

QUT Digital Repository:
http://eprints.qut.edu.au/

Mason, Richard S. and Kelly, Wayne A. (2007) Enhancing Data Locality in a
Fully Decentralised P2P Cycle Stealing Framework. In Dobbie, Gillian, Eds.
Proceedings Thirtieth Australasian Computer Science Conference (ACSC2007)
CRPIT, 62, pages pp. 41-47, Ballarat, Victoria, Australia.

 © Copyright 2007 Australian Computer Society
This paper appeared at the Thirtieth Australasian Computer Science Conference
(ACSC2007), Ballarat, Australia. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 62. Gillian Dobbie, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text is included.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10883056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Enhancing Data Locality in a Fully Decentralised P2P
Cycle Stealing Framework

Richard Mason
Queensland University of Technology

r.mason@qut.edu.au

Wayne Kelly
Queensland University of Technology

w.kelly@qut.edu.au

ABSTRACT
Peer-to-peer (P2P) networks such as Gnutella and BitTor-
rent have revolutionised Internet based applications. P2P
approaches provide a number of benefits, however most cycle
stealing projects, such as SETI@home, have concentrated on
centralised methods which still require massive amounts of
concentrated network bandwidth in order to scale. More re-
cent P2P research has developed the concept of distributed
hash table (DHT) P2P overlays. These overlays provide ef-
ficient and guaranteed message delivery unlike earlier P2P
networks which relied on large scale replication to proba-
bilistically find data. Our G2:P2P framework makes use of
a DHT overlay to provide a fully decentralised P2P cycle
stealing system. Its distributed object programming model
allows direct communication between objects and it remains
reliable even as the set of peer nodes changes.

In this paper we describe extensions to G2:P2P which al-
low us to optimise object distribution for locality. The im-
portance of optimising data locality is well understood and
has received extensive research, however, in the context of
cycle-stealing systems and more generally DHT based P2P
networks it is completely unexplored. Whilst our work is
motivated by parallel programming, it is generic in nature
and may have applicability to other DHT applications.

1. INTRODUCTION
Peer-to-peer networks have become popular of late for a
range of applications, including the well known file sharing
systems such as Gnutella [9] and BitTorrent [7]. Peer-to-
peer in general refers to distributed systems where resources
are obtained from an ad hoc collection of client comput-
ers (as opposed to dedicated central servers). Typically the
set of peer nodes participating in the network changes over
time. Early P2P systems such as Napster used an under-
lying client-server architecture to facilitate communication
between peers. Later, fully decentralised (pure) P2P net-
works where developed to eliminate the impact of a single
point of failure and to make it cheaper to scale. These early

pure P2P networks were inefficient, requiring a great deal
of network bandwidth which prevented their use on lower
bandwidth connections [10]. Their design also meant that
data present in “distant” parts of the network may not al-
ways be found.

Pure P2P research has since centred around the idea of a
distributed hash table (DHT) [19, 24]. A hash function
is used to map objects to be stored in the P2P network
to the peer node that should hold that object. The peer
node who’s randomly assigned identifier is “closest” to an
object’s hash value will always hold that data. As the set
of peers that make up the P2P network changes over time,
the ownership of data changes so as to maintain the above
invariant. It is this invariant that allows messages to be effi-
ciently routed (average O(log N) hops) to arbitrary objects
without needing to update object references and without
needing to resort to forwarding schemes.

While DHTs have been used for a number of applications
[20, 18], we believe our G2-P2P framework [13] is the first
parallel computing/cycle-stealing framework to exploit this
approach. Most volunteer/cycle-stealing systems are based
on client-server [12] or hybrid [15] topologies. This typi-
cally limits them to simple task based embarrassingly par-
allel applications. Our DHT based cycle-stealing framework
supports a distributed object programming model where re-
mote method invocations can be made between arbitrary
peers in the network and remains reliable even as the set of
peer nodes that make up the network changes over time.

In this paper we describe extensions to our parallel comput-
ing framework that allows us to optimise for locality. The
importance of optimising for locality in parallel programs is
well understood and there has been extensive work in this
area. However, in the context of cycle-stealing systems and
more generally DHT based peer-to-peer systems this topic
has been completely unexplored. As it turns out, there is
room for movement within the DHT concept that allows
us to achieve our new goals related to locality while pre-
serving all of the original benefits of DHTs that have made
them so popular. Whilst out work is motivated by paral-
lel programming, it is entirely likely that the locality ideas
proposed here will have wider applicability to other DHT
applications.

Section 2 provides an overview of our G2:P2P framework.
It includes details on the underlying Pastry network as well

as the G2:P2P object model and programming interface.
In Section 3 we describe four schemes for improving object
locality. The schemes build upon one another to provide
increasing performance improvements. Section 4 demon-
strates the effect of these optimisations on communication
and load balancing performance. In Section 5 we discuss
other related work before outlining future directions and
concluding in Section 6.

2. G2:P2P OVERVIEW
G2:P2P is a fully decentralised (pure) P2P system for ex-
ecuting parallel applications on volunteer machines. The
system provides a distributed object based programming
model.

2.1 Pastry
A number of DHT approaches [24, 17, 21] have been de-
veloped with very similar characteristics. Our framework is
based on a DHT system called Pastry [19]. Pastry networks
consist of a set of machines (nodes) which are each assigned
a unique k-bit key termed a NodeID. The assignment of
NodeID’s to nodes must be done in a fully decentralised
manner but in such a way that the NodeIDs are approx-
imately evenly distributed across the address space (so as
to achieve approximately even load balance). The simplest
approach is to assign them in a pseudo-random fashion (ei-
ther by generating random GUIDs or by hashing their IP
addresses). The address space generated by these NodeIDs
is circular; i.e. in an 8-bit address space address 0xFF is
adjacent to 0x00.

Messages may be addressed to any NodeID in the address
space, regardless of whether an actual node exists with that
ID or not, and will be delivered to the node whose ID is
closest to the target. Pastry’s routing scheme will deliver
messages in O(log N) hops using a scheme reminiscent of
hypercube routing but with dynamically changing nodes.

Nodes have two notions of locality: physical locality and
virtual locality. Physical locality represents closeness with
respect to the physical network (the closer the physical lo-
cality - the shorter the message latency). When lacking any
better physical locality data we generally assume that the
numeric difference between two IP addresses is a rough ap-
proximation to their physical locality (i.e. two nodes on
the same subnet will generally be closer than two nodes on
different subnets, etc). Virtual locality is measured by the
difference between NodeIDs.

Nodes maintain information to facilitate the routing of mes-
sages. Each node remembers a small set of the nodes (size
O(1)) that are closest to it physically (termed its neighbour-
hood set), and closest to it virtually (termed its leaf set).
The primary routing mechanism is a routing table contain-
ing O(log(N)) entries that allows each node to forward any
incoming message onto a node that is at least one significant
bit closer to its final destination.

2.2 Object Addressing & Programming Model
G2:P2P applications create objects which are distributed
on a network of volunteers organised in a Pastry network.
Communication between these objects is performed through

remote method calls (as in .NET Remoting [16] or Java
RMI [22]. However, when using G2:P2P the application
programmer does not need to specify a specific server to
host a particular class of remote objects, but rather sim-
ply indicates that they should be hosted somewhere within
the collection of volunteer machines. In fact the volunteer
that hosts a given remote object may change over time as
volunteers come and go from the network.

When an object is created, it is assigned an ObjectID which
has the same form as a Pastry NodeID. A construction mes-
sage is then sent to that ID, informing the node with the
closest ID (i.e. the node that receives the message) that it
should create a remote object instance. The only informa-
tion required to refer to and communicate with the object
is its ObjectID. If another node joins the network and is
assigned a NodeID which is closer to the object then the
object should be migrated to the new node. The G2-P2P
framework automatically performs these migrations as well
as performing logging and check pointing to maximise reli-
ability.

3. EXTENSIONS FOR IMPROVING COM-
MUNICATION LOCALITY

Objects are assigned an ObjectID when they are created.
It is not possible to change an object’s ObjectID at a later
stage as references to that object may have spread through-
out the network and they would need to be updated in a
globally synchronised manner. We still however, have some
freedom that allows us to optimise for locality. The follow-
ing four subsections describe four separate schemes that we
have developed to optimise different kinds of locality.

3.1 ObjectID Assignment
Our first extension is designed to increase the likelihood that
communicating objects are hosted on the same node. Previ-
ously our approach to assigning ObjectIDs was to generate
them randomly (similar to the allocation of NodeIDs). This
was done so as to approximately evenly spread the Objec-
tIDs over the address space so as to achieve approximately
even load balance. However, unlike NodeIDs, ObjectIDs
don’t need to be generated de-centrally – a single client or
node often activates a collection of related remote objects at
a time. Further, these remote objects typically don’t exhibit
purely random communication behaviour (patterns such as
“nearest neighbour” are very common).

