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Abstract

We develop a formal model of the Host Identity Pro-
tocol (HIP) based on Timed Coloured Petri Nets
(Timed CPNs) and use a simulation approach pro-
vided in CPN Tools to achieve a formal analysis. We
aim to examine unbalanced computation that leads
to resource exhaustion attacks in key exchange pro-
tocols comparing among a legitimate initiator, four
types of adversary who attempt to deny the service
at different stages of the protocol execution, and a
responder. By adopting the key idea of Meadows’
cost-based framework and refining the definition of
operational costs during the protocol execution, our
simulation provides an accurate cost estimate of pro-
tocol execution comparing between those principals.
Under four defined attack strategies, however, Mead-
ows’ cost-based framework generates a different out-
come compared with the simulation approach from
Timed CPNs. Analysis of our experimental results re-
veals a limitation of Meadows’ cost-based framework
for addressing DoS threats.

Keywords : Host Identity Protocol (HIP), Cost-
based Framework, Timed Coloured Petri Nets

1 Introduction

Denial of service (DoS) attacks are serious threats
to computer networks since they attempt to prevent
the responder and legitimate users to establish con-
nections. DoS attacks might attempt to overwhelm
either network bandwidth or responder’s resources,
including memory and central processor unit (CPU).
Although both of these targets are important, in this
paper we focus on how to protect the responder from
exhausting resources based on vulnerabilities of the
underlying key exchange protocol.

Most key exchange protocols aim to establish and
exchange cryptographic parameters. These protocols
require the associated responder to spend some ex-
pensive computations, such as modular exponentia-
tion in the case of Diffie-Hellman and RSA digital sig-
nature algorithm, while the initiator requires compu-
tations which are cheaper than for the responder. As
a result, these protocols are susceptible to denial-of-
service (DoS) attacks because adversaries can launch
DoS attacks to overwhelm resources of the respon-
der before the responder can detect the attack and
authenticate identity of the launchers.

Copyright c©2007, Australian Computer Society, Inc. This pa-
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In order to design cryptographic protocols, re-
searchers have developed general-purpose verification
tools to use in modeling and verifying them over many
years. One example formal method is Petri Nets. Al-
though Petri Nets have been developed since 1962 by
Petri (1962), they have been recently used to verify
cryptographic and security protocols. There are two
forms of Petri Nets: ordinary Petri Nets and high level
Petri Nets. In this paper, we focus on high level Petri
Nets, i.e. Colored Petri Nets, because they have sev-
eral benefits in the analysis and verification of cryp-
tographic protocols as stated by Jensen (1998b).

To develop a formal framework of cryptographic
protocols, we use CPN Tools (2004) which is an inter-
action tool for modeling and analysing Coloured Petri
Nets. Our formal model is developed based on Timed
Coloured Petri Nets (Timed CPNs) and uses a simu-
lation approach provided in CPN Tools to achieve a
formal analysis. The goals of simulation of this pro-
tocol are to explore vulnerabilities of DoS-resistant
protocols by examining unbalanced computation that
leads to resource exhaustion attacks in key exchange
protocols. Simulation approaches are valued in the re-
search community not only for exploring vulnerabili-
ties in cryptographic protocols, but also guaranteeing
security services of such protocols similar to a math-
ematical approach. Using simulation approaches has
several benefits over mathematical analysis; for in-
stance, simulation provides flexibility to the developer
to choose, examine and adjust parameters for evalu-
ating the system. In addition, simulation provides
visualization to users who can see and learn what
is happening during the simulation of cryptographic
protocols to gain more understanding for evaluating
the correctness of those protocols.

In this work, we adopt the key idea of Meadows’
cost-based framework (2001) and refine the definition
of operational costs by assigning an accurate estimate
of various cryptographic operations during the pro-
tocol execution. Meadows introduced a systematic
framework to analyse DoS-resistant protocols by com-
puting and comparing the cost incurred by both par-
ties at each step in a key exchange protocol. Meadows
analysed the STS protocol (a protocol without special
DoS resistance properties) and later Ramachandran
(2002) and Smith (2006) used Meadows’ framework
to analyse the JFK protocol (2002) in order to demon-
strate its DoS prevention capabilities.

Surprisingly, there has been little interest in the re-
search community in applying Meadows’ framework
to different protocols. Moreover, the limited applica-
tion so far has suffered from two significant shortcom-
ings which make the results of restricted value.

1. The cost analysis has only taken into account
honest runs of the protocol. In principle, the ad-
versary (typically the client in a client-server pro-
tocol) can deviate arbitrarily from the protocol
in order to achieve an attack. By only taking



into account honest behaviour it is quite likely
that logical attacks will be missed. While Mead-
ows certainly recognised this fact, no research has
yet examined the effectiveness of the framework
in detecting such potential attacks.

2. Meadows used only a coarse measure of com-
putational cost, with three levels denoted as
cheap, medium or expensive. In practice it can
be quite difficult to classify and compare oper-
ations in such a limited way. For example, in
Meadows’ classification digital signature genera-
tion and verification are counted as of equal cost,
yet in practice an RSA signature generation may
take 2 or 3 orders of magnitude more effort than
RSA signature verification.

