss. This property of
reducing the redundant frequent subtrees is called as the
closure property as discussed in Section 2. From Table 6,
the subtree (<A1C2-1-1>: 2) (<A⊆ 1B2C3-1 -1C4-1-1>:
2), and hence using the closure property the subtree
(<A1C2-1-1>: 2) can be safely removed from the result
set. As the node labelled D is not included in other closed
frequent induced subtrees, subtree (<D1-1>:2) is included
in the output.

Number of nodes Frequent Subtrees

1

(<A1-1 >:4),
(<B1-1>:4),
 (<C1-1>:4),
 (<D1-1>:2)

2 (<A1B2-1 –1>:4),
(<B1C 2-1-1>:4),
(<A1C2-1-1>:2)

3 (<A1B2C3-1-1-1>: 4)
(<A1B2-1C3-1-1>: 2)

4 (<A1B2C3-1 -1C4-1-1>: 2)

Table 6: Frequent induced subtrees from prefix-
pattern growth algorithm

 Table 7 summarizes the closed frequent induced subtrees
with only 3 closed frequent induced subtrees in
comparison to 10 frequent induced subtrees (as shown in
Table 6). On comparing Tables 6 and 7 it is interesting to
note that closure has reduced the number of frequent
induced subtrees by three-fold.

Number of nodes Frequent Subtrees
1 (<D1-1>:2)
3 (<A1B2C3-1-1-1>: 4)
4 (<A1B2C3-1 -1C4-1-1>: 2)

 Table 7: Closed frequent induced subtrees

Now the challenge is to impose closure on the frequent
induced subtrees using the prefix-based subtree mining. A
naïve approach to impose closure is to first generate all
the frequent induced subtrees and then eliminate the
subtrees based on their support by checking the closure
property, as shown in Tables 6 and 7. It is an expensive
task when there are a large number of frequent subtrees
generated and hence, it is essential to identify an efficient
method, which provides the closed result set. There are a
number of approaches proposed in the frequent itemset
and sequential mining (Wang and Han 2004; Yan et al.
2003). Unlike, the itemset or sequential mining, trees
have branches and hence we cannot apply closure using
these techniques. Hence, we propose two methods to
apply closure efficiently and they are:

1. Search Space reduction using the backward scan
2. Bi-directional Extension Closure checking

4.2.1. Search space reduction using the backward
scan
This technique does a backward scan to reduce the search
space using the following lemma:

Lemma 1:
Let there be two 1-length frequent subtrees Lk and Lk' in a
given tree dataset, D. If Lk' is the parent node of Lk in all
trees in D then the projection of Lk is stopped as the
parent node Lk' will include all the subtrees generated
using the prefix-tree Lk.
Using the running example tree dataset D in Table 1, we
will explain, how to reduce the search space using the
backward scan technique. This technique is applied after

152

the first scan of the dataset where the 1-Length frequent
subtrees are known. The 1-Length frequent induced
subtrees are (<A1-1 >:4), (<B1-1>:4), (<C1-1>:4), (<D1-
1>:2). As the node labelled A is a root node in all the
trees it is not checked for its parents. Hence, this
technique is applied for the subtrees (<B1-1>:4), (<C1-
1>:4) and (<D1-1>:2).
The checking of the parent node of <B1-1> in each of the
trees in the tree dataset D reveals that the parent node is
<A1-1> in all the trees. This information state that the
parent node of <B1-1> (i.e. <A1-1>) and <B1-1> have the
same support. Consequently, <B1-1> can be pruned from
growing since the projections for the parent node <A1-1>
will include the projections for <B1-1>. By doing so, the
number of subtrees and the number of projections
required are reduced. Due to the reduced search space,
the efficiency of the algorithm is improved.

4.2.2. The Bi-directional Extension Closure
checking
After reducing the search space using the backward scan,
there occurs some of the subtrees which are not closed. In
order to check the closeness of the generated frequent
subtrees, the bi-directional extension closure checking is
performed.
According to the definition of a frequent closed induced
subtree, a prefix-tree, Tp=e1,e2,…en is non-closed if there
exist at least one extension event, e' which can be used to
create a prefix-tree Tp' having the same support as that of
Tp. The prefix-tree Tp can be extended in the following
ways:

1. Predecessor node extension as in Tp' = e1,e2
,…,en e'

2. Internal node extension as in Tp'= e1,e2 e',…,en
3. Successor node extension as in Tp'= e1,e2,… e',en

The bi-directional extension closure checking involves
two events namely the forward-extension event and the
backward-extension event. With reference to the event n
given by en, in the situation 1, e' occurs after the event en
and hence it is a forward extension event. On the other
hand, in the situation 2 and 3, e' occurs before the event
en and hence it is a backward extension event.
Theorem 1:
If there exists neither the forward-extension event nor the
backward extension event in regard to a prefix-tree Tp'
then Tp' must be a closed frequent subtree.
A naive approach to check whether there occurs any
forward-extension closure checking is enumerating all the
frequent sub-trees and then checking their support.
However, this is an expensive operation due to very large
number of checks required. The following lemma is
utilised to check for the forward-extension event
efficiently.
Lemma 2: Forward-extension event
For a prefix tree Tp', its complete set of forward-extension
events is equivalent to the set of its frequent GEs whose
supports are equal to the support of Tp'. If any of the GE
for given projection has same support as Tp' then Tp' is
not closed.
Using the running example provided in Table 1, the GE is
C for the prefix-tree <A1B2-1-1>. The support of <A1B2-

1-1> is 4 and the support of the GE C is 4 and hence
<A1B2C3-1-1-1> is not closed. On the other hand,
consider the prefix-tree <A1B2C3-1-1-1> having the GE
C. The support of <A1B2C3-1-1-1> is 4 and the support of
the GE C is 2 and hence <A1B2C3-1-1-1> may be closed.
We say <A1B2C3-1-1-1> may be closed, as we need to
check for closure using the backward extension event to
confirm the closure. This forward event checking is not a
computational expensive step and hence it is used for
reducing the number of closed frequent induced subtrees.
In order to check for the backward extension event, the
following lemma is used.
Lemma 3: Backward-extension event
If there exists a prefix-tree Tp with m nodes and a prefix-
tree Tp’ with the common m nodes and an additional node
b having the same support as that of Tp then Tp is not
closed and b is a backward extension event w.r.to Tp

There are two types of backward-extension events:
1. The parent extension of GE
2. The sibling extension of GE

The backward extension event to GE is the extension of
the parent of GE and hence it is handled by the backward
scan technique. On the other hand, the backward
extension to sibling extension is the extension of sibling
nodes of GEs. For instance, in the prefix-tree <A1B2-1C3-
1-1>, the sibling extension event is the node labelled C,
which is an extension of the node <B2-1> and it is in a
different branch resulting in <A1B2C3-1C4-1-1-1>. Unlike
the sequential mining, due to the existence of branches in
trees, there occurs the sibling extension event in a
different branch from <A1B2-1C3-1-1>. Hence, it requires
the closure checking across several branches.
In order to efficiently check for closure for backward
extension events across several branches, a technique
called “maintain-and-test” is deployed to check for
closure. A naïve approach to check for closure is to check
for all the backward extension events having the same
support. However, it is an expensive operation and hence
to reduce the number of checks, a parameter, which is the
sum of the tree ids, is included to check for closure. To
apply this technique, we first check whether for a given
subtree T', there exists a backward extension to edge E
resulting in T'' having the same support and sum of tree
ids as T'. If it exists then they are checked for closure.
Figures 3 and 4 outline the algorithm PCITMiner and the
subroutine Fre respectively. PCITMiner starts with the
scan of the database and identifies the 1-Length frequent
subtrees b. After finding the 1-Length frequent subtrees, it
employs the backScan property by checking the support
of the predecessor of each b and the support of each b. If
they are same, then the projection for b could be pruned,
as the predecessor for b will include b in its output.
Otherwise, using the recursive subroutine Fre outlined in
Figure 4, recursively identifies all the occurrences of b in
the dataset D to construct <b-1> projected database by
collecting all the corresponding project-instances in D.
The subroutine Fre checks for the forward extension
event and the backward extension event against the
projected database. This subroutine is recursively called
until there are no more frequent GEs to form the
projected dataset.