By allocating ObjectIDs in a more intentional manner we
can optimise for communication locality while preserving
load balance. Our new approach is to allocate ObjectIDs
to a collection of related objects so that they are uniformly
rather than randomly distributed over the address space.
We do this in such a way that objects that communicate
regularly are closer together with respect to their ObjectIDs
than objects which don’t regularly communicate. For this
optimisation to be beneficial we assume that the number of
remote objects created will be much larger than the number
of volunteers, so by assigning similar ObjectIDs to objects
that communicate regularly, we ensure that in most cases
they will be assigned to the same physical host. The set
of volunteer nodes participating in the network may change
over time and therefore so will the mapping of remote ob-

jects to volunteer nodes, but the locality properties will be
preserved.

Our notion of closeness is based on ObjectIDs and is there-
fore 1 dimensional (more precisely a 1D-ring). Other com-
munication patterns between objects must therefore be “folded”
by the programmer onto this 1D space.

The API for allocating ObjectIDs in this way basically tells
the system to start uniformly assigning ObjectID to any
remote object activations that are about to be performed.
The StartLayout method needs to know the number, N, of
objects that will be created in this group, so that they will
be properly spaced to collectively cover the entire address
space. Following this call, the next N remote object acti-
vations will automatically be assigned ObjectID using this
scheme.

Island[] islands = new Island[numIslands];

G2P2PChannel.Current.StartLayout(numIslands);

for (int i = 0; i < numIslands; i++)

islands[i] = new Island(i);

The same pattern can be repeated later if another set of
remote objects need to be created that are unrelated to the
original set (with respect to communication pattern). Later
allocations will use a different random offset so as to not
collide with the original uniformly generated IDs.

Section 4.1 presents the results of the new ObjectID assign-
ment process on communication efficiency and load balanc-
ing.

3.2 Object Groups
The optimisation in Section 3.1 increases the chances that
two objects that communicate often will be located on the
same machine. It cannot however guarantee that they will
always be hosted on the same machine. The optimisation
described in this section is designed for situations in which
a set of objects communicate so frequently with one another
that they should always be collocated on the same host.
The way we do this is by adding extra bits to the length
of our ObjectIDs beyond the length of our NodeIDs. We
can think of this as turning ObjectID into decimal numbers
rather than integers. Objects which share the same integer
part will always be mapped to the same node. The actual
physical node may change over time as nodes come and go,
but the group of objects will always be collocated. Note that
this locality comes at the cost of load balance and therefore
parallelism. If a group of objects are assigned the same
integer part, they will always map to a single machine, even
if there are a large number of other nodes in the network
which are completely unused.

An alternative to this optimisation is to encapsulate these
objects inside a single remote object container that forwards
messages to them. The advantage of the approach we have
described is that each of the objects in the group remain
individually addressable by remote clients. Whether or not a
set of objects should always be collocated is an performance
optimisation which ideally should be kept separate from the
application logic and the abstractions used.

3.3 Node Movement
The assignment of ObjectIDs and NodeIDs described so far
will lead to approximately the same number of objects being
allocated to each node. In some cases however, particularly
with smaller networks, this balance will not be achieved.

As we discussed earlier, it is extremely problematic to change
an object’s ObjectID after it is initially assigned as refer-
ences to that object may have spread throughout the entire
network. It is, however, possible for a node’s NodeID to
change at a later time. A simple way to explain why this is
possible is to view the process as equivalent to a volunteer
node leaving the network and then immediately rejoining
(with a new NodeID). So, clearly it is possible, and with a
little ingenuity we can develop a process that is much more
efficient than the näıve implementation hinted at above.

But why would we want to change a node’s NodeID? What
we generally want to do is reassign NodeIDs so that each
node gets a more even number of objects. To do this per-
fectly we would need global knowledge and even if we had
such global knowledge, what might be optimal one minute
might not be the next as nodes and objects come and go over
time. As with all decentralised systems we must attempt to
achieve close to global optima through local acts.

At the local level a node’s goal is to try to evenly space
itself between its two neighbours. Since each node is trying
to do this independently it may take a large number of small
adjustments to get to a steady state. To minimise the total
number of adjustments nodes may make use of the extra
information they contain in their leaf set. Instead of simply
placing itself halfway between its two immediate neighbours,
it measures the distances to all of its known neighbours and
attempts to balance them.

It is important that these NodeID changes are moving in-
crementally towards a global optima. If the changes are too
dramatic the system may not converge, in particular, we
don’t want nodes to move so far that they move past other
nodes and thereby change their relative order. By keeping
nodes relative order stable, their leaf set will remain con-
stant. This guarantees that the Pastry routing mechanism
will continue to function correctly. We therefore use the fol-
lowing formulas to calculate incremental NodeID changes.

N ′ = N + S (Wanti−Wclock)
2

Wi =
∑

n∈LSi

1− (N−nposnweight)

Sleafset

N = Node position
S = Size of network
Sleafset = size of leaf set

Where Wi indicates the weight of the respective half of the
leaf set and LS i represents the set of nodes in each half
of the leaf set. Essentially Wclock and Wanti calculate the
force expressed on the node by the nodes by the clockwise
and anti-clockwise half leafset. Nodes that are further away
express less force than nearby nodes. The new position is
calculated to equalise those two forces.

We also include a weighting factor (nweight) on each node.
This allows us to take in to account peer nodes that have
greater processing power (e.g. a cluster computer rather

than a PC). Such nodes will be responsible for a greater
portion of the address space and hence will host more ob-
jects.

Since it is imperative that we maintain the relative order
of the nodes we further restrict node movement so that any
single move may not travel more than half the distance to the
next node. Without this restriction nodes may “cross over”
each other as they independently calculate their moves. This
restriction may slow down the progress towards the global
optima, however, once the network is well dispersed node
movements are generally small anyway and this restriction
is rarely encountered.

Once a node calculates a new position it informs all of the
members of its leaf set. Additionally it must now monitor
incoming communications to detect other nodes that have
references to it (such as references in their routing table).
When these are detected the node can respond with its new
id. Since most movements will be relatively small, messages
sent via a routing table will usually still send the message
closer to its target, and even if it doesn’t, routing can con-
tinue with a temporary disadvantage of some extra network
hops.

The node’s routing state must be updated to reflect the new
NodeID. The leaf set is not affected because the nodes with
adjacent NodeIDs are guaranteed not to change. Similarly,
the neighbourhood set is unchanged since it is only related to
physical locality, not the NodeID. The amount of the routing
table affected is directly related to the distance moved by
the node. Generally portions of the routing table will stay
valid, while later sections will need to be repopulated.

When a node joins there is a significant opportunity to op-
timise its location before it even advertises itself to other
nodes. As part of our node movement technique we extend
the joining process to reduce the number of movements a
node must make before the network stabilises. Normally to
join a Pastry network a node routes a special join message
to its prospective new NodeID. This is received by the node
whose ID is closest to the new position who then replies
with confirmation of the IDs acceptance and with some ini-
tial data to start populating the node’s routing state. With
minimal changes we can alter the processing of join messages
so that the receiving node can reply with a different NodeID
for the node to use during joining. This new ID can be se-
lected so that it already has a balanced leafset, reducing the
need for further adjustments directly after joining.

Section 4.2 presents the results of moving node’s IDs on
communication efficiency and load balancing.

3.4 Physically Related Nodes
The optimisation in Section 3.1 increases the chances that
two objects that communicate often will be located on the
same machine. There will however usually be situations
where objects that communicate often are located on dif-
ferent machines. If they can’t be on the same machine then
we would prefer that they are on machines which are phys-
ically close. To achieve this we continue to assign Objec-
tIDs as described in Section 3.1 but change NodeIDs so that
nodes with similar NodeIDs will be physically close to one

another. If two objects communicate frequently then they
will be assigned similar ObjectIDs. If we are lucky this will
mean they will be hosted on the same node. If not, then
it they will be hosted on nodes that have similar NodeIDs
which implies they are physically close.

Our basic approach is to use IP addresses (or some other
measure of physical locality) as our NodeIDs. This ensures
that nodes with similar NodeIDs will tend to be physically
close. The problem with this approach is that the resulting
NodeIDs will not be evenly spread over the address space.
Thankfully, the optimisation described in Section 3.3 can
correct that situation.

However, using the node movement technique from Section
3.3 complicates the joining process. As nodes adjust their
IDs, they may find themselves moving significantly away
from the ID that was generated from their IP address. This
means that we need to alter the way join messages are routed
so that new nodes can still be placed adjacent to nodes with
similar IP addresses. To do this we introduce two NodeIDs
– the initial NodeID which was generated directly from the
node’s IP address and the current NodeID which is being
used by the node. While normal communication messages
use the current NodeID for routing, join messages will be
routed to the node whose initial ID is closest.

Unfortunately the routing table maintained by each node is
designed for standard routing and hence can not be used for
routing to initial IDs. We can however rely on the order
of current NodeIDs being the same as the initial NodeIDs.
This means we can use the leaf sets to route messages, albeit
with a worse case of N/2 network hops. In practice, joining
is generally performed by contacting a physically close node
and using it to initiate the join message. This means that
regardless of how far node IDs move during execution, join
messages will always be initiated reasonably close to their
final target.

There is one disadvantage of applying this optimisation. In
a normal Pastry network, nodes in a particular physical lo-
cality are likely to be widely spread throughout the network
(with respect to their NodeIDs). So, if some fault in that
physical locality occurs (such as a local power loss or a local
network going down) then loss of nodes will be felt in a more
dispersed fashion across the network rather than in a single
large cluster of nodes. Pastry networks are designed to be
able to recover from individual nodes disappearing, provided
that other nodes its leaf set remain. So, by changing this as-
pect of the pastry network we decrease its ability to recover
from local faults. This is obviously a trade-off that must be
made between efficiency and reliability. Our previous paper
[14] describes additional techniques that we have developed
to enhance reliability.

4. RESULTS
The optimisations presented in Sections 3.1 and 3.3 have
been implemented in our G2:P2P system as well as a simu-
lator. We have used the simulator to test the optimisations
as it allows for testing of large networks. The simulator
generates a Pastry network and simulates a set of objects
communicating periodically in a 1D nearest neighbour con-
figuration.

10 10 10 10 10 10
20 20 20 20 20 2040 40 40 40 40 40
10

10

10

10

10

10

20
20

20

20

20

20

40
40

40
40

40
40

0

1

2

3

4

5

6

5 10 20 30 40 50

Number of Objects

C
o

m
m

u
n

ic
at

io
n

 E
ff

ic
ie

n
cy

Figure 1: ObjectID Adjustment Communication Ef-
ficiency

We use two metrics to analyse the effectiveness of our en-
hancements. The first is the communication efficiency. This
is the ratio of messages sent between objects to the number
of network hops used by those messages. An efficiency of
one indicates that each message required a single hop across
the network while higher values indicate that some messages
were delivered without requiring the network.

The simulator has not taken into account the physical com-
munication costs between different nodes. Pastry already
accounts for physical locality in its selection of which nodes
to use for network hops. The work in Sections 3.1 and 3.3
is mainly concerned with minimising the number of hops
required.

Our second metric measures how well balanced the objects
are across the network. This is provided by calculating the
standard deviation of the number of objects on each node,
lower values indicating that each node was carrying approx-
imately the same load.

4.1 Enhanced ObjectID Results
Our first test shows the effect of our enhanced ObjectID
assignment. The even spacing of ObjectIDs significantly
improves the communication efficiency of the network es-
pecially as the number of objects outstrips the number of
nodes. Load balancing is also mildly improved, though that
effect declines as more nodes are added to the network.

Figures 1 & 2 show the results of activating the ObjectID
assignment optimisations. Dotted lines indicate tests with-
out the optimisation while solid lines indicate tests with the
optimisation activated. Each line indicates a separate test
with the label indicating the number of volunteer nodes in-
volved.

4.2 Node Movement Results
The second test shows the effect of adding the node move-
ment extensions to the new ObjectID assignment method.
As expected we find that node movement significantly im-
proves the load balancing, though the effect decreases as
more nodes are added to the system. Communication effi-
ciency on the other hand decreases slightly when node move-
ment is added. This is directly related to the load balanc-

10

10

10

10

10
10

20
20

20

20
20

20

40
40

40
40

40
40

10
10

10

10

10

10

20
20

20

20

20

20

40 40
40 40

40 40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5 10 20 30 40 50

Number of Objects

L
o

ad
 B

al
an

ce
 R

at
in

g

Figure 2: ObjectID Adjustment Load Balance Rat-
ing

10
10

10

10

10

10

20
20

20

20

20

20

40
40

40
40

40
40

10 10

10

10

10

10

20
20 20

20

20

20

40
40 40 40 40

40

0

1

2

3

4

5

6

5 10 20 30 40 50

Number of Objects

C
o

m
m

u
n

ic
at

io
n

 E
ff

ic
ie

n
cy

Figure 3: Node Movement Communication Effi-
ciency

ing, since as the objects spread amongst all of the nodes,
less communication is performed internally within nodes.

Figures 3 & 4 show the results of activating the node move-
ment optimisations. Dotted lines indicate tests without
node movement while solid lines indicate tests with the opti-
misations activated. As before, each line indicates a separate
test with the label indicating the number of volunteer nodes
involved.

5. RELATED WORK
Current cycle-stealing systems are predominantly client-server
based [12, 1, 6] or use a hierarchical layout to improve scal-
ability [4]. Applications making use of these frameworks
are generally limited to embarrassingly parallel approaches,
however, more recently work has been performed to allow
a other application models such as branch and bound [15]
and continuations [11]. G2:P2P’s direct inter-object com-
munication is unavailable, and difficult to imitate, using the
client-server approach of these systems.

Condor [23] provides direct communication between cycle-
stealing processes using messaging APIs like MPI and PVM,
however this feature requires a highly reliable environment.
Similarly, Kinitting Factory [5] uses Java RMI for commu-
nication, but is unable to cope with volunteers leaving the

10
10

10

10

10

10

20
20

20

20

20

20

40
40

40
40

40 40

10

10 10 10 10 10
20 20

20

20

20 20

40
40 40 40 40

40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

5 10 20 30 40 50

Number of Objects

L
o

ad
 B

al
an

ce
 R

at
in

g

Figure 4: Node Movement Load Balance Rating

system. G2:P2P provides direct communication and is reli-
able across volun-teer arrivals, departures and failures.

Some other attempts have been made in creating decen-
tralised cycle-stealing applications [8, 3], but this research
concentrates on the economic aspects of cycle-stealing and
doesn’t address how pure P2P features such as direct com-
munication can extend the programming model of cycle-
stealing applications. The DREAM project [2] provides
an innovative approach for doing pure P2P cycle-stealing
but primarily concentrates on the field of evolutionary algo-
rithms.

6. FUTURE WORK & CONCLUSIONS
G2:P2P’s direct object-to-object communication ability is
unique amongst cycle stealing projects. The extensions ex-
plored in this paper effectively enhance this communication
feature, significantly improving its performance for com-
mon communication patterns. Additionally, the alterations
made to the Pastry layer provide some generic enhance-
ments which may be beneficial to other applications using
distributed hash table P2P overlays.

There is still scope for further improvements to object local-
ity. In particular, support for a wider range of communica-
tion patterns. Currently nearest neighbour communication
is well supported. This is the obvious starting point as it
maps well to the Pastry address space, however methods
for supporting other topologies such as mesh or tree based
communication may also be able to be supported.

A secondary benefit of this locality work has been a substan-
tial improvement to the load balancing of G2:P2P, particu-
larly for smaller networks. There is scope for further work in
this area taking into account the variety in processing power
of volunteers and the workload incurred by different objects.
Like the enhancements presented here, adjusting allocation
for different loads is difficult, though not unachievable, in
fully decentralised networks.

6.1 Bibliography
7. REFERENCES
[1] D. P. Anderson. Boinc: A system for public-resource

computing and storage. In 5th IEEE/ACM

International Workshop on Grid Computing,
Pittsburgh, USA, November 8, 2004.

[2] M. G. Arenas, P. Collet, M. J. A. E. Eiben, J. J.
Merelo, B. Paechter, M. Preuβ, and M. Schoenauer. A
framework for distributed evolutionary algorithms.
Lecture Notes in Computer Science, 2439:665–675,
2002.

[3] A. Awan, R. A. Ferreira, S. Jagannathan, and
A. Grama. Unstructured peer-to-peer networks for
sharing processor cycles. Parallel Computing,
32(2):115–135, February 2006.

[4] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff.
Charlotte: Metacomputing on the web. In Proc. of the
9th Int’l Conf. on Parallel and Distributed Computing
Systems (PDCS-96), 1996.

[5] A. Baratloo, K. M., H. Karl, and Z. M. Kedem.
Knittingfactory: An infrastructure for distributed web
applications. Technical Report TR1997-748, New York
University, 13, 1997.

[6] F. Cappello, S. Djilali, G. Fedak, T. Herault,
F. Magniette, V. Néri, and O. Lodygensky.
Computing on large-scale distributed systems: Xtrem
web architecture, programming models, security, tests
and convergence with grid. Future Gener. Comput.
Syst., 21(3):417–437, 2005.

[7] B. Cohen. Incentives build robustness in bittorrent.
http://www.bittorrent.com/bittorrentecon.pdf,
2003.

[8] R. Gupta and A. Somani. Compup2p: An architecture
for sharing of computing resources in peer-to-peer
networks with selfish nodes. In Proceedings of the
Second Workshop on the Economics of Peer-to-Peer
Systems, Cambridge, MA, 2004.

[9] G. Kan. Peer-to-Peer: Harnessing the Power of
Disruptive Technologies, chapter Gnutella. O’Reilly &
Associates, Inc, 2001.

[10] G. Kan. Peer-to-Peer: Harnessing the Power of
Disruptive Technologies, chapter Peformance. O’Reilly
& Associates, Inc, 2001.

[11] W. Kelly, P. Roe, and J. Sumitomo. An enhanced
programming model for internet based cycle stealing.
In H. R. Arabnia and Y. Mun, editors, PDPTA,
volume 4, pages 1649–1655. CSREA Press, 2003.

[12] W. Kelly, P. Roe, and J. Sumitomo. G2: A grid
middleware for cycle donation using .net. In 2002
International Conference on Parallel and Distributed
Processing Techniques and Applications, June 2002.

[13] R. Mason and W. Kelly. Peer-to-peer cycle sharing via
.net remoting. In Proceedings of the Ninth Australian
World Wide Web Conference (AusWeb03), 2003.

[14] R. Mason and W. Kelly. G2-p2p: A fully decentralised
fault-tolerant cycle-stealing framework. In Proceedings
of the Australasian Workshop on Grid Computing and
e-Research (AusGrid05), Newcastle, Australia, 2005.

http://www.bittorrent.com/bittorrentecon.pdf

[15] M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and
P. Cappello. Javelin++: scalability issues in global
computing. Concurrency: Practice and Experience,
12(8):727–753, 2000.

[16] P. Obermeyer and J. Hawkins. Microsoft .net
remoting: A technical overview. http:
//msdn.microsoft.com/library/default.asp?url=

/library/en-us/dndotnet/html/hawkremoting.asp,
2001.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network.
Technical Report TR-00-010, Berkeley, CA, 2000.

[18] S. Rhea, P. Eaton, D. Geels, H. Weathersppon,
B. Zhao, and J. Kubiatowicz. Pond: the oceanstore
prototype. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies
(FAST’03), March 2003.

[19] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. Lecture Notes in
Computer Science, 2218:329–350, 2001.

[20] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and
P. Druschel. SCRIBE: The design of a large-scale
event notification infrastructure. In Networked Group
Communication, pages 30–43, 2001.

[21] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings
of the 2001 conference on applications, technologies,
architectures, and protocols for computer
communications, pages 149–160. ACM Press, 2001.

[22] Sun Microsystems. Java remote method invocation -
distributed computing for java.
http://java.sun.com/products/jdk/rmi/

reference/whitepapers/javarmi.html, 2004.

[23] T. Tannenbaum, D. Wright, K. Miller, and M. Livny.
Condor – a distributed job scheduler. In T. Sterling,
editor, Beowulf Cluster Computing with Linux. MIT
Press, October 2001.

[24] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. D. Kubiatowicz. Tapestry: A resilient
global-scale overlay for service deployment. IEEE
Journal on Selected Areas in Communications, 22(1),
January 2004.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp
http://java.sun.com/products/jdk/rmi/reference/whitepapers/javarmi.html
http://java.sun.com/products/jdk/rmi/reference/whitepapers/javarmi.html

	Introduction
	G2:P2P Overview
	Pastry
	Object Addressing & Programming Model

	Extensions for Improving Communication Locality
	ObjectID Assignment
	Object Groups
	Node Movement
	Physically Related Nodes

	Results
	Enhanced ObjectID Results
	Node Movement Results

	Related Work
	Future Work & Conclusions
	Bibliography

	References

