

QUT Digital Repository:
http://eprints.qut.edu.au/

Karus, Siim and Dumas, Marlon (2007) Enforcing Policies and Guidelines in Web
Portals: A Case Study. In Proceedings WISE'2007 Workshops: Workshop on
Governance, Risk and Compliance Management in Web Information Systems
4832, pages pp. 154-165, Nancy, France.

 © Copyright 2007 Springer
This is the author-version of the work. Conference proceedings published, by
Springer Verlag, will be available via SpringerLink.
http://www.springer.de/comp/lncs/ Lecture Notes in Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10883005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Enforcing Policies and Guidelines in Web Portals: A
Case Study

Siim Karus1, Marlon Dumas1,2

1 Institute of Computer Science, University of Tartu, Estonia
siim04@ut.ee

2 Faculty of IT, Queensland University of Technology, Australia
m.dumas@qut.edu.au

Abstract. Customizability is generally considered a desirable feature of web
portals. However, if left uncontrolled, customizability may come at the price of
lack of uniformity or lack of maintainability. Indeed, as the portal content and
services evolve, they can break assumptions made in the definition of
customized views. Also, uncontrolled customization may lead to certain content
considered important by the web portal owners (e.g. advertisements), to not be
displayed to end users. Thus, web portal customization is hindered by the need
to enforce customization policies and guidelines with minimal overhead. This
paper presents a case study where a combination of techniques was employed to
semi-automatically enforce policies and guidelines on community-built
presentation components in a web portal. The study shows that a combination
of automated verification and semantics extraction techniques can reduce the
amount of manual checks required to enforce these policies and guidelines.

Keywords: web portal, customization, policy, guideline

1 Introduction

Continuing advances in web technology combined with trends such as Web 2.0 are
generating higher expectations for user participation and customized user experiences
on the Web [4]. These heightened expectations entail additional maintenance costs for
community-oriented web sites, such as web portals. A natural way for web portal
owners to balance higher expectations with the imperative of keeping a manageable
cost base, is to “open up the box” by allowing the community to contribute content,
services and presentation components into the portal. This way, the portal owner can
focus on developing and maintaining the core of the portal instead of doing so for
every service and presentation component offered by the portal. Also, increased
openness and community participation has the potential of promoting fidelity, by
motivating end users and partner sites to continue relying on the portal once they have
invested efforts into customizing it or contributing to it. On the other hand, this
increased openness needs to be accompanied by a sound governance framework as
well as tool support to apply this framework in a scalable manner. Indeed, a manual

mailto:siim04@ut.ee
mailto:m.dumas@qut.edu.au

approach to reviewing and correcting user-contributed components would easily
offset the benefits of accepting such contributions in the first place.

This paper considers the problem of allowing third parties to contribute
presentation components to a web portal, while enabling portal administrators to
enforce a set of policies and guidelines over these components in a scalable manner.1
Specifically, the paper presents a case study where a team of web portal
administrators needed to enforce a number of such policies and guidelines. Central to
the approach adopted in this case study is a language, namely xslt-req, that allows
portal administrators to capture the impact of policies and guidelines on the XML
transformations that presentation components are allowed to perform. As a result, the
portal administrators do not need to inspect and to fix every single submission in all
its details; instead, most of the enforcement is done by a set of tools based on xslt-req.
A key feature of xslt-req is that it builds on top of well-known web standards,
specifically XML Schema and XSLT, thus lowering the barriers for its adoption.

The paper is structured as follows. Section 2 introduces the case study, including
the policies and guidelines that needed to be enforced. Next, Section 3 discusses the
techniques used to specify and to enforce these policies and guidelines. Related work
is discussed in Section 4 while Section 5 draws conclusions.

