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Abstract— In this paper we address the problem of topologi-
cally mapping environments which contain inherent perceptual
aliasing caused by repeated environment structures. We propose
an approach that does not use motion or odometric information
but only a sequence of deterministic measurements observed
by traversing an environment. Our algorithm implements a
stochastic local search to build a small map which is consistent
with local adjacency information extracted from a sequence of
observations. Moreover, local adjacency information is incorpo-
rated to disambiguate places which are physically different but
appear identical to the robots senses. Experiments show that
the proposed method is capable of mapping environments with
a high degree of perceptual aliasing, and that it infers a small
map quickly.

I. INTRODUCTION

Competent navigation in an environment is a major re-
quirement for an autonomous mobile robot to accomplish
its mission. High level operations that we expect of a truly
autonomous robot – such as exploration, path planning, and
collision avoidance – require enhanced navigation strategies
which incorporate the robots ability to infer a map as an
internal representation of the environment. Autonomously
building maps as spatial representations of the environment
from sensor data is considered one of the most important
problems in the quest to build truly autonomous robots [1].

There are two approaches to computing an internal rep-
resentation of a robots environment: Metric and topological
mapping [1]–[3]. We shall focus on the topological case in
this paper. Topological maps are an abstract and compact
representation of the environment that captures key places
and their connectivity for localisation and navigation. The
map is represented by a labelled graph where vertices
represent places and edges reflect the connectivity between
places [2]. The labels of vertices refer to fingerprints which
characterise the place. Constructing topological maps from
sensor data is liable to the perceptual aliasing problem, that
is, a robot needs to decide when it is visiting a new place or
revisiting a memorised place (loop closing) [1], [2].

A particular class of aliasing that has not been addressed
fully by existing approaches in topological mapping is the
problem of inherent perceptual aliasing which is caused
by repeated structures in the environment. This occurs, for
example, if an agent is equipped with a radio-frequency
identification (RFID) reader and asked to map the locations

of RFID tagged product groups in a store or warehouse [4].
An RFID reader deterministically senses whether an RFID
tag is in its sensing range or not. Due to stocking strategies it
occurs that identical products are stored at different locations.
For topological mapping of locations of the product groups,
trolleys can be equipped with RFID readers to continuously
measure information about the location of the stock. In this
setting, sequences of observations of products are acquired,
however, knowledge of metric information or motion actions
is not available. Here, the task of topologically mapping the
product locations from the sequence of deterministic obser-
vations is complicated by identical products being stored at
different locations.

A. Related Work

Research in topological mapping has for the most part
been concerned with a particular aspect of the perceptual
aliasing problem which occurs due to limited sensor capabil-
ities. In particular, noisy data sampled at low frequency can
cause the robot to perceive fingerprints from distinct places
as being non-distinct. Various probabilistic approaches to
solve this correspondence problem have been proposed [5]–
[10]. These approaches do not properly address situations
where places are indistinguishable even with perfect sensing.
Moreover, in our setting sensor readings are deterministic,
thus, general systems that resolve perceptual ambiguities
with probabilistic reasoning are not suitable.

The robot’s perceptual abilities can be supported us-
ing metric information gained from odometry measure-
ments [11]–[13]. However, odometry information is known
to be liable to cumulative errors, especially on non-solid and
slippery surfaces such as gravel or uneven terrains. Moreover,
mapping environments independent of the robots odometry
or motion information allows us to collect the data from
several sessions of sensing [14] or by using multiple agents.

Other approaches incorporate a sequence of observations
and actions to generate an automaton which corresponds
to a topological map of the environment [9], [10], [15].
Also, a strategy has been proposed to build a collection
of candidate topologies and prune this collection to find
the map which is most feasible according to a sequence
of actions and observations [16]. These methods exploit
the knowledge of the actions of the agent to disambiguate



otherwise perceptually identical places. For example, two
hotel rooms at each end of a corridor which are identical
can be distinguished using the agents actions, as it needs to
travel forward or backward towards one of the rooms.

B. Contribution

In this work, we address the problem of inferring a topo-
logical map from sequences of perceptions only. We suppose
that actions (e.g. turn left) and odometry cannot be sensed
directly. In particular, we are concerned with the problem
of perceptual aliasing which occurs in this setting due to
inherent environment ambiguities and repeating structures.
More formally, given an unknown environment whose in-
herent topology is modelled as a labelled graph, we propose
an approach to infer a topological map from sequences of
labels obtained from the traversal of the environment. This is
an abstraction of the problem of topological mapping from a
sequence of deterministic perceptions which is independent
of metric and motion information. The labels of the graph
represent deterministic sensor readings and vertices represent
places. If the set of labels is smaller than the set of vertices,
we have to resolve perceptual aliasing.

The method we propose for inferring a topological map
from sequences of labels makes use of the neighbourhood
structure of a vertex for disambiguation. If a vertex label
is not distinctive, the neighbourhood of the vertex can be
considered in order to disambiguate otherwise identical
places. Local neighbourhood structures are obtained from
the sequence of labels from a given traversal. A particular
problem is that the number of vertices is unknown in
advance. Even if we know the number of vertices in
advance, disambiguation is still difficult unless every vertex
has a distinct label. We propose to solve this ambiguity
according to Occam’s razor principle1 by constructing
a small map in terms of vertices that best explains the
sequence of labels. Our method is scalable in the amount
of information sensed from the environment. Increasing the
information obtained from traversing the environment can
enhance the quality of the map.

The remainder of this paper is organised as follows.
First, we give background information and introduce terms
and notations which are required to describe our method
for topological mapping. Second, the approach is described
in detail. We then present results from experiments and
conclusions.

II. BACKGROUND

In this section we introduce background and notations for
describing the algorithm.

The inherent topology of the environment is modelled as
a labelled graph.

Definition 1: A labelled graph is a triple G = (V,E,L)
of sets where E ⊆ V 2. The elements of V are the vertices

1”Entia non sunt multiplicanda praeter necessitatem” or ”Entities should
not be multiplied unnecessarily”. William Occam (1285-1349).

(a) (b) (c)

Fig. 1. (a) Example environment graph. Note the two aliases, labelled A1

and A2. The set of 2-grams and the set of 3-grams is given in Table I.
(b) Map graph of the environment graph shown in (a) using the set of
2-grams from Table I. (c) Possible partial map.

of graph G and the elements of E are its edges [17]. Each
vertex is mapped to a label in L.
If the environment contains inherent ambiguities due to
repeated structures, several vertices share the same label.

Definition 2: Vertices of a graph are aliases if they map
to the same label.

We denote the environment graph Genv and the map graph,
which we want to infer, Gmap. The environment graph is
unknown and the only available information about it is a
finite history h ∈ L∗ of labels of visited vertices obtained
from the traversal of the environment graph (Here, * the
a Kleene star). Note, it is not assumed that the history is
exhaustive in the sense that the entire environment graph
has been explored completely.

A. Local Adjacency Information: n-Grams

Our method exploits the neighbouring structure of a vertex
to disambiguate aliases.

Definition 3: The k-neighbourhood of a vertex v ∈ V in
a labelled graph G = (V,E,L) is the subgraph of G which
contains all vertices that can be reached by traversing G
starting at v using 0, ...,k edges. The parameter k is called
the depth of the neighbourhood.
The neighbourhood structures of the environment graph
are not accessible directly as it is unknown. Making the
usual Markov assumption – that the current vertex the robot
occupies is dependent only on the previous visited vertex
and the last action executed – we have that the history
includes neighbouring information about the environment.
Local neighbouring information which is contained in the
history can be accessed through sub-sequences of length n.

Definition 4: A sub-sequence of length n is called n-gram.
Consecutively visited vertices are represented by consecutive
labels in the history and, in turn, consecutive labels in
the history must originate from adjacent vertices in the
environment graph. Hence, the set of n-grams, which can
be obtained from a history, corresponds to a feature space
on the history.

Definition 5: The set Grams(h,n) contains all n-grams
which can be extracted from the n-tuples in history h.
The number of unique n-grams which can be extracted from
a history of length m is m− n + 1. Thus, the set of n-
grams which is used as input data for topological inference
grows linearly with the length of the history. The length
of the history can be arbitrary and covers theoretically all
possible n-grams which can be observed while traversing an



environment graph. The maximal number of unique n-grams
which can be represented in a history is dependent on the size
of the graph and the length of the n-grams. Given a strongly
connected graph, the maximal number of n-grams which can
be extracted from an history obtained by traversing the graph
is O(|V |n−1).

An example environment graph in shown in Figure 1(a).
A possible history obtained from traversing this environment
graph and, the extracted 2-grams and 3-grams from this
history are shown in Table I.

B. Mapping Constraints

For mapping the environment graph, we would like to
have that the k-neighbourhood of each vertex of the en-
vironment graph corresponds to a k-neighbourhood in the
map graph. However, in our case it is not possible to
compare k-neighbourhoods of the map graph directly with
k-neighbourhoods of environment graph as the latter is un-
known. Consequently we propose to measure the consistency
of graphs in their feature spaces; i.e., the sets of n-grams of
two graphs.

Definition 6: Two labelled graphs G1 = (V1,E1,L1) and
G2 = (V2,E2,L2) are n-consistent, where n > 1, iff for h1 ∈
L∗1 generated by G1 and for h2 ∈ L∗2 generated by G2 we have
Grams(h1,n)≡ Grams(h2,n).
According to Definition 6, the map graph we infer must ex-
clusively explain the history so the consistency requirement
formulates a hard constraint the map graph must satisfy.

Our method aims to find a small map, minimising the
number of vertices while maintaining consistency with a
given history. A map graph which consists of one component
for each n-gram in Grams(h,n) is n-consistent according to
Definition 6 but is inappropriate for navigation, containing
too many vertices. The aim for minimising the number of
required vertices can be formulated as a soft constraint we
wish the map to satisfy.

The n-consistency concept realises the idea of k-
neighbourhoods of vertices (see Definition 3) on histo-
ries if n = 2k + 1. For example, when traversing the 1-
neighbourhood of a vertex, we can visit at most three
different vertices. Thus, we need to consider 3-grams from
the histories and hence perform 3-consistency mapping.

history: h =< A,B,C,A,E,D,A,B,E,A,C,B,E,D,A,B,C>
Grams(h,2) =
{< A,B>,<D,A>,<B,C>,<E,B>, <C,A>,<E,D>,<E,A>}
Grams(h,3) =
{<A,B,A>,<A,B,C>,<E,B,A>, <A,D,A>,<E,D,A>,<B,A,B>,
<D,A,B>,<B,C,B>,<A,C,B>, <B,E,B>,<D,E,B>,<B,E,A>,
<C,B,C>,<C,B,E>,<C,A,C>, <C,A,E>,<D,A,D>,<D,E,D>,
<A,E,D>,<E,B,E>,<E,D,E>, <E,A,E>,<A,C,A>,<A,E,A>}

TABLE I
POSSIBLE HISTORY h AS IT COULD BE OBTAINED FROM THE

ENVIRONMENT GRAPH IN FIGURE 1 AND SET OF 2- AND 3-GRAMS

EXTRACTED FROM THIS HISTORY. NOTE, WE ALLOW THE ROBOT TO

PERFORM U-TURNS.

Algorithm 1 Algorithm for inducing a map graph Gmap

given a set of n–grams Grams(h,n) from a environment
graph. V (G) denotes the set V of vertices of a graph G.
Require: Grams(h,n)

1: Γ← Grams(h,n)
2: Gmap← /0
3: repeat
4: pick arbitrary γ ∈ Γ

5: determine set M of possibilities to merge γ to Gmap

6: sort M w.r.t number of required vertices
7: for i← 1 ... |M| do
8: if merge γ with Gmap according to mi does not

violate a mapping constraint then
9: delete all merge possibilities from M which re-

quire more vertices
10: else
11: remove mi from M
12: end if
13: end for
14: if M 6= /0 then
15: select arbitrary m′ ∈M
16: merge γ with Gmap according to m′

17: Γ← Γ\LocalGrams(Gmap
γ,m′ ,n))

18: end if
19: until Γ = /0 or all γ ∈ Γ have been tried to be merged

with Gmap

20: if Γ 6= /0 then
21: return failure
22: else
23: return Gmap

24: end if

The effect of the parameter n is demonstrated using the
example environment graph in Figure 1(a). The map graph
shown in Figure 1(b) is 2-consistent to the environment graph
as it generates the equivalent set of 2-grams (see Table I).
However, it is obvious that this map graph does not truly
represent the environment graph. To achieve a map graph
which represents the environment graph well, 3-consistency
is required.

III. TOPOLOGICAL MAP INDUCTION

In this section we describe our algorithm to induce a
topological map given the set of n-grams extracted from a
history. We propose to infer the map by merging the n-grams
using a stochastic local search with respect to the mapping
constraints. The merging relates the local adjacency informa-
tion contained in the n-grams and the k-neighbourhoods of
the vertices in the map graph. Algorithm 1 lists the pseudo-
code for the proposed algorithm.

The mapping process starts with an empty map
graph Gmap = /0 and the set Γ = Grams(h,n) initially contains
n-grams extracted from the history of a traversal of the
environment graph. In the main loop Algorithm 1 selects
an n-gram γ ∈ Γ and tries to merge it with the map
graph Gmap (lines 3-19). If a merge is successful, γ is



removed from Γ (lines 14-18). A merge is unsuccessful if it
violates the mapping constraints. In either case, successful
or unsuccessful merge, the algorithm proceeds by trying to
merge another γ ∈ Γ with the map graph until Γ is empty
or, otherwise the possibilities for adding n-grams have been
exhausted and the map is aborted (line 21). The order in
which the γs are merged is arbitrary.

Usually there are several possibilities for merging an n-
gram to a map graph resulting in different inferred map
graphs. For example, there are two possibilities to merge
the 3-gram C-A-E with the map graph in Figure 1(c).
These merges result in the graphs shown in Figure 1(a) and
Figure 1(b). However, the merge possibility that results in
the map graph shown in Figure 1(b) violates the mapping
constraints thus must be abandoned. To test whether a
merge possibility is appropriate, the set M of all merge
possibilities to merge γ with Gmap is calculated and sorted
in ascending order according to the number of vertices
the resulting map graph requires (see Algorithm 1, lines 5
and 6). Then, beginning with a merge possibility that re-
quires the fewest vertices, every m ∈ M is tested to see
whether it satisfies the mapping constraints (line 8). If a
merge is successful, all merge possibilities which require
more vertices are immediately removed from M due to the
minimisation constraint (line 9). Merges which violate the
mapping constraints are removed from M (line 11).

To test whether a merge satisfies the constraints (line 8), a
temporary map graph Gmap

γ,m is built combining γ with Gmap

according to a merge possibility m. In order to perform a
consistency check according to Definition 6 we extract a set
of local n-grams.

Definition 7: The set LocalGrams(Gmap
γ,m ,n) contains ex-

actly those n-grams which can be obtained by traversing
the local k-neighbourhood of a vertex which is used by
combining γ with Gmap to Gmap

γ,m according to a merge
possibility m.
An n-gram contained in LocalGrams(Gmap

γ,m ,n) but not
in Grams(h,n) indicates a violation of the consistency
constraint and the merge possibility m must be removed
from M (line 11).

If there is more than one merge possibility for merging γ

with Gmap which satisfies the mapping constraints, we ar-
bitrarily select one m′ and merge γ with the map graph
according m′ to (lines 15-16). From set Γ of n-grams which
have yet to be merged with Gmap all n-grams are removed
which are implicitly produced by the merge (line 17).

Algorithm 1 infers a map graph which is consistent with
a given set of n-grams generated from a history. However,
an unfortunate order of choices when selecting an arbitrary
n-gram from Γ (line 4) can cause Algorithm 1 to produce
large graphs or, get stuck so that n-grams from Γ cannot
be merged with Gmap. We have no way of deciding in
advance how to do this crucial selection more successfully.
Our current strategy to cope with this problem is to run
the entire mapping process several times while arbitrarily
selecting n-grams and eventually keep a map graph which
requires the smaller number of vertices.

In summary, the proposed mapping method simultaneously
determines the number of vertices, assigns appropriate labels
to the vertices, and infers the connectivity of the map graph.
Hence, a small automaton is inferred which is consistent with
a history.

In general, the problem of inferring the minimum automa-
ton given set of input/output pairs is NP-complete [18], [19].
Moreover, finding an automaton close to the smallest one
in polynomial time is intractable, assuming P 6= NP [20].
For our approach, we do not perceive actions, however,
assuming a “non”-action between the perceptions makes the
inference of topological maps in our setting analogous with
inferring the minimal automaton and hence their complexity.
The complexity motivates our approach as stochastic local
search has been successfully applied to NP-problems such
as satisfiability and constraint satisfaction [21].

IV. EXPERIMENTAL RESULTS

In this section we empirically evaluate our approach
for inducing topological maps from a history. We demon-
strate the general functionality of the method and evalu-
ate the approach on artificial, randomly generated environ-
ment graphs. All experiments were conducted on a 64 bit
Intel R© Itanium R© 2 CPU running at 1.6 GHz.

For the following evaluations, environment graphs G =
(V,E,L) are created with 25, 36, 49, 64, 81 and 100 vertices
arranged and (possibly) connected in a rectangular grid.
We have chosen a grid layout to ensure planarity; most of
the environments our robot traverses for its operations are
planar. On this grid, we simulate different edge densities,
from |E|min = |V |−1 where each vertex has 2 or less adja-
cencies to a maximum of |E|max = (|V |2− 4× grid size)/2
what refers to a fully connected grid. The vertices of each
graph are arbitrarily labelled with elements from a set whose
cardinality corresponds to 40%, 50%, 60%, 70%, 80%, 90%
and 100% of the cardinality of the set of vertices. We assume,
that every environment graph has been explored exhaustively
so all unique n-grams can be extracted from the exploration
history.

A. Mapping Performance

Our evaluations demonstrate, that the smallest map graph
out of mapping 100 trials is usually found very quickly. Fig-
ure 2 shows this for the mapping of 6000 environment graphs
with 25 vertices which were generated using the scheme
described above. It is demonstrated that for environment
graphs which do not contain inherent ambiguities and so
have a set of 25 different labels, inferring a map is trivial so
our algorithm finds the obvious map after only one trial. In
environments without ambiguities, there is only one possible
map. Environment graphs with an increasing number of
aliases challenge the mapping process more however, our
algorithm finds most of the smallest map graphs with the
first trial.

Mapping with respect to 5-consistency 2(b) usually finds
the smallest map graph after less trials than mapping with 3-
consistency 2(a). This occurs because 5-grams contain more



(a)

(b)

Fig. 2. Histograms of the first smallest map found out of 100 trials for
6000 environment graphs with 25 vertices created according to the described
schemata. The cardinality of the set of labels is denoted |L|.

information for disambiguation than 3-grams. However, a
trial in 5-consistency mapping requires more time than in
mapping with respect to 3-consistency. Using our comput-
ing environment, in average a mapping trial (25 vertices)
takes about 17ms with respect to 3-consistency whereas 5-
consistency mapping requires about 120ms per trial. The
significant increase of time consumption with an increasing
degree of n-consistency is due to the exponential growth
depending on n of the set of n-grams which can be extracted
in maximum from a graph.

The difficulty of mapping increases with the size of the
graph. This may occur as large graphs are more likely to
contain repeating structures so that the mapping process
may get stuck more often. To evaluate this, we have created
1000 different environment graphs according to our gener-
ation scheme where we have we have fixed the size of the
set of labels to 70% of the set of vertices. Figure 3(a) shows
that for mapping larger graphs, the number of trials required
to find the smallest map out of 100 trials grows quickly.

In terms of time consumption, the time required for map-
ping grows with the size of the graph. As Figure 3(b) shows,
that even graphs with 100 vertices which were labelled
with 70 different labels take not much more than one second
in average to be mapped.

B. Quality of the Map

The overall goal in robotic mapping is to build an internal
representation which is isomorphic to the environment. Here,
we investigate whether the environment graph is isomorphic
to the inferred map graph to measure the quality of the

(a)

(b)

Fig. 3. (a) Average number of smallest trials for environment graphs with
increasing number of vertices (|V |) for 3-consistency. The error bars denote
the variance. (b) Time consumption for finding the smallest mapping out
of 100 trials for environment graphs with increasing sets of vertices for
3-consistency.

proposed strategy to infer topological maps from a set of
n-grams. By quality we mean how likely our method yields
a map which is isomorphic to the the environment graph.

Definition 8: Two graphs G1 = (V 1,E1) and G2 =
(V 2,E2) are isomorphic if there exists a bijection f :V 1→V 2

with xy ∈ E1⇔ f (x) f (y) ∈ E2 ∀x,y ∈V 1 [17].
No polynomial-time algorithm is known for graph isomor-
phism, neither is it known to be NP-complete or to be
tractable [22]. An approach to solve NP-complete problems
is to translate the problem into a satisfiability (SAT) problem.
In particular, we pose the problem of deciding if a mapping
from G1 to G2 exists as a decision problem expressed as a
conjunctive normal form (CNF) propositional formula and
present it to the RSat [23] solver2.

Before coding the problem of graph isomorphism into
SAT, preliminary tests ensure, that G1 and G2 have the same
number of vertices of a particular label and degree. If this
test fails, we can immediately determine non-isomorphism.
Then, we translate the graph isomorphism problem into CNF.
For each vertex vi ∈ G1 and v j ∈ G2, so that their degrees
and labels are equal, we have a Boolean proposition ψi j that
says that there exists a bijection f that yields isomorphism
where f (vi) = v j. There are two axiom schemata to encode
the graph isomorphism constraints as follows:

I For all vk ∈ G2 such that k 6= j, we have ψi j→¬ψik.
II For each ψi j, letting N(vi) denote the neighbours of vi,

we have a clause ψi j→∀k ∈ N(vi) ∃l ∈ N(v j) ψkl .
Given that the preliminary tests passed, we have that clauses I
and II are satisfiable iff G1 and G2 are isomorphic. Every
environment graph and the corresponding map graph are
translated into a CNF formula and isomorphism is then
determined by the SAT solver RSat.

We have mapped 6000 environment graphs with 25 ver-
tices generated according to the previously described method
to examine the mapping quality of our approach. Figure 4

2http://reasoning.cs.ucla.edu/rsat/index.html



Fig. 4. The quality of the mappings for 6000 environment graphs with
25 vertices with different degree of aliasing. Mapping to 3-consistency is
shown in black and mapping with respect to 5-consistency in white. The
cardinality of the set of labels is denoted |L|.

compares the quality for 3-consistency and 5-consistency
mappings. It is to see, that where topology inference ex-
ploits deeper neighbourhood information according to n-
consistency, we find that it is more likely that we obtain
a topology isomorphic to that of the environment.

V. DISCUSSION

We developed an approach for inferring topological maps
that is designed to address the perceptual aliasing problem
caused by periodical structures in the inherent topology of
the environment. The method does not rely on any motion
model or metric information, rather exploits the history of
deterministic measurements.

The algorithm aims to find a small topological map in
terms of vertices which is consistent to the observed history.
We have introduced the concept of n-consistency to describe
the degree to which the inferred map must be consistent
to the information from the history. The particular problem
of disambiguating aliases for inducing consistent topological
maps is solved by exploring local neighbourhood information
of vertices.

Due to the stochastic nature of our algorithm, the mapping
process needs to be run several times to ensure that a
small map is inferred. Our experiments demonstrate that our
method usually finds a small n-consistent topological map
after only a few trials. In general, increasing the consistency
requirement decreases the number of trials, however, rapidely
increases the time a trial requires.

We found that if the degree of aliasing in an environment
does not exceed a certain limit, the proposed method often
finds a topology that is isomorphic to that of the underlying
environment.

The set of mapping constraints does not have to be not
limited to the two used in this paper, so any user-defined con-
straints can be added, such as planarity or maximal degree of
vertices. Hence, the proposed method is scalable in terms of
prior knowledge about the environment expressed though the
mapping constraints. Future work should include extending
the information and mapping constraints to increase the
quality of the map and accelerate the mapping procedure.
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[22] J. Köbler, U. Schöning, and J. Torán, The graph isomorphism problem:
its structural complexity, 1st ed. Basel, Switzerland: Birkhauser
Verlag, July 1993.

[23] K. Pipatsrisawat and A. Darwiche, “Rsat 2.0: Sat solver description,”
Automated Reasoning Group, Computer Science Department, UCLA,
Tech. Rep. D-153, 2007.