153

Algorithm PCITMiner

Input: A tree dataset D, minimum support threshold
(min_supp)
Output: All closed induced frequent subtrees

Methods:
1. Scan D and find all 1-length frequent label b.
2. For each frequent label b
 2.1 If the supp (predecessor of b) = = supp(b) then
 Do not project the dataset.
 2.2 else,
 2.2.1 Find all occurrences of b in dataset D, and
construct <b−1>-projected dataset (i.e. ProDB(D,<b
− 1 >)) through collecting all corresponding Project-
Instances in D.
 2.2.2 Call Fre (< b − 1 >, 1, ProDB(D,< b − 1
>), min sup, supp(b)) to mine the projected dataset
and obtain frequent induced subtrees until no more
subtrees that could be found.

Figure 3: Algorithm PCITMiner

Figure 4: Recursive function Fre

5 Experimental evaluation
All the experiments were conducted on the Intel Pentium-
4 PC with 2.39GHz processor and 1GB main memory,
running Windows XP. Both the algorithms
PrefixTreeISpan and PCITMiner were written in C++
with the STL library support and compiled with the
Microsoft Visual C++ .Net compiler. The experiments
were conducted on the synthetic datasets generated.
The Zaki’s treegenerator1 has been often used to generate
the synthetic datasets for benchmarking the tree mining
algorithms. Using the Zaki’s tree generator there are two
datasets generated namely the F5 and D10 datasets with
the parameters as indicated in Table 8 where “f”
represents the fan out factor, “d” the depth of the tree, “n”
the number of unique labels for the trees, “m” the total
number of nodes in a parent tree and “t” indicates the
number of trees.

Name Description

F5 -f 5 -d 10 -n 100 -m 100 -t 100000

D10 -f 10 -d 10 –n 100 -m 100 -t 100000

Function Fre (Tp, n, ProDB(D, Tp),
min_supp,prepat_supp)

Input: A prefix-tree Tp, the length of Tp(n), <Tp>-

projected dataset(ProDB(D,Tp)), the
minimum support threshold (min_supp), the
support of the previous pattern used to
generate this projected dataset (prepat_supp)

Output: C: Closed frequent induced subtrees

Methods:
1. Scan ProDB(D, Tp) once to find all the 1-length

frequent GEs(GE0, … ,k) according to Lemma 1.
2. output=true.
3. Count the support of all GEs.
4. If supp(GE0 || GE1,…,|| GEk) == supp(Tp) then
 Do not output the subtree, output = false.
5. For each GEb
 5.1 if GEb is frequent then

5.1.1 Extend Tp with b to form a subtree pattern
Tp'.

 5.1.2 if (output) then
 Insert Tp' into C.
 5.2 else
 5.2.1 Check Tp' for occurrence of any of its

subset with the same support and sum of
tree ids in the output C. If there exists any
subset for Tp' then remove the subset of
Tp' and insert Tp' into C.

6. Find all occurrences of GEb in ProDB(D, Tp),
construct the <Tp'>-projected database (i.e.
ProDB(D, Tp')) through collecting all
corresponding Project-Instances in ProDB(D, Tp).

7. Call Fre(Tp' , n + 1, ProDB(D, Tp'), min_supp
prepat_supp)

Table 8: Datasets and their parameters

Studies have indicated that the performance of some of
the existing closed frequent subtree mining algorithm
degrades for datasets having a high branching factor
(Termier et al. 2005). To evaluate the performance of
PCITMiner with high branched trees, two datasets F5 and
D10 with varied branches, fan out factors of 5 and 10
respectively, are generated.
The proposed algorithm, PCITMiner is compared with
the prefix-based pattern-growth algorithm
PrefixTreeISpan (Zou et al. 2006b) to show the benefit of
closure. The output of the PrefixTreeISpan algorithm is
frequent induced subtrees. Experimental studies on
PrefixTreeISpan (Zou et al. 2006b) with FreqT (the
generate-and-test based frequent subtree mining method)
already has shown that PrefixTreeISpan outperforms
FreqT (Zou et al. 2006b). So in this paper, we do not
conduct any empirical analysis with the generate-and-test
method. As the objective of this study is to apply closure
on the pattern growth algorithms hence CMTreeMiner is
also not used as a benchmark as the latter algorithm is
based on the candidate “generate-and-test” approach.
Figures 5 and 6 presents the experimental results on the
number of subtrees and the run time in seconds for
PCITMiner and PrefixTreeISpan on the F5 dataset.
Figure 5 reveals that the PCITMiner reduces the number
of subtrees by about three-fold in comparison to
PrefixTreeISpan. The benefit is larger for the relatively
lower support-threshold (where a large number of
subtrees are generated).

1 http://www.cs.rpi.edu/~zaki/software

154

On F5 Dataset

0
100
200
300
400
500
600
700

0.1 0.5 1 10

min_supp (in %)

N
um

be
r o

f s
ub

tr
ee

s

PrefixTreeISpan

PCITM iner

On F5 Dataset

0

10

20

30

40

50

60

70

0.1 0.5 1 5 10

min_supp (in %)

R
un

 ti
m

e
(in

 s
ec

)

PrefixTreeISpan

PCITMiner

Figure 6 reveals that with the reduced number of subtrees,
PCITMiner mines the frequent subtrees faster than the
base algorithm PrefixTreeISpan. The improvement
obtained in F5 dataset can be attributed to the number of
back scan pruning. Figure 7 shows the increase in the
number of projections pruned with the reduced support
threshold.

On F5 Dataset

0

200

400

600

800

1000

0.05 0.1 0.5 1 5 10

min_supp (in %)

N
um

be
r o

f p
ro

je
ct

io
ns

PrefixTreeISpan

PCITMiner

Figures 8 and 9 presents the experimental results on the
run time in seconds and the number of subtrees for
PCITMiner and PrefixTreeISpan on D10 dataset
respectively. The PCITMiner achieves improved
performance over PrefixTreeISpan by reducing the
number of subtrees by about seven-fold at lower support
values.

On D10 dataset

0
20
40
60
80

100
120
140

0.1 0.5 1 5 10

min_supp (in %)

R
un

tim
e

(in
 s

ec
)

PrefixTreeISpan

PCITMiner

Figure 5: Number of subtrees of PCITMiner
and PrefixTreeISpan against various min_supp
on F5 dataset

Figure 8: Run times PCITMiner against
PrefixTreeISpan against various min_supp on
D10 dataset

The comparison of experimental results of the F5 and
D10 datasets clearly indicates that PCITMiner remains
unaffected with high branched trees (large fan out factor).
PCITMiner shows the improved performance in run time
as well as reducing the number of subtrees efficiently in
both the data sets. Moreover, the saving in terms of the
number of output patterns is more apparent with the high-
branched trees. Figure 6: Run times of PCITMiner against

PrefixTreeISpan against various min_supp on F5
dataset On D10 dataset

0
500

1000
1500
2000
2500
3000
3500
4000

0.1 0.5 1 5 10

min_ supp (in %)

N
um

be
r o

f s
ub

tr
ee

s

PrefixTreeISpan

PCITMiner

 Figure 9: Number of subtrees of PCITMiner and

PrefixTreeISpan against various min_supp on
D10 dataset

6 Conclusions and Future work
In this paper, we have proposed PCITMiner for
generating the closed frequent induced subtrees using the
pattern-growth technique. The experimental results
clearly indicate that PCITMiner performs faster and
produces reduced number of frequent subtrees without
any information loss. Contrary to the existing closed
frequent subtree mining algorithms the proposed

Figure 7: Number of projections of PCITMiner
against PrefixTreeISpan against various
min_supp on F5 dataset

155

algorithm PCITMiner performs efficiently for high
branched trees. We would like to apply this closure
technique for embedded subtrees and to graph-based
frequent mining as a future work.

7 Acknowledgement
We would like to thank Lei Zou at HuaZhong University
of Science and Technology for kindly providing us the
base algorithm PrefixTreeISpan.