2 Case Study: VabaVaraVeeb

VabaVaraVeeb (http://vabavara.net) is an Estonian portal for freeware.2 A key
feature of the portal is its high degree of customizability. Specifically, the portal
allows third-parties to layer their own presentation components on top of the portal’s
services. Third parties may introduce custm-built presentation components for various
features of the portal, such as the ‘mailbox’ feature, the ‘user menu’ feature or the
‘statistics’ feature. Once a third-party has registered a presentation component in the
portal, they can re-direct users into the portal in such a way that users will consume
VabaVaraVeeb’s services through this presentation component. This allows third
parties to loosely integrate services from VabaVaraVeeb with their own services at
the presentation level, while enabling VabaVaraVeeb to retain some control over the
delivery of its services. For example, a third-party web site that maintains a catalogue
of security software, namely Securenet.ee, has added a presentation component on top
of VabaVaraVeeb, to match its own presentation style. This way, users of Securenet
are transferred to VabaVaraVeeb and then back to Securenet transparently, since the
presentation style remains the same when moving across the two sites. The degree of
customizability has been pushed to the level where the portal’s services can be
rendered not only through traditional HTML web pages, but also through alternative
technologies such as XAML (eXtensible Application Markup Language) and XUL
(XML User Interface Language). Presentation components are defined as XSL
transformations [3] while the data delivered by the portal is represented in XML.

1 In this paper, the term policy refers to a rule that must be followed and for which violation can

be objectively defined, while the term guideline refers to a rule that should generally be
followed, but for violations can not always be objectively asserted.

2 The first author of this paper is one of the co-founders and administrators of this portal.

Figure 1 VabaVaraVeeb default interface.

Figure 2 Modified VabaVaraVeeb interface with new main menu and other layout changes.

Figure 1 shows the default interface of VabaVaraVeeb while Figure 2 displays a
modified interface. One can see that Figure 2 has a different main menu that appears
at the top on the page (below the banner), and a repositioned right pane and search
box. There are other less visible differences. For example, the presentation component
corresponding to Figure 2 uses JavaScript to a larger extent than the default one.

Even though the portal gives significant freedom to third parties, all presentation
components are required to conform to a set of portal policies and guidelines in order
to achieve a certain level of uniformity and manageability. Originally, user-defined
presentation components were manually verified for conformance against the portal
policies and guidelines. However, as the portal grew, it became clear to the
administrators that this manual approach would not scale up. Indeed, each contributed
presentation component has to be checked against each policy and guideline, and each
check is time-consuming. In addition, new versions of existing presentation
components are submitted from times to times, and need to be verified again and
again. This led to the need to automate the conformance verification of submitted
presentation components against policies and guidelines.

The portal’s policies and guidelines can be classified as follows:3
1. Certain content is mandatory and must always be presented to the users. Although

the portal does not currently generate revenue through advertisement, it is foreseen
this will happen sooner or later. Hence, it is important to ensure that paid
advertisements and special announcements produced by the portal are always
displayed, regardless of the presentation components in use. Some of this
mandatory content must be presented to the users “as is”, while other content may
be presented in alternative ways. For example, promotional announcements may
have different presentation requirements than other announcements.

2. Conversely, certain content must never be presented to the user. Presentation
components are applied directly to the XML documents managed by the portal.
Some information contained in these XML documents (e.g. user’s access rights)
may be sensitive or may only be needed by internal procedures. This information
should therefore not be included in the generated pages.

3. Certain content must/may be delivered in certain output formats. For example, for
banners we have both the URL of the banner and the URL of the advertised
service. While rendering in graphical format, both URLs are marked compulsory,
while in text mode the banner’s URL is not marked as compulsory, however, the
advertisement’s alternate text is marked as compulsory.

4. Some content may need to be hidden or shown depending on the values of certain
elements/attributes in the XML documents.

5. Styles should use existing or common controls when possible. This avoids
duplicate code and contributes to forward compatibility [1], which is one of the
design goals in VabaVaraVeeb.

6. Generic services must be preferred over internal components to expose similar
aspects of objects or types of objects. Generic services are services used to perform
common tasks like presenting simple dialogues or notifying about errors.

7. Complex services should be composed of individually addressable and
“subscribable” services. Services built this way lower communication overhead

3 For detailed specifications of these policies and guidelines, the reader is referred to [6].

and follow service-based approach [2] to enable forward compatibility. This
service-based approach also allows portal owners to bill usage of every service
separately (hence the requirement for “subscribability”). Users only need access to
services and sub-services they are subscribed to.

8. The need for presentation components to access additional metadata to render a
document should be minimized. On the other hand, the metadata already contained
in the document should be used extensively. The names and values of XML
elements often give valuable hints about their underlying semantics. For example,
an element name with a suffix ‘s’ in English, usually denotes multiple items, and
this knowledge can be exploited to render the element’s contents as a list. Also, in
some cases, the XML document contains URLs and by inspecting such URLs, we
can derive valuable metadata and use it for presentation purposes.
Rules 1 to 4 above correspond to policies while rules 5 to 8 represent guidelines.

Guideline 7 does not relate to presentation components but to actual services provided
by the portal. At present, third parties are not allowed to contribute such services, but
it is foreseen that this will happen in the future, thus the guideline has been introduced
and is being applied to all services internally developed by the VabaVaraVeeb team.

In principle, the conformance of a submitted presentation component against the
first four policies can be automatically determined if the document structure is rigidly
defined, i.e. not allowing unqualified nodes and nodes of type “any”, and not allowing
cyclic constructs in the document schema. Indeed, if the structure of the document is
rigid, we can compute all possible source document classes that lead to different
output document in terms of their structure and we can test the presentation
component on sample documents representing each class. For each page generated by
these tests, we can then automatically check if the policy is violated or not.

However, constantly evolving web portals can not rely on strict definitions of
document structures as these definitions change too often and styles would need to be
updated with every change. Due to this continuous evolution, document schemas must
be designed in a forward-compatible manner by making them as loose as possible.
This in turn makes the automatic enforcement of policies difficult. As explained
below, we have found techniques to enforce these policies to some extent, but endless
possible rulesets and document structures make it impossible to enforce in all cases.

Guideline 5 can be enforced by removing the users’ ability to create custom basic
controls. This may, however, result in lower performance of the solution as some
simple tasks might have to be addressed using complex components. In some cases
common controls are not present and have to be created beforehand.

Guideline 6 is difficult to enforce automatically as it requires detection of
semantically similar code portions.

Guideline 7 is subjective as there is no metrics to decide whether or not a service
should be divided into sub-services. It is still possible to use some metrics for
approximation and compile-time warnings can be displayed at chosen value ranges.

By removing the ability for presentation components to access information in the
portal – other than the presented document – we can easily enforce Guideline 8.
However, if we enforced this guideline too strictly, we would lose forward
compatibility. In Section 3.2, we discuss a technique to enforce this guideline while
achieving forward compatibility, by following conventions in the naming of XML
elements and exploiting these conventions to derive semantic information.

3 Defining and Enforcing Policies and Guidelines

To facilitate the enforcement of the policies and guidelines introduced above,
several techniques are currently employed by VabaVaraVeeb’s administration team.
Central to these techniques is a language for capturing requirements over stylesheets,
namely xslt-req [5]. Some of the guidelines are not crisply defined, so their
enforcement can not be fully automated. Hence, other strategies are used to
complement xslt-req. This section provides an overview of xslt-req and the techniques
and strategies used for policy and guideline enforcement in VabaVaraVeeb.

3.1 The XSLT requirements definition language (xslt-req)

In the context of VabaVaraVeeb, restrictions over the transformations that
presentations are allowed to perform are treated as a natural extension of restrictions
over the structure of documents over which these transformations are applied.
Accordingly, xslt-req was defined as an extension of XML Schema and the syntax of
these extensions is similar to XSLT. In addition to providing an integrated framework
for expressing document structure and allowed transformations, this design choice has
the benefit that the portal developers and third-party contributors are familiar with
XML Schema and XSLT, and it is thus straightforward for them to learn xslt-req.

The aim of xslt-req is to capture allowed and required data transformