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Applications

PROF. DR. KARL HEINRICH HOFMANN

A tutorial for the signal processing practitioner

his year marks the pearl anniversary of the bootstrap. It has been 30 years since

Bradley Efron’s 1977 Reitz lecture, published two years later in [1]. Today, bootstrap

techniques are available as standard tools in several statistical software packages and

are used to solve problems in a wide range of applications. There have also been sev-

eral monographs written on the topic, such as [2], and several tutorial papers writ-
ten for a nonstatistical readership, including two for signal processing practitioners published
in this magazine [4], [5].

Given the wealth of literature on the topic supported by solutions to practical problems, we
would expect the bootstrap to be an off-the-shelf tool for signal processing problems as are max-
imum likelihood and least-squares methods. This is not the case, and we wonder why a signal
processing practitioner would not resort to the bootstrap for inferential problems.

We may attribute the situation to some confusion when the engineer attempts to discover
the bootstrap paradigm in an overwhelming body of statistical literature. To give an example
and ignoring the two basic approaches of the bootstrap, i.e., the parametric and the nonpara-
metric bootstrap [2], there is not only one bootstrap. Many variants of it exist, such as the small
bootstrap [6], the wild bootstrap [7], the naive bootstrap (a name often given to the standard
bootstrap resampling technique), the block (or moving block) bootstrap (see the chapter by Liu
and Singh in [8]) and its extended circular block bootstrap version (see the chapter by Politis
and Romano in [8]), and the iterated bootstrap [9]. Then there are derivatives such as the
weighted bootstrap or the threshold bootstrap and some more recently introduced methods
such as bootstrap bagging and bumping. Clearly, this wide spectrum of bootstrap variants may
be a hurdle for newcomers to this area.

IEEE SIGNAL PROCESSING MAGAZINE [10] JULY 2007 1053-5888/07/$25.0002007IEEE



The name bootstrap is often associated with the tale of Baron
von Miinchhausen who pulled himself up by the bootstraps from
a sticky situation. This analogy may suggest that the bootstrap is
able to perform the impossible and has resulted sometimes in
unrealistic expectations, especially when dealing with real data.
Often, a signal processing practitioner attempting to use the
basic concepts of the bootstrap is encouraged by his or her early
simulation studies. However, this initial fascination is often fol-
lowed by fading interests in the bootstrap, especially when the
technique did not prove itself with real data. Clearly, the boot-
strap is not a magic technique that provides a panacea for all
statistical inference problems, but it has the power to substitute
tedious and often impossible analytical derivations with compu-
tational calculations [3], [5], [10]. The bootstrap indeed has the
potential to become a standard tool for the engineer. However,
care is required with the use of the bootstrap as there are situa-
tions, discussed later, in which the bootstrap fails [11].

The first question a reader unfamiliar with the topic would
ask is, “what is the bootstrap used for?” In general terms, the
answer would be “the bootstrap is a computational tool for sta-
tistical inference.” Specifically, we could list the following
tasks: estimation of statistical characteristics such as bias, vari-
ance, distribution functions and thus confidence intervals, and
more specifically, hypothesis tests (for example for signal
detection), and model selection. The following question may
arise subsequently, “when can I use the bootstrap?” A short
answer to this is, “when I know little about the statistics of the
data or I have only a small amount of data so that I cannot use
asymptotic results.”

Our aim is to give a short tutorial of bootstrap methods sup-
ported by real-life applications so as to substantiate the answers
to the questions raised above. This pragmatic
approach is to serve as a practical guide rather than a
comprehensive treatment, which can be found else-
where; see for example [2]-[5].

THE BOOTSTRAP PRINCIPLE

Suppose that we have measurements collected in
x={x1,x2,...,Xn}, which are realizations of the
random sample X = {X71, X», ..., X,}, drawn from
some unspecified distribution Fy. Let § = §(X) be an
estimator of some parameter 6 of Fx, which could be,
for example, the mean 6 = uy of Fx estimated by the
sample mean § = iy = 1/n Z’l?:lX,-. The aim is to
find characteristics of 6 such as the distribution of 6.
Sometimes, the parameter estimator 0 is computed
from a collection of n independently and identically
distributed (i.i.d.) data X1, X9, ..., Xp. If the distri-
bution function Fy is known or is assumed to be
known and given that the function 4(X) is relatively
simple, then it is possible to exactly evaluate the dis-
tribution of the parameter estimator . Textbook
examples of this situation are the derivations of the
distribution functions of the sample mean [ty and its
variance when the data is Gaussian.

Bootstrap Sample x,*

(© (d)

In many practical applications, either the distribution Fy is
unknown or the parameter estimator 9 (X) is too complicated for
its distribution to be derived in a closed form. The question is
then how to perform statistical inference. Specifically, we wish to
answer the following question: how reliable is the parameter esti-
mator 9? How could we, for example, test that the parameter 0 is
significantly different from some nominal value (hypothesis test)?
Clearly, we could use asymptotic arguments and approximate the
distribution of 4. In the case of the sample mean /ix above, we
would apply the central limit theorem and assume that the distri-
bution of jix is Gaussian. This would lead to answering inferen-
tial questions. But how would we proceed if the central limit
theorem does not apply because 7 is small and we cannot repeat
the experiment? The bootstrap is the answer to our question. Its
paradigm suggests substitution of the unknown distribution Fyx
by the empirical distribution of the data, ﬁx- Practically, it means
that we reuse our original data through resampling to create what
we call a bootstrap sample. The bootstrap sample has the same
size as the original sample, i.e., x; = {x], x5, ..., %} for
b=1,2,...,B, where x}, i=1,2,...,n are obtained, for
example, by drawing at random with replacement from x. The
simplest form of resampling is pictured in Figure 1. Each of the
bootstrap samples in the figure is considered as new data. Based
on thg bootstrap sample x;, bootstrap parameter estimates
0y =0(x;) forb=1,..., Bare calculated. Given a large num-
ber B of bootstrap parameter estimates, we can then approximate
the distribution of § by the distribution of 8*, which is derived
from the bootstrap sample x*, i.e., we approximate the distribu-
tion £, of 6 by F., the distribution of 6%,

From a practical point of view, a limitation of the bootstrap
may appear to be the i.i.d. data assumption, but we will show

(6 Colors) (< 6 Colors)

Original Data x Bootstrap Sample x;*

(a) (b)

(< 6 Colors) (< 6 Colors)

Bootstrap Sample xg*

[FIG1] The independent data bootstrap resampling principle.
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[FIG2] Typical example of a slit lamp image of an eye
with manually selected points (yellow crosses) around the
limbus area.

later how this assumption can be relaxed. There are, however,
several other technical points that need to be addressed. The
sample length n is also of great importance. Bootstrap methods
have been promoted as methods for small sample sizes when
asymptotic assumptions may not hold. However, as with any sta-
tistical problem, the sample size will influence the results in
practice. The number of bootstrap samples B necessary to esti-
mate the distribution of a parameter estimator has also been
discussed in the statistical literature [12]. One rule of thumb is
for the number of bootstrap samples B to take a value between
25 and 50 for variance estimation and to be set to about 1,000
where a 95% confidence interval is sought. However, with the
fast increasing computational power, there are no objections to
exceeding these numbers.

Note that the bootstrap simulation error, which quantifies
the difference between the true distribution and the estimated
distribution, comprises two independent errors of different
sources, i.e., a bootstrap (statistical) error and a simulation
(Monte Carlo) error. The first error is unavoidable and does not
depend on the number of bootstrap samples B but on the size n
of the original sample. The second one can be minimized by
increasing the number of bootstrap samples. The aim is there-
fore to choose B so that the simulation error is no larger than
the bootstrap error. For a large sample size n, we would reduce
the number of samples B to reduce computations. However,
the larger the size n of the original data, the smaller the boot-
strap error. Thus, a larger number of bootstrap samples is
required for the simulation error to be smaller than the boot-
strap error. We found that the rule of thumb of choosing
B = 40n, proposed by Davison and Hinkley [13], is appropriate
in many applications. If desired, a method called jackknife-
after-bootstrap [14] can be used to assess the contribution of

each of these errors (i.e., bootstrap error versus Monte Carlo
error). In practice, the value of B is application dependent and
is left to the experimenter to choose.