8 References

Agrawal, R., H. Mannila, R. Srikant, H. Toivonen and A.
I. Verkamo.(1996): Fast discovery of association rules. In
Advances in knowledge discovery and data mining,
1996.,307-328: American Association for Artificial
Intelligence.

Asai, T., K. Abe, S. Kawasoe, H. Arimura, H. Satamoto
and S. Arikawa.(2002): Efficient substructure discovery
from large semi-structured data. 2nd SIAM International
Conference on Data Mining.

Asai, T., H. Arimura, T. Uno and S. Nakano.(2003):
Discovering Frequent Substructures in Large Unordered
Trees. The 6th International Conference on Discovery
Science.

Chi, Y., S. Nijssen, R. R. Muntz and J. N.
Kok.(2005):Frequent Subtree Mining- An Overview.
Fundamenta Informaticae, 66: 161-198. IOS Press.

Chi, Y., Y. Yang and R. R. Muntz.(2004a):
HybridTreeMiner: an efficient algorithm for mining
frequent rooted trees and free trees using canonical forms.
Scientific and Statistical Database Management, 2004.
Proceedings. 16th International Conference on, 11-20.

Chi, Y., Y. Yang, Y. Xia and R. R. Muntz.(2004b):
CMTreeMiner: Mining both closed and maximal frequent
subtrees. In In The Eighth Pacific Asia Conference on
Knowledge Discovery and Data Mining (PAKDD'04).

Han, J., J. Pei and X. Yan.(2005): Sequential Pattern
Mining by Pattern-Growth: Principles and Extensions. In
Foundations and Advances in Data Mining.

Pei, J. 2002. Pattern-growth methods for Frequent
pattern mining, School Of Computing Science, Simon
Fraser University, Burnaby, British Columbia, Canada.

Tatikonda, S., S. Parthasarathy and T. M. Kur.(2006):
TRIPS and TIDES: new algorithms for tree mining.
Proceedings of the 2006 ACM CIKM International
Conference on Information and Knowledge
Management, 455-464. Arlington, Virginia, USA: ACM.

Termier, A., M.-C. Rousset and M. Sebag.(2002):
TreeFinder: a first step towards XML data mining. ICDM
2002. Proceedings. 2002 IEEE International Conference
on Data Mining, 2002., 450-457.

Termier, A., M.-C. Rousset, M. Sebag, K. Ohara, T.
Washio and H. Motoda.(2005): Efficient mining of high
branching factor attribute trees. Proc. Fifth IEEE
International Conference on Data Mining.

Wang, C., M. Hong, J. Pei, H. Zhou, W. Wang and B.
Shi.(2004): Efficient Pattern-Growth Methods for
Frequent Tree Pattern Mining. In Advances in Knowledge
Discovery and Data Mining.

Wang, J. and J. Han.(2004): BIDE: Efficient Mining of
Frequent Closed Sequences. In Proc. 20th International
Conference on Data Engineering: IEEE Computer
Society.

Xiao, Y. and J.-F. Yao.(2003): Efficient data mining for
maximal frequent subtrees. Proc. Third IEEE
International Conference on Data Mining(ICDM03),
379-386.

Yan, X., J. Han and R. Afshar.(2003): CloSpan: Mining
Closed Sequential Patterns in Large Datasets. Proc. SIAM
International Conference on Data Mining.

Zaki, M. J.(2002): Efficiently mining frequent trees in a
forest. Proc. Eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, 71-
80. Edmonton, Alberta, Canada: ACM Press.

Zaki, M. J.(2005):Efficiently mining frequent trees in a
forest: algorithms and applications. IEEE Transactions on
Knowledge and Data Engineering, 17 (8): 1021-1035.

Zou, L., Y. Lu, H. Zhang and R. Hu.(2006a):
PrefixTreeESpan: A Pattern Growth Algorithm for
Mining Embedded Subtrees. In Web Information Systems
, WISE 2006.

Zou, L., Y. Lu, H. Zhang, R. Hu and C. Zhou.(2006b):
Mining Frequent Induced Subtrees by Prefix-Tree-
Projected Pattern Growth. Proc. Seventh International
Conference on Web-Age Information Management
Workshops, 2006. WAIM '06., 18.

156