Motivated by the above two limitations, this pa-
per provides a refinement of Meadows’ cost-based
framework. For our sample protocol we use the Host
Identity Protocol (HIP) (Moskowitz 2006), which has
built-in DoS resistance. Using coloured Petri nets as
our formalism, we provide a formal specification of
HIP to allow automatic searching of adversary and
victim cost under four different adversarial attack
strategies. Moreover, we examine the tolerance of
HIP under different levels of puzzle difficulty as well
as investigate the most effective attack strategies by
measuring the successful throughput in order to com-
pare the result with the prediction from Meadows’
framework. Although our range of adversarial actions
is limited, we believe that we have demonstrated that
formal specification and analysis is an effective way to
extend the scope and value of the Meadows’ frame-
work which paves the way for more detailed applica-
tion of the framework.

The main contributions of this paper are:

• a refinement of Meadows’ cost-based framework
to more accurately represent the cost of typical
cryptographic algorithms;

• the first formal specification and automatic anal-
ysis of Meadows’ framework;

• simulation and analysis of HIP under normal
conditions and four scenarios of DoS attacks;

• a time-based analysis that reveals a limitation of
Meadows’ cost-based framework for addressing
DoS threats.

2 Background and Previous Work

The purpose of this section is to provide the back-
ground on the Meadows’ cost-based framework and
HIP, as well as the previous work on the analysis of
security protocols using Coloured Petri Nets.

2.1 Meadows’ Cost-Based Framework

Meadows’ framework (2001, 2003) works by compar-
ing cost to the attacker and cost to the defender, de-
fined using a cost set1. To model the protocol frame-
work, we need to calculate the cost of the sequence of
protocol actions, comparing between an attacker and
a defender. However, each action could use different
CPU or memory resources during a protocol execu-
tion. Therefore, we need to find an alternative way
to calculate the precise total cost of these actions and
the technique for comparing them.

Considering the characteristic of DoS attacks,
there are two possible ways mentioned by Meadows
(2001) to cause the defender to waste resources. First,

1More details are in Appendix A.

the defender may process a bogus instance of a mes-
sage inserted by the attacker into a protocol. The
cost to an attacker is the cost of creating and insert-
ing the bogus message, while the cost to the defender
is the cost of processing the bogus message until an
attack is detected. Second, the defender participates
in a bogus instance of the protocol with the attacker.
The cost of this situation is equivalent to the cost
of running the entire protocol until the defender can
detect the attack or the attack stops.

At this stage, we limit the abilities of adversaries
during the protocol execution to take one of a small
number of possible actions when the protocol spec-
ifies that a message should be sent: adversaries ei-
ther continue normally with the protocol or partially
complete the protocol. Intuitively these are the most
obvious ways for adversaries to make the defender
use unwanted resources. In our examples adversaries
send messages at two points in the protocol, so we
limit adversaries to either attack the first message by
flooding a large number of random messages to over-
whelm the resources of the responder, or to attack
the second message by faking its packets to waste the
responder resources for verifying it.

2.2 Host Identity Protocol

The host identity protocol (HIP) has been developed
by Moskowitz (2006). Later, Aura et al. (2005)
found some vulnerabilities and proposed guidelines to
strengthen the security of HIP. The base exchange of
HIP is illustrated in Figure 1.

HIP is a four-packet exchange protocol which al-
lows the initiator I on the IP address IPI and respon-
der R on the IP address IPR to establish an authenti-
cated communication. Both I and R hold long-term
keys to generate signatures SigI(·) and SigR(·) re-
spectively. It is assumed that both principals know
the public key PKI of the initiator and PKR of the
responder represented in the form of host identifiers
(HI) in advance. HIT represents the host identity
tag created by taking a cryptographic hash over HI.

A one-way hash function H(·) is used to form
the puzzle, while HKs represents a keyed hash func-
tion using session key Ks to generate a hash-MAC
(HMAC). The value s is a periodically changing se-
cret only known to the responder. LSB(t, k) takes as
input a string t and a parameter k and returns the k
least significant bits of t. 0k is a string consisting of
k zero bits. EKe(·) and DKe(·) denotes a symmetric
encryption and decryption respectively under session
key Ke. To generate session keys Ke and Ks, HIP
employs Diffie-Hellman key agreement protocol. Pa-
rameters used to generate these keys consist of large
prime numbers p and q, a generator g, a responder’s
secret value r, and an initiator’s secret value i.

HIP adopts a proof-of-work scheme proposed by
Jakobsson and Juels (1999) for countering resource
exhaustion attacks. In a proof-of-work, HIP extends
the concept of a client puzzle, first proposed by Juels
and Brainard (1999), and later implemented by Aura
et al. (2000) for protecting the responder against
DoS attacks in authentication protocols. Moreover,
HIP allows the additional feature of the client puzzle
that helps the responder to delay state creation (Aura
& Nikander 1997) until the checking of the second
incoming message and the authentication has been
performed in order to protect the responder against
resource exhaustion attack.

2.3 Coloured Petri Nets (CPNs)

CPNs (Jensen 1998a, Jensen 1997) are one type of
high-level nets based on the concept developed back
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Precomputed parameters
r, s ∈R [1, 2, . . . , q − 2]

sigR1 = SigR(gr ,HITR)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1) create HITI ,HITR
HITI ,HITR−−−−−−−−−−−−−−−−−→ check HITR

C = LSB(H (s,HITI ,HITR), 64 )
2) verify sigR1 HITI ,HITR, k ∈ [0, 1, . . . , 40] → puzzle = (C , k)

Find J such that puzzle, gr , sigR1←−−−−−−−−−−−−−−−−−
LSB(H (C ,HITI ,HITR, J ), k) = 0 k

i ∈R [1 , 2 , . . . , q − 2 ]
Ke = H (HITI ,HITR, g ir , 01 )
E1 = EKe{HII }
sigI = SigI (HITI ,HITR, J , g i ,E1 )

3) HITI ,HITR, C = LSB(H (s,HITI ,HITR), 64 )
J , g i ,E1 , sigI−−−−−−−−−−−−−−−−−→ LSB(H (C ,HITI ,HITR, J ), k) ?= 0 k

Ke = H (HITI ,HITR, g ir , 01 )
decrypt E1
verify sigI

Ks = H (HITI ,HITR, g ir , 02 )
HMAC = HKs

(HITI ,HITR)
4) verify sigR2 HITI ,HITR, sigR2 = SigR(HITI ,HITR,HMAC )

Ks = H (HITI ,HITR, g ir , 02 ) HMAC , sigR2←−−−−−−−−−−−−−−−−−
HKs (HITI ,HITR) ?= HMAC

Figure 1: HIP Protocol

in 1962 by Petri (1962). CPNs is a state and action
oriented model including places, transitions, and arcs.

Over many years, cryptographic and security pro-
tocols have been modeled and verified using CPNs.
Neih and Tavares (1993) implemented models of cryp-
tographic protocols in the form of Petri Nets. To
explore vulnerabilities of such protocols, they al-
lowed an implicit adversary with limited abilities to
launch attacks and then examined the protocol us-
ing exhaustive forward execution. Doyle (1996) de-
veloped a model of three-pass mutual authentication
and allowed an adversary to launch multiple itera-
tion and parallel session attacks. Han (1996) adopted
CPNs for constructing a reachability graph to inse-
cure states and examining the final states in OAK-
LEY. Al-Azzoni (2004) has developed a model of
Needham-Schroeder public key authentication proto-
col and Tatebayashi-Matsuzaki-Neuman (TMN) key
exchange protocol.

To the best of our knowledge, there is no imple-
mentation of CPNs focusing on an exploration of un-
balanced computational threats that lead to resource
exhaustion attacks in key exchange protocols.

3 Cost-based Framework

This section provides a cryptographic benchmark of
some specific algorithms which is an alternative tech-
nique to measure CPU usage for representing more
specific costs instead of an original representation by
Meadows. Finally, we present HIP by means of a
cost-based specification.

3.1 Refinement of Meadows’ Framework

An obvious limitation of the original formulation of
the framework is that the computational costs are not

defined precisely, but consist instead of a small num-
ber of discrete values. Indeed Meadows (2001) herself
called this a “crude and ad hoc cost function”. In or-
der to obtain a more useful cost comparison we need
to obtain a more accurate estimate of the computa-
tional and/or storage costs required to complete the
protocol steps. How to do this is not as obvious as it
may seem at first.

When comparing efficiency of different crypto-
graphic protocols it is customary to count the num-
ber of different types of cryptographic operations. For
protocols that use public key operations it is common
to ignore most operations and count only the most ex-
pensive ones, which typically are exponentiations in
different groups (traditionally written as multiplica-
tions in elliptic curve computations). However, for
the protocols that interest us this is definitely not
acceptable. As mentioned above, one common tech-
nique in DoS prevention is to demand that clients
solve puzzles which require the client to engage in
some computational effort, such as to iterate a hash
function a large number of times. Although one hash
computation takes minimal time in comparison with
a public key operation, ignoring a large number of
hash computations could make the cost function ig-
nore completely the DoS prevention mechanism when
a puzzle is used. Therefore we need to be able to com-
pare directly the cost of all different kinds of crypto-
graphic operations.

Comparing operations like hashing and exponen-
tiations directly seems very hard to do since they are
based on completely different types of primitive in-
structions. Therefore we have resorted to an empirical
comparison which compares benchmark implementa-
tion on common types of processors. While we ac-
knowledge that the detailed results may differ con-
siderably for different computing environments (CPU,



Table 1: Computational Cost of CPU and Time Usage of Specific Algorithms

Hash kCycle/Block nsec/bit Symmetrical Crypto kCycle/Block nsec/bit

SHA-1 (512bits/block) 1.89 1.84 DES (64bits/block) 0.75 5.86

HMAC/MD5 (512bits/block) 0.59 0.58 AES (128bits/block) 0.53 2.05

Public-Key Crypto kCycle/ops nsec/bit Key Exchange kCycle/ops nsec/bit

RSA Encryption / Diffie-Hellman

RSA Verification
383.66 187.08

Key-Pair Generation
4605.65 2245.80

RSA Decryption / Diffie-Hellman

RSA Signature
9985.47 4869.11

Key Agreement
8100.69 3950.05

memory, and so on) we believe that the obtained fig-
ures are indicative of the true cost in typical environ-
ments and allow reasonable comparisons to be made.

For our cost estimates, we use the cryptographic
protocol benchmarks of Wei Dai (2004). These
include tested speed benchmarks for some of the
most commonly used cryptographic algorithms us-
ing Crypto++ library2 version 5.2.1 on a Pentium
4 2.1 GHz processor under Windows XP SP 1. More
cryptographic benchmarking has been done by Gupta
(2002) and Tan (2004) on the specific processors; how-
ever, they did not test public-key encryption.

Table 1 only presents the results for some spe-
cific cryptographic algorithms available for negotiat-
ing during the HIP based exchange defined in HIP
specification. The units that we use in Table 1 are
kilocycles per block (note that block size varies for
different algorithms). This allows direct comparison
of CPU usage and may be expected to be similar on
processors with different clock speeds. This entails
conversion from the original data which uses direct
time measurements.

From the table, we are able to estimate the CPU
usage in cycles per block for common hash functions
and the symmetric key encryption, and cycles per op-
erations for the 1024-bit key lengths of public-key en-
cryption and Diffie-Hellman key exchange algorithm.
Once we get a result, we scale it down by a factor of
1000 (kilo) and apply these costs in our formal spec-
ification and analysis. Before we can export these
values into CPN Tools, we round them into an in-
teger representation because CPN Tools limits only
integers in the simulation process.

3.2 HIP Cost-Based Specification

We shall use HIP as an example in order to provide an
analysis using Meadows’ cost-based framework. By
employing the concepts and definition from Appendix
A, we are able to interpret HIP based exchange be-
tween two principals by means of cost-based specifi-
cation as shown in Figure 2.

For the first message the initiator (I)
performs create HIT I , create HITR and
sends a requested message to the respon-
der (R). Meanwhile, R performs the actions
pre create r , pre create s, pre exp gr , pre sign sigR1
before a requested message arrives to the connection
queue. These pre-actions are pre-computed in order
to protect R from wasting some amount of resources
at the initial state. Once R receives this request, it

2Available at http://www.eskimo.com/∼weidai/cryptlib.html
and http://sourceforge.net/projects/cryptopp/

spends only a cheap operation to check HITR for com-
pleting the first message. Considering a second mes-
sage, R performs compute hashC , create k and sends
HITI ,HITR, puzzle, sigR1 to I. When I receives this
message, I then performs verifysig sigR1 , accept1 . If
verifysig sigR1 fails, the process stops. Otherwise, I
accepts the message and then continues to brute-force
search a puzzle solution compute hashsolutionJ .

To construct the third message, I performs
computekey Ke , encryptHII , sign sigI appended
with the signature sigI and sends it to R. Hav-
ing received the message from I, R begins to
check C by recovering the message R1 counter
and then hashing received HITI ,HITR with the
server secret s. If this process is verified correctly,
R validates the puzzle solution by performing
verify solution. If invalid, the process stops. Oth-
erwise, R performs computekey Ke , decryptE1 for
recovering HII . After that, R finally verifies the
signature of I by performing verifysig sigI . Also,
the output will be either success which causes the
responder to continue to the next steps, or failure
which causes the responder to reject and clear the
connection queue. In the fourth message, R per-
forms computekey Ks , compute hashMAC , sign sigR2
and sends the message HMAC ,SigR[HITI ,HITR,
HKs (MAC )] to I. Finally, I begins to compute
computekey Ks , verify hashMAC , verifysig sigR2 ,
accept3 for key confirmation.

By using the original cost functions, the toler-
ance relation for the first message would be the
pair (Cheap, Cheap) which is an acceptable result,
while for the third message would include the pair
(Medium, Cheap), or (Medium, Medium), or (Ex-
pensive, Expensive) which is also a reasonable result.
However, these results are too coarse for achieving
formal analysis of the computational costs. As a re-
sult, we replace such original cost measures suitable
for hand analysis with more precise values from Table
1 in our simulation.

4 Automated Simulation by CPN Tools

This section provide the detail of the HIP cost-based
and time-based model as well as the experimental re-
sults of these constructions.

4.1 The Construction of HIP in CPNs

HIP Cost-based Construction: In this model,
we insert a special place to every cryptographic tran-
sition called a cost-place for capturing and display-
ing the computational cost of individual steps. This



MSG Cost-based Function
1) I → R :

create HIT I , create HITR ‖
HITI ,HITR ‖
pre create r , pre create s, pre exp gr , pre sign sigR1 , verify HITR

2) R → I :
compute hashC , create k ‖
HITI ,HITR, puzzle, sigR1 ‖
verifysig sigR1 , accept1

3) I → R :
compute hashsolutionJ , computekey Ke , encryptHII , sign sigI ‖
HITI ,HITR, J , g i ,Ke{HII },SigI [HITI ,HITR, J , g i ,Ke{HII }] ‖
verify C , verify solutionJ , computekey Ke , decryptE1 , verifysig sigI , accept2

4) R → I :
computekey Ks , compute hashMAC , sign sigR2 ‖
HITI ,HITR,HMAC ,SigR[HITI ,HITR,HMAC ] ‖
verifysig sigR2 , computekey Ks , verify hashMAC , accept3

Figure 2: HIP Protocol in the Cost-Based Framework Notation

process is performed by adding the CPU usage data
from Table 1. Measurement of CPU usage indicates
individual steps as well as the total cost compared be-
tween an initiator, every single type of adversary, and
a responder, when such principals complete a single
round of the protocol simulation.

HIP Time-based Construction: We attempt to
design a more realistic model by adopting the concept
of time into the HIP time-based simulation and analy-
sis. That means every cryptographic process requires
some amount of time calculated by using crypto-
graphic benchmarks of Crypto++ library (Dai 2004).
In the Timed CPNs, the concept of the simulated time
or the model time3, which is represented by the sys-
tem clock in the tool, has been introduced. Once we
have attached the system time into tokens, we can see
the sequence or action of states that tokens move to
as a temporal analysis. It means only tokens which
hold the current time as presented on the clock can be
traversed to the next position, while the others have
to wait until the system clock reaches their value.

Furthermore, the concept of the responder’s re-
source is used in this evaluation. This resource repre-
sents the number of available connections in the queue
to process the incoming requests. Once the respon-
der has to deal with requests, the responder spends
one unit of resource for each individual request. It
means that if incoming packets exceed the responder
capacity, the responder then rejects further incoming
packets until he has either processed the legitimate
traffic or detected bogus messages and removed them
from the storage. Note that the process to order in-
coming packets arriving to the connection queue is
non-deterministic because these packets have been ar-
ranged randomly by CPN Tools.

4.2 Adversary’s Ability

Apart from the honest client (hc) who initiates the
legitimate traffic, we allow four types of adversary
who have the similar goal to deny the service of the
responder by overwhelming the responder’s resource.

Type 1 adversary (ad1) computes a valid first
message (may be pre-computed in practice), and
then takes no further action in the protocol.

3More formal descriptions are available on the official website
of CPN Tools, http://wiki.daimi.au.dk/cpntools/cpntools.wiki

Type 2 adversary (ad2) completes the protocol
normally until the third message is sent and takes
no further action after this. The computations
of this adversary include searching for a correct
client puzzle solution J , generating a session key
Ke and encrypting a public key PKI , and finally
computing a digital signature SigI .

Type 3 adversary (ad3) completes the protocol
step one and two with the exception that the ad-
versary does not verify the responder signature
sigR1. The adversary searches for a correct client
puzzle solution J but randomly chooses the re-
maining message elements: an encrypted element
Ke{HII } and a digital signature sigI . The adver-
sary takes no further action in the protocol.

Type 4 adversary (ad4) is like an adversary type
3, except that the client puzzle solution J is now
also chosen randomly.

To clarify the description of adversaries’ ability,
the major goal of Type 1 adversary is to overwhelm
the responder’s storage by sending a large number of
requested packets, for example, a denial-of-service at-
tack via ping (CERT 1996a) and SYN flooding attack
(CERT 1996b), while the major goal of Type 2, 3, and
4 adversary is to force the responder to waste com-
putational resources up to the final step of the digital
signature verification and digital signature generation
which are expensive operations.

4.3 Experiment

To obtain experimental results, we set up two main
different simulations;

Experiment 1: The purpose of the first experi-
ment is to compare computational cost of the pro-
tocol execution based on the key concept of Mead-
ows’ cost-based analysis between all principals with
some possible ranges of puzzle difficulty (k) including
k = 0 (which means that no puzzle is required), easi-
est value k = 1 for contrasting the difference between
ad3 and ad4, intermediate values k = 10, k = 20,
and k = 40 for a hardest value as instructed in HIP
specification. In this simulation, we allow individ-
ual initiators to initiate a request token only once,
while the responder is able to flexibly adjust the puz-
zle difficulty within initially defined values. Once the



Table 2: Comparison of Computational Cost of HIP with k=1 and k=10
Authentication Initiator Responder

Protocol k=1 k=10 J ,E1,sigI valid only J valid Everything invalid

hc 19973 22017 19591 - -
ad1 0 0 - - 2

HIP ad2 14982 17026 19591 - -
ad3 4 2048 - 4998 -
ad4 0 0 - - 6

simulation has arrived to the final step, we record the
total computational cost of individual user comparing
to the responder on specified ranges of k.

Experimental Result: During the protocol exe-
cution, the initiator sends a request message to the
responder using the host identity tag (HIT ) which is
a hash of the host identifier (HI ) used in HIP pay-
load and to index the corresponding state in the end
hosts. Therefore, the initiator only employs cheap op-
erations at the beginning step. We assume that the
computation at this step can be precomputed, so the
cost at the first operation would be negligible. Once
the responder receives the requested message, the re-
sponder requires a hash operation and some values
from the precomputation for returning to the initia-
tor in the second step. This operation is a cheap
operation similar to the initiator’s.

When the initiator receives the replied message,
only honest clients participate in the verification of
HIT and responder’s signature, so the cost is equal
to the HIT verification plus signature verification. In
the case of ad1, it does not take any further actions
after the first message, therefore the computational
cost is zero for the second stage. The operations in
message three of the initiator include the brute-force
search to find the puzzle solution, and the key gen-
eration. The cost of solving a puzzle depends on the
value of k in the puzzle message field. However, only
an hc, ad2, and ad3 is required to solve the puzzle
solution. Like ad1, the ad4 does not attempt to solve
the puzzle. As a result the puzzle difficulty does not
affect computational cost on this type of adversary.
Another important thing to note is that, the cost of
the adversary to spoof, insert, or interrupt the mes-
sage has not been defined in this phase. So, we set
the cost of generating randomly chosen messages in
the case of ad3 and ad4 to be zero.

Considering the task on the responder’s machine
when it receives the third-step message from the ini-
tiator, the responder begins to validate the puzzle so-
lution which is defined as a cheap operation because
the responder performs only one hash calculation. If
it is invalid, the process will stop and the responder
will drop the corresponding packet from the connec-
tion queue (the system will return a resource to the
responder). Otherwise, the responder performs the
decryption to obtain an initiator’s public key. The
responder finally verifies the signature by using the
initiator’s public key obtained in the previous step.
The result would be either valid or invalid. After
the authentication has been completed, the responder
and the initiator will perform a key confirmation and
start to exchange information. Table 2 summarizes
the computational cost when the puzzle difficulty is
set to k=1 or k=10 comparing between every princi-
pal (honest client and adversaries) and the responder.
The experimental result shows that the most effective
adversary is ad3 (the greatest different threshold be-

tween ad3 and the responder) because ad3 can force
the responder to engage in the expensive tasks, i.e.
digital signature verification.

Figure 3 illustrates the computational cost of hc,
ad2, and ad3, respectively. In the comparison charts,
we measure the cost of those users who engage in solv-
ing the puzzle of the difficulty level k = 0, 1, 10, 20, 40.

(a) Computational Cost between hc and a Responder

(b) Computational Cost between ad2 and a Responder

(c) Computational Cost between ad3 and a Responder

Figure 3: Comparison of Computational Cost on HIP
with different ranges of k

Comparison between Figures 3(a) and 3(b) shows
that hc and ad2 incur similar computational costs for
the same value of k chosen. This illustrates well the
effectiveness of HIP in achieving its aims in resisting
DoS attacks, at least against this type of adversary.
On the other hand, ad3 and ad4 spend very small
computational resources compared with the respon-
der because both adversaries use some random mes-
sage elements. This situation would bring the respon-
der to the risk of DoS attacks if the value of k is not
chosen properly. Figure 3(c) indicates that a value



of k a little above 10 would be appropriate to ensure
that ad3 uses as much computation as the responder.

Experiment 2: The purpose of the second experi-
ment is to measure a tolerance of the responder and
to identify the most effective strategy to deny ser-
vice. The result can be used to compare with the first
experiment for confirming whether Meadows’ cost-
based framework is effective for evaluating the DoS-
resistant protocols or not. In order to examine the
protocol, we select two possible values from the ex-
periment 1, i.e. k = 1 and k = 10 for achieving this
simulation. We choose those two values because we
want to investigate the different behaviour of ad3 and
ad4 (if we choose k = 0 no client puzzle is required,
the task of both adversaries will be identical). Also,
both of those values do not put excessive computa-
tional effort to the honest client and the total task is
still in the acceptable threshold comparing to tasks
on the responder (see Figure 3(a)).

In order to allow the responder to flexibly adjust
puzzle difficulty between those two values more effi-
ciently, we simply insert a counter into the model for
measuring the condition of a responder’s workload.
Once the workload has reached the maximum toler-
ance, the responder will increase the puzzle difficulty
to the higher level for delaying the incoming rate of
requested messages.

Additional to the first experiment, we allow a re-
sponder to participate with a pair of initiators (hc and
a single type of adversary). We assume that a respon-
der has to deal with different strategies of adversary
and different amount of packets which consist of both
legitimate and bogus messages. With regard to the
number of packets, we allow three different scenarios
for both honest client and adversary;

• Honest Client : initiates requests, C, at 80%,
100%, and 150% of the responder’s capacity (R).

• Adversary : floods bogus requests, Z, at 100%,
200%, and 1000% of the responder’s capacity (R).

Considering the initiator’s packet, there are differ-
ent actions from initiators and the responder during
the protocol run. Honest clients initiate a request
only once and keep waiting to process next steps.
This delay is described by means of Timed CPNs, i.e.
every transition which relates to cryptographic oper-
ations is defined as a timed process. This amount of
time is calculated and assigned by using data from
cryptographic benchmarks shown in Table 1. Dur-
ing the simulation, if honest client’s requests have
been rejected under DoS circumstances, hc gives up
to open another session. In term of adversaries, there
are two different situations when their packets are
rejected by the responder; 1) the responder detects
the bogus messages during the verification steps, and
2) the responder does not have enough resources for
serving any requests. Once the responder detects the
attack and rejects those packets, adversaries will lose
those packets from the system.

Finally, in order to examine the tolerance of HIP
protocol under different attack strategies, each indi-
vidual adversary has been made a pair with an honest
client during the protocol execution. To make an eval-
uation, the number of successful legitimate requests
that the responder can serve under different adver-
sary’s abilities has been measured as the percentage
of successful packets. We achieve this task by insert-
ing places for displaying the number of completed and
rejected messages at the responder’s network.

Experimental Result: In the second experiment
when we prohibit the responder’s ability to adjust k,

we have seen from Figure 4 that when adversaries
increase the number of bogus messages in the sys-
tem, the percentage of successful messages from hon-
est clients to obtain a service will drop drastically.
Comparing different types of adversary, the most ef-
fective is ad4 who sends bogus messages to the re-
sponder by crafting messages randomly. This is be-
cause ad4 can flood a large number of messages to
overwhelm the responder’s resource quicker than the
others, which causes the responder to reject the next
incoming messages from honest clients. Although ad-
versaries’ packets will be detected and discarded by
the responder, all adversaries are able to flood new
bogus messages as soon as they receive returned pack-
ets from the responder at phase two.

(a) hc’s load = 80% of R

(b) hc’s load = 150% of R

Figure 4: Percentage of throughput from hc with k=1

Comparing ad1 and ad4, even though both of them
craft random messages, ad4 achieves its goal at a
higher rate than ad1. That is because the respon-
der can process the incoming request at step 1 and
clear a connection queue faster than step 3. (In step
1, the responder only participates in the protocol by
choosing the puzzle difficulty (k) and pre-computed
information, and then returns it to ad1, which in-
volves an expensive verification in step 3.) Although
ad1 can re-send bogus messages after receiving replied
messages, this does not cause the responder to reject
a large number of messages because HIP mitigates the
problem of flooding messages to overwhelm a resource
at step 1 by adopting a stateless-connection. On the
other hand, the task of ad4 to fill up the respon-
der’s queue at step 3 by flooding random messages
can be achieved more easily than ad1. Even though
HIP integrates a gradual authentication in this step,
the process of checking a puzzle solution and a digital
signature is longer than the whole process at step 1,
therefore, the responder’s queue would be more easily
overwhelmed in step 3 than in step 1.



Considering ad2 and ad3 who attempt to deny ser-
vices at phase 3 by computing the puzzle solution, the
result shows that ad3 succeeds at a higher proportion
than ad2. The reason is that ad3 floods attack mes-
sages at higher speed than ad2 who uses more effort
in the generation of message two than ad3. Nonethe-
less, both of them can force the responder to engage
in signature verification. (Although ad4 floods a large
number of messages at step 3 as well as ad2 and ad3,
ad4 cannot force the responder to engage in expensive
operations because the responder is able to detect the
forgery at the cheap phase; the puzzle verification.)

Without the ability to adjust puzzle difficulty, the
percentage of successful messages in the system with
hc and ad4 is lower than the others because ad4 floods
message three at a higher rate than the other types.
As a result, the most effective adversary to deny ser-
vice to the responder would be ad4 that attacks the
verification phase. Particularly, most key agreement
protocols incorporate verification tasks that would be
susceptible to resource exhaustion attacks.

Finally, the result of the combination attack, il-
lustrated as All in the graph of figure 5, shows that
when the responder has to deal with all types of ad-
versary, the percentage of legitimate users served by
the responder will fall significantly with increment of
bogus messages.

Having analysed the system with non-adjustable
client puzzle, we would like to compare such results
to the system integrating with adjustable client puz-
zle for investigating the usefulness of puzzle difficulty
under equivalent magnitude of resource exhaustion
attacks. In order to adjust the puzzle difficulty, we
allocate two possible values for the responder to de-
termine. Under normal circumstances, the responder
selects k=1, which means an easiest puzzle solution
is required from the initiator. Once the responder
receives more requested packets than its maximum
capacity to handle, the responder raises the puzzle
difficulty to a next level that we set to k=10. This
parameter would help the responder to slow down the
incoming rate by requiring work of the initiator to
solve puzzles at the factor of 210 because this puzzle
technique is Aura’s hash-based puzzle (Aura, Nikan-
der & Leiwo 2000).

From the experimental result in figure 5, the num-
ber of attacking machines that the responder can tol-
erate is increased, i.e. honest clients have succeeded
to establish a connection at higher proportion com-
pared to the result of an experiment which includes
attack techniques from four types of adversary.

Another interesting result is that the successful
rate of message from hc in the case of ad4’s strat-
egy is higher than the non-adjustable technique. The
reason is that ad4 does not compute the puzzle solu-
tion, so, no matter what the puzzle difficulty is, ad4
can flood bogus messages at the equivalent speed as
the simulation of a non-adjustable puzzle. However,
at that amount of bogus messages, there are only mes-
sages from ad4 (no legitimate traffic because honest
clients have to spend some amount of time to solve the
puzzle solution), or only a few messages from hc that
arrive to the connection queue before the responder
increases puzzle difficulty. As a result, the respon-
der can validate the puzzle solution before the next
group of messages have arrived. Undoubtedly, these
bogus messages from ad4 will be rejected at the first
step of verification which requires only a short period
and removes such attack from the connection queue.
However, this situation does not occur in the case of
ad3 because ad3 has to spend time to solve the puzzle
as well as hc.

(a) hc’s load = 80% of R

(b) hc’s load = 150% of R

Figure 5: Percentage of throughput from hc with k is
chosen between 1 and 10

5 Discussion

Comparing the system when the responder is unable
to adjust puzzle difficulty, the experimental result
from Meadows’ cost-based framework identifies that
ad3 is the most effective strategy (Table 2 in the col-
umn k=1) because ad3 spends tiny computational
cost to force the responder to compute up to 4998
computational units. (Although ad4 does not spend
any computation, the responder requires only a cheap
computation for detecting and discarding those bogus
messages.) In contrast, the Timed CPNs simulation
indicates that ad4 is the most effective strategy shown
in Figure 4.

When we allow adjustable puzzle difficulty (Figure
5), ad3 becomes the most effective technique in the
Timed CPNs simulation-based analysis, while ad4 is
identified as the most effective technique in Meadows’
cost-based framework. (Once the responder slightly
increases puzzle difficulty, the different gap of compu-
tational cost between ad3 and the responder becomes
narrow, but remains the same between ad4 and the
responder. The cause of this result from ad4 is al-
ready explained in Section 4.3.)

The reason why both simulations provide us a dif-
ferent result is because we allow the adversaries’ ca-
pability to constantly flood new bogus messages when
they receive return messages at the second phase in
the time-based analysis. As a result, ad4 should be
the most effective adversary who depletes the respon-
der’s connection queue and blocks legitimate users
from acquiring services faster than others. Com-
paring to ad3, even though those bogus messages
from ad4 will be removed from the connection queue
quicker, a new stream of ad4’s bogus messages still
keeps the responder busy to verify them.

Contrasting the experimental result of Meadows’



cost-based framework and the Timed CPNs simula-
tion, the cost-based analysis considers only the cost
to an individual adversary to perform a set of identi-
fied actions to a certain point of the protocol execu-
tion compared to the cost of protocol engagement by
the responder’s machine. The simulation-based anal-
ysis is able to define more sophisticated techniques of
the adversary as well as to involve a large amount of
packets launched by multiple participants. Moreover,
some hidden parameters, such as time as examined
by Chan et al. (2006), can be included and evalu-
ated in the analysis. As a result, lack of ability to
model realistic events related with time factors and
to handle large amount of messages is a limitation for
analysing DoS-resistant protocols in Meadows’ cost-
based framework.

Finally, the most obvious benefit from the
simulation-based analysis is that we can observe not
only the behaviour of adversaries, but also the conse-
quence of attacks to the system during the protocol
execution. In addition, the analyst is able to more
easily understand and evaluate the final outcome con-
trasting with cost-based analysis. In the cost-based
evaluation, the analyst has to take extra care in or-
der to consider and identify adversary capability as
well as the effect of such attacks because sometimes
the cost-based framework might generate ambiguous
output; for example, considering the result of ad3
comparing with ad4 under cost-based analysis from
Table 2, we conclude that the most effective strat-
egy is performed by ad3 because the total cost differ-
ence between the responder and such adversaries is
the most. However, some may argue that ad4 should
be the most destructive scenario because the ratio of
computational effort between the responder and such
adversaries is infinity no matter what the chosen value
of puzzle difficulty is.

6 Conclusion

This work has achieved the aims of extending the
Meadows’ cost-based framework to provide more
accurate representation of computational cost and
shown the potential of automated analysis. Moreover,
we have explored unbalanced computational vulner-
abilities of HIP by using a simulation approach pro-
vided in CPN Tools. By comparing experimental re-
sults from Meadows’ cost-based and simulation-based
analysis, we have found a limitation of Meadows’
framework to define the ability of advanced adver-
saries and address DoS threats.

Because the nature of DoS attacks is quite sub-
tle, the protocol developer should take extra care
in the design and evaluation phase. Simulation is
one promising technique that provides state explo-
ration for searching all possible vulnerabilities in DoS-
resistant protocols. In future work, we plan to extend
this research by using the model checking capabil-
ities of CPN tools to automatically verify the sys-
tem by traversing the model and checking whether
the cost tolerance between initiator and responder
exceeds some reasonable threshold. Moreover, the
power of adversaries can be extended in different ways
in order to model more powerful attacks. For exam-
ple, the advanced adversary, who attempts to attack
the protocol at the third message, can be extended
to flood reused packets from previous connections,
eavesdrop messages from a valid communication, or
craft bogus messages using existing messages includ-
ing valid or invalid puzzle solutions as well as digital
signatures. When inserting such advanced abilities
into the model, we also require a technique to mea-
sure and identify cost of those operations in order to
achieve a formal analysis.
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Appendix

A Cost-Based Definition

To analyse the protocol specification, we begin with
the notation introduced by Meadows (2001).

Definition 1: The sequence of messages sent
from the principal A to the principal B in the pro-
tocol is written in the form

A → B : T1, . . . , Tk ‖ M ‖ O1, . . . , On

• Ti are the operations performed by the principal
A for preparing the message M .

• M is the sent message from the principal A and
subsequently received by the intended recipient B.

• Oj are the operations performed by the principal
B for processing the message M .

Definition 2: An event in the operation A → B
: T1, . . . , Tk ‖ M ‖ O1, . . . , On is one of:

• an operation in Ti or an operation Oj.

• A sends M to B, or B receives M from A.

There are three types of events:

1. Normal events appear at both principals and al-
ways succeed and are followed by the next events.

2. Verification events appear only at the recipient
side and can evaluate to either success or failure.

3. Accept events appear at the end of the opera-
tions Oj indicating the completion of the process.

Definition 3: A cost set C is a set with operation
+ with partial order ≥ such that

x + y ≥ x and x + y ≥ y for all x, y ∈ C.

Definition 4: Event cost function (δ) and pro-
tocol engagement cost function (∆)

• δ is an event cost function iff it trans-
fers sets of operations in the protocol into
the cost set C which consists of four values:
expensive > medium > cheap > 0 .

• δ′ is a message processing cost function related
to δ defined on verification events {Vi} ⊂ {Oj}
such that

for A → B : T1, . . . , Tk ‖ M ‖ O1, . . . , On
if {Vi} = {Oj}, then

δ′(Vi) = δ(O1) + . . . + δ(Oj)

• ∆(On) is the sum of all operational costs appear-
ing at the responder B up to the accept event On,
plus operational costs of processing the response
message related to such accept event On.

Definition 5: Attacker event cost function φ,
attacker cost function Φ, and attack cost function Θ
are defined as follows.

• Φ({x1, . . . , xn}) = φ(x1)+ . . .+φ(xn) where
xi are the set of available attacker’s capabilities
and φ is a function for interpreting attacker’s ca-
pabilities to cost set.

• Θ is a function from the set of events defined by
the protocol to a cost set.

Definition 6: Defender cost set C, attacker cost
sets G, tolerance relation τ are defined as follows.

• τ ⊂ C×G; consists of all pairs (c, g) such that
the protocol designer is willing to tolerate the re-
sponder expending resources up to cost c, as long
as the attacker has to extend resources of cost g
or greater. A tuple (c′, g′) is said to be within the
tolerance relation if there exists (c, g) ∈ τ , such
that c′ ≤ c and g′ ≥ g.

Once the actions of each protocol principal
are classified into the computational costs cheap,
medium, or expensive, all actions of the protocol run
can be compared between the initiator and the re-
sponder. The protocol is secure against DoS attacks,
if the final cost is great enough from the point of view
of the attacker in comparison with the cost of engag-
ing in the events up to an accepted action from the
point of view of the defender. Otherwise, we conclude
that the protocol is insecure against DoS attacks.