The assumption of the original data being a good representa-
tion of the unknown population is not well articulated in the
statistical literature. However, it is quite intuitive to a signal
processing practitioner who is familiar with the jargon garbage
in—garbage out. The issue essentially concerns the allowed
number of outliers contained in the original data sample for the
bootstrap to work because when we resample with replacement,
it is likely that we produce bootstrap samples with significantly
higher numbers of outliers than the original sample. The issue
of a good original sample is closely related to that of sample size.

Many success stories have been reported by both statisticians
and engineers, while little is shown on bootstrap failures. Cases
indeed exist where bootstrap procedures fail no matter how
good the original sample is and no matter how large n is. A clas-
sical example of bootstrap failure is when we apply the inde-
pendent data bootstrap to find the distribution of the maximum
(or the minimum) of a random sample. Another example is
when the mean of a random variable with infinite variance (e.g.,
from the family of «-stable distributions) is of interest. This
implies that standard bootstrap techniques may produce uncon-
trolled results for heavy-tailed distributions. See the work of
Mammen [15] for more details.

A promising method that has been reported to work when
the conventional independent data bootstrap fails is subsam-
pling. Note that subsampling has been developed as a method
for resampling dependent data under minimal assumptions and
is based on drawing at random subsamples of consecutive obser-
vations of length less than the original data size n. See the book
by Politis et al. [16] for more details.

AN IMAGE PROCESSING EXAMPLE

We consider an example of fitting a circle to a set of two-dimen-
sional (2-D) data. This is common in many image processing
and pattern recognition applications. The application we consid-
er is to fit functions to the outlines of the pupil and limbus (iris
outline) in eye images [17]. The performance of automatic pro-
cedures for extracting these features can be evaluated with syn-
thetic images. However, for real images and particularly for the
limbus, these procedures need to be benchmarked against man-
ual operators assisted with computer-based procedures for point
selection. An operator is asked to select a small number of

points (x;, y;),i=1,2, ..., n, where x; and y; denote the hori-
zontal and vertical point position (see the eight yellow crosses in
Figure 2).

A linear least-squares procedure can be applied to fit a circle,
modeled by the equation A2+ y + 2xxg + 2yyo + x% +
y% — R%2 =0, tothedata (x;, y)),i=1,2,...,n,sothat

o=l ]
x%—kyﬁ 2xn 2yn 1 3 &n
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[TABLE 1] BOOTSTRAP PROCEDURE FOR THE ESTIMATION
OF THE DISTRIBUTION OF P.

STEP 1) ESTIMATE THE THREE PARAMETERS OF THE CIRCLE xo. yo, AND R,
COLLECTED IN P AND CONSTRUCT AN ESTIMATE OF THE CIRCLE
USING Y =X - P.

STEP 2) CALCULATE THE RESIDUALSE=Y — Y. .

STEP 3) SINCE WE HAVE ASSUMED THAT THE RESIDUALS E ARE 11.D., WE
CREATE A SET OF BOOTSTRAP RESIDUALS E" BY RESAMPLING WITH
REPLACEMENT FROM E. NOTE THAT THE RESIDUALS NEED TO BE
CENTERED (DETRENDED) BEFORE RESAMPLING.

STEP 4) CREATE A NEW ESTIMATE OF THE CIRCLE BY ADDING THE BOOT-
STRAPPED RESIDUALS TO THE ESTIMATE, OBTAINED FROM THE
ORIGINAL DATAY INSTEP 1, LE., Y =X -P+E .

STEP 5) ESTIMATE A NEW SET OF PARAMETERS FROM THE NEWLY CREATED
BOOTSTRAP SAMPLE P* = (XTX)~'XTY". .

STEP 6) REPEAT STEPS 3-5 B TIMES TO OBTAIN A SET OF P}, P}, ..., P,
FROM WHICH EMPIRICAL DISTRIBUTIONS OF THE CONSIDERED
PARAMETER ESTIMATORS CAN BE OBTAINED.

where p1=xy, P2=4, m :x%—i—y%—Rz and ¢,
i=1,2,...,n,is the modeling error.

The above equation can be rewritten in the form
Y =X-P+E, for which an estimator for P is easily derived,
ie,P=XTx)"1x7y.

The question of interest is how well an operator can fit a cir-
cle to the limbus. One way of assessing the parameter estimator
would be to select eight data point pairs (considered in our
example) 1,000 times. Although feasible, this task is laborious,
and the results would most definitely be affected by the subse-
quently decreasing commitment of the operator. The alternative
is to use the bootstrap. Clearly, the selected data points (x;, y;),

i=1,2,...,n, are not i.i.d, unlike the modeling errors
gi,i=1,...,n, collected in the random sample
e ={e1,€2,...,¢&n}, which can be assumed to be i.i.d. Our

bootstrap procedure is described in Table 1.

An example of the distribution (histogram) of the limbus
radius obtained with the bootstrap method is shown in Figure 3.
Clearly, the bootstrap is capable of providing answers, substitut-
ing the tedious manual labor that would have been required to
complete this task. In the above example, we used the bootstrap
to find the distribution of the limbus radius estimator. This is
not the only question of interest in this application. The boot-
strap can also be used to estimate the existing bias when fitting
the data to ellipses [18], or it can be used for testing whether the
limbus or pupil parameters are different from the left to the
right eye in anisometropic subjects.

BOOTSTRAP TECHNIQUES FOR DEPENDENT DATA

The assumption that the data is i.i.d. is not always valid. Here we
provide some insight as to how to resample dependent data.
Note that if the data was i.i.d., standard bootstrap resampling
with replacement gives an accurate representation of the under-
lying distribution. Howevey, if the data shows heteroskedasticity
(the random variables in the sequence or vector may have differ-
ent variances) or serial correlation, randomly resampled data
would lead to errors.

One way to extend the basic bootstrap principle to dependent
data is the previously mentioned concept of data modeling and
the subsequent assumption of i.i.d. residuals that approximate
the modeling and measurement errors.

[TABLE 2] RESIDUAL-BASED BOOTSTRAP PROCEDURE ‘
FOR DEPENDENT DATA.

STEP 1) FIT A MODEL TO THE DATA.

STEP 2) SUBTRACT THE FITTED MODEL FROM THE ORIGINAL DATA TO
OBTAIN RESIDUALS.

STEP 3) CENTER (OR RESCALE) THE RESIDUALS.

STEP 4) RESAMPLE THE RESIDUALS.

STEP 5) CREATE NEW BOOTSTRAP DATA BY ADDING THE RESAMPLED
RESIDUALS TO THE FITTED MODEL FROM STEP 1.

STEP 6) FIT THE MODEL TO THE NEW BOOTSTRAP DATA.

STEP 7) REPEAT STEPS 4-6 MANY TIMES TO OBTAIN DISTRIBUTIONS FOR
THE MODEL PARAMETER ESTIMATORS.

There have been a variety of bootstrap methods developed for
dependent data models such as autoregressive (AR) and moving
average models (see [19] and references therein), and Markov
chain models (see the chapter by Athreya and Fuh in [8]), in
which the concept of i.i.d. residuals has been used. In analogy to
the linearization of a nonlinear problem, the idea here is to
reformulate the problem so that the i.i.d. component of the data
may be used for resampling. In most cases, the procedure fol-
lows the structure described in Table 2.

We used the above procedure in many signal processing
problems, including those related to higher-order statistics and
nonstationary signals with polynomial phase [3]. In some cases,
the residuals in Step 2 of the above procedure can be found as a
ratio of two parameter estimators. For example, in power spec-
trum density estimation [20], the ratios between the peri-
odogram and the kernel spectrum density estimator at distinct
frequency bins are assumed to be i.i.d. Note, however, that we
could not use the same concept for the bispectrum [3]. We also
note the approach taken by the authors in some real-life applica-
tions where the asymptotic independence of the finite Fourier
transform at distinct frequencies was explored so that sampling
could be undertaken in the frequency domain [3].

As an example, we describe below the principle of bootstrap
resampling for AR models. Given n observations xy,
t=1,...,n, of an AR process of order p and coefficients a,

120
8 _
© 100 | -
‘q-) —
‘5 |
8 80f | |
o
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> 60t
o
=
()
3 40}
°
(T
20}
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Bootstrap Estimates of Limbus Radius (mm)

[FIG3] Histogram of R, R5. ... . R} o based on the eight
manually selected limbus points.
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[TABLE 3] BOOTSTRAP RESAMPLING FOR AR MODELS.

STEP 1) WITH THE ESTIMATES &; OF ax FOR k=1,..., p (OBTAINED BY
SOLVING THE YULE-WALKER EQUATIONS), CALCULATE THE
RESIDUALS AS 2; = x; + 3 5 1ak)(r «FORt=p+1,..., n.

STEP 2) CREATE A BOOTSTRAP SAMPLE X7, ..., X, BY DRAWING

F AT zn THEN LETTING x; = x, FORt=1,..., p AND
XE= = Axi, 2 FORt=p+1,..., n.
STEP 3) OBTAIN BOOTSTRAP ESTIMATES &7, ..., 4% FROM Xihon, Xy
STEP 4) REPEAT STEPS 2-3 B TIMES TO OBTAIN &;°, ..., *b FOR
b=1,..., B.

k=1,...,p, we would proceed as summarized in Table 3 to
create bootstrap parameter estimates so as to estimate the dis-
tribution functions of the parameter estimators, based on the
original data [3].

The bootstrap estimates El’fb, o &;b forb=1,...,B are
used to estimate the distributions of a, ..., @, or their statisti-
cal measures such as means, variances, or confidence intervals.

Practical examples of the above procedure are shown in what
follows in the context of hands-free telephony and micro-
Doppler radar.

AN EXAMPLE FOR HANDS-FREE TELEPHONY

Hands-free communication in cars can be severely disturbed by
car noise. To ensure understandability, noise-reduction algo-
rithms are necessary. These are usually assessed by listening to
estimated speech samples. However, a quantitative assessment
seems to be a more objective approach. In this example, we pro-
pose to assess the confidence intervals of the parameters of an
AR model used to represent the recovered speech signal to ulti-
mately compare them with those of the AR parameters corre-
sponding to the original signal. A bootstrap approach is
suggested due to the complicated nature of the signals and their
statistical properties.

The single-channel recorded signal x(¢) is described as a
mixture of a clear speech signal s(¢) and car noise n(t). The
noise reduction approach we use here, proposed in [21],
assumes both speech and car noise to be AR processes contami-
nated by white noise. The algorithm uses subband AR modeling
and Kalman filtering to find a noise-reduced estimate 5§(¢) of
the clear speech signal s(¢), as shown in Figure 4.

An overview of the noise-reduction algorithm is as follows
(details can be found in [21]):

n(t) AR Model Kalman-

= Estimation Filter
@
£ |
(0]

s(1) X9 | =
0
(2]
>
)
=
<

[FIG4] Noise reduction algorithm using subband AR modeling and Kalman filtering.

m To obtain small AR model orders, the signal is split into 16
subbands with an undersampling rate of 12. The AR model
orders used are 46 for clear speech and 2 for car noise.

m Signal segments with 48 ms duration are considered to be

quasistationary.

m The block “AR Model Estimation” in Figure 4 can be

roughly described as follows.

— If only noise is present, the noise spectrum is measured
by means of a smoothed periodogram.

— If voice activity is detected, the current noise spectrum is
held fixed and is subtracted from the disturbed speech spec-
trum, to obtain an estimate of the speech only spectrum.

— AR parameter and input power estimation is performed
for both noise and speech separately.

A single-channel speech signal was used. The recording was
the German sentence: “Johann Philipp Reis fithrte es am 26.
Oktober 1861, erstmals in Frankfurt am Main, vor und nutzte
dazu als einen der ersten Testsitze: ‘Pferde fressen keinen
Gurkensalat.”” A quasistationary segment of this recording is
then chosen corresponding to the vocal part of “Reis.” This sig-
nal segment, sampled at 8 kHz is shown in Figure 5(a). After
estimating the model order to be 11, by means of the minimum
description length (MDL) information theoretic criterion, we
estimate the AR parameters and use the bootstrap to find their
distributions as described in Table 3.

Figure 5(b) shows the residuals, obtained by inverse filtering
of the signal with the estimated parameters of the AR model
from the recovered speech signal §(¢). The residuals are close to
white, as can be inferred from the covariance function of the
residuals shown in Figure 5(c).

A quality assessment of a noise-reduction algorithm
should give a measure of how well §(¢) estimates s(¢), or how
close §(¢) is to s(¢) in a statistically meaningful way. This
could be done based on the bootstrap distributions of the AR
parameter estimates of s(f) and §(7). We use 90% confidence
intervals of the AR parameters based on the estimated values
to assess how close the original (clear speech) and the noise-
reduced signals are. Figure 5(d) shows the bootstrap 90%
confidence intervals for the 11 AR parameters of the noise-
reduced signal §(¢) along with the estimated AR parameters
of 5(¢) (black crosses) and the estimated AR parameters of
s(t) (red diamonds). The confidence intervals for the fitted AR
parameters to the original speech signal
s(t) (not shown in the figure) are in
close agreement with the confidence
intervals shown in Figure 5(d).

From this example, we can deduce that
A the bootstrap can be used to assess the
st , quality of the noise-reducing algorithm

using approximate confidence bounds. As
an alternative to the common practice of
listening to both the original speech and
the noise reduced speech to assess clarity,
the confidence bounds of their respective
AR parameters are compared.

Synthesis Filterbank
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ALTERNATIVE DEPENDENT DATA
BOOTSTRAP METHODS

Several questions may be asked at
this stage: how can one bootstrap
non-i.i.d. data without imposing a
parametric model? Can one resample

THE BOOTSTRAP HAS THE POWER
TO SUBSTITUTE TEDIOUS AND
OFTEN IMPOSSIBLE ANALYTICAL
DERIVATIONS WITH
COMPUTATIONAL CALCULATIONS.

We note that the resampling of
blocks of data is based on the
assumption that the blocks are i.i.d.
This is the case when the data rep-
resents a process that is strong mix-
ing. This means, loosely speaking,

the data nonparametrically? First

answers to these questions have been

provided by Kiinsch [22], who introduced the concept of resam-
pling sequences (chunks) of data. The method is referred to as the
moving block bootstrap. In essence, rather than resampling with
replacement single data points, sets of consecutive points are
resampled to maintain, in a nonparametric fashion, the structure
between neighboring data points. The segments chosen for boot-
strapping can be either nonoverlapping or overlapping. To illus-
trate this concept, we use a sequence of Iskander’s eye aberration
data measured by a Hartmann-Shack sensor [23]. The data is
sampled at approximately 11 Hz and is composed of 128 data
points. We divide the sequence into nonoverlapping blocks of 16
samples each, as illustrated in the top panel of Figure 6. The
blocks are then resampled to obtain the bottom panel of Figure 6.

0.8 — Clear Speech
A6 — Noise-Removed

0.4
0.2

Magnitude
o

50 100 150 200 250
Samples

(@)

2:5

1.5¢

omwwwwm
-0.5
-150 -100 -50 0 50 100 150

Lag
()

Covariance Value

that the resampling scheme
assumes that the data points that
are far apart are nearly independent.

If the data are to be divided into segments, the length of each
segment as well as the amount of overlap may become an issue.
Although automatic procedures for selecting these parameters
have been developed [24], in many practical situations, the
dependence structure of the sample may still need to be estimat-
ed or at least examined. The problem may become even more
complicated if the original data is nonstationary. There are
reported cases where moving block bootstrap techniques show a
certain degree of robustness for nonstationary data (see the chap-
ter by Lahiri in [8]). On the other hand, it is not guaranteed that
the moving block bootstrap estimates from a stationary process
would themselves result in stationary processes. This somewhat
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o = b w
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[FIG5] Results of the speech signal analysis experiment. (a) The original signal s(t) corresponding to the vocal part of “Reis” and its
noise-reduced version 5(t). (b) The estimated residuals and (c) their covariance structure. (d) The Estimated coefficients of the AR(11)

model and 90% confidence intervals.
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worrying observation of nonpreser-

vation of stationarity has been 0
reported in [25]. A resampling 8 oy
scheme in which the length of each £ Eg ’

block is randomly chosen (the so- g. o -0.02

called stationary bootstrap) provides = § 003

a solution to this problem [26]. See 3 a '

the paper by Politis [27] for some § S 004
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ods. Also, the amount of evidence
supporting the empirical validity of
those procedures is still limited. This
leads to an unpopular conclusion that
the bootstrap novice should attempt a
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model-based approach when dealing
with non-i.i.d. data, especially when
only limited knowledge of the data
dependence structure is available.
Nevertheless, there are practical cases
in which a model-based approach
combined with dependent data boot-
strap is powerful.

We now close our dependent data bootstrap treatment with
an example from radar.

MICRO-DOPPLER ANALYSIS
The Doppler phenomenon often arises in engineering applica-
tions where radar, ladar, sonar, and ultra-sound measurements
are made. This may be due to the relative motion of an object
with respect to the measurement system. If the motion is har-
monic, for example due to vibration or rotation, the resulting
signal can be well modeled by a frequency modulated (FM) signal
[28]. Estimation of the FM parameters may allow us to deter-
mine physical properties such as the angular velocity and dis-
placement of the vibrational/rotational motion which can in turn
be used for classification. The objectives are to estimate the
micro-Doppler parameters along with a measure of accuracy,
such as confidence intervals.

Assume the following amplitude modulation (AM)-FM signal
model:

s(8) = a(?) exp{jp (D)}, 1
where the AM is described by a polynomial: a(#; &) = ZZ:O ozktk
and @ = («, ... , ag) are the termed AM parameters. The phase
modulation for a micro-Doppler signal is described by a sinusoidal
function: ¢ () = —D/wm, cos(wmt + ¢).

The instantaneous angular frequency (IF) of the signals is
defined by

Time (s)

(b)

[FIG6] An example of the principle of moving block bootstrap. (a) Original data and (b) block
bootstrapped data. Note that some blocks from the original data appear more than once and
some do not appear at all in the bootstrapped data.

do(?)

. L
o(t; B) = i

= Dsin(wmnt+ ¢), 2)
where B = (D, wm, ¢) are termed the FM or micro-Doppler
parameters.

The micro-Doppler signal in (1) is buried in additive noise so
that the observation process is described by X (f) = s(f) + V(?),
where V(?) is assumed to be a colored noise process. Given obser-
vations {x(k)}}_, of X(¢), the goal is to estimate the micro-
Doppler parameters in B as well as their confidence intervals.

The estimation of the phase parameters is performed using a
time-frequency Hough transform (TFHT) [29], [30]. The TFHT
we use is given by

n—(L—1)/2+1

2

k=—(L—1)/2

H(B) = Pylk, wi(n; B)),

where (¢, B) is described in (2), and Pylk, wi(n2; B)) is the
pseudo-Wigner-Ville (PWVD) distribution, defined as

(L-1)/2

2

I=—(L—1)/2

Pl 0) = Alk)xlk + Dtk — e 722, (3)

for k=—(L—-1)/2,... ,n—(L—1)/2, where A[k] is a win-
dowing function of duration L. An estimate of B is obtained
from the location of the largest peak of H(B), i.e.,

B =arg maxg H(B). Once the phase parameters have been
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PWVD of the Radar Data
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[FIG7] (a) The PWVD of the radar data. (b) The PWVD of the radar data and the micro-Doppler signature estimated using the TFHT. (c)
The real and imaginary components of the radar signal with their estimated counterparts. (d) The real and imaginary parts of the

residuals and their spectral estimates.

estimated, the phase term is demodulated and the amplitude
parameters «y, . .. , ag are estimated via linear least-squares.
We now turn our attention to the estimation of confidence
intervals for D and w;, using the bootstrap. Given estimates for
« and B, the residuals are obtained by subtracting the estimat-
ed signal from the observations. The resulting residuals are not
i.i.d., and a dependent data bootstrap would seem a natural
choice. Due to some difficulties with a dependent data boot-
strap approach with real data, we chose to whiten the residuals
by estimating parameters of a fitted AR model. The innovations
are then resampled, filtered, and added to the estimated signal
term to obtain bootstrap versions of the data, as discussed pre-

viously. By reestimating the parameters many times from the
bootstrap data, we are then able to obtain confidence intervals
for the parameters of interest. This is demonstrated using
experimental data.

The results shown here are based on an experimental radar
system, operating at carrier frequency /. = 919.82 MHz. After
demodulation, the in-phase and quadrature baseband channels
are sampled at /5 = 1 kHz. The radar system is directed towards
a spherical object, swinging with a pendulum motion, which
results in a typical micro-Doppler signature. The PWVD of the
observations is computed according to (3) and shown in Figure
7(a). The sinusoidal frequency modulation is clearly observed.
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[FIG8] The bootstrap distributions and 95% confidence intervals for the FM parameters (a) D and (b) wp,.
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This example shows that the bootstrap is a
solution to finding distribution estimates for
D and ®m, a task that would be tedious or
even impossible to achieve analytically.

GUIDELINES FOR USING THE BOOTSTRAP
Let us summarize the main points from our
discussion. Is it really possible to use the
bootstrap to extricate oneself from a difficult
situation as anecdotally Baron von
Miinchhausen did? There are many dictionary
definitions of the word boofstrap. The one we
would like to bring to the readers’ attention
is: “to change the state using existing

Standard Bootstrap
Resampling Techniques

Data Dependent
Bootstrap Resampling

resources.” With this definition, the answer to
our question is affirmative. Yes, it is possible

[FIG9] A practical strategy for bootstrapping data.

Using the TFHT, we estimate the micro-Doppler signature as
discussed above and plot it over the PWVD in Figure 7(b). The
AM parameters of the signal are then estimated. The radar data
and the estimated AM-FM signal term are shown in Figure 7(c),
while the residuals obtained by subtracting the estimated signal
from the data are shown in Figure 7(d) together with their peri-
odogram and AR-based spectral estimates. The model appears to
fit the data well, and coloration of the noise seems to be well
approximated using an AR model.

After applying the bootstrap with B = 500, the estimated dis-
tribution of the micro-Doppler parameters and the 95% confi-
dence intervals for D and w;;, are obtained and shown in Figure 8.

to change our state of knowledge (e.g., the
knowledge of the distribution of parameter
estimators) based on what we have at hand,
usually a single observation of the process.
However, for the bootstrap to be successful, we need to identify
which resampling scheme is most appropriate. The initial deci-
sion must be based on the examination of the data and the prob-
lem at hand. If the data can be assumed to be i.i.d. (the unlikely
scenario in real world problems, but useful in simulation studies),
standard bootstrap resampling techniques such as the independ-
ent data bootstrap can be used. Should the data be non-i.i.d., we
should consider first a parametric approach in which a specific
structure is assumed (see Figure 9). If this can be done, we can
reduce the seemingly difficult problem of dependent data boot-
strap to standard resampling of the assumed i.i.d. model error
estimates (residuals). If a model for the data structure cannot be
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found, the matter is much more deli-
cate. This is because existing non-
parametric bootstrap schemes for
dealing with dependent data have not
been sufficiently validated as an auto-
matic approach for real-life depend-
ent data problems that a signal
processing engineer may encounter.

As we mentioned earlier, a signal
processing practitioner always
attempts to simplify their work. A
nonlinear problem can be either transformed or reduced to a set
of linear problems, and a nonstationary signal can be segmented
to assume local stationarity. Similarly, bootstrap techniques for
real-world data that are often not i.i.d. and nonstationary can be
reduced to standard resampling techniques. This is the approach
we have taken and the one we advocate. With this approach, the
bootstrap may prove itself as an off-the-shelf tool for practical
signal processing problems.
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OR EVEN IMPOSSIBLE TO
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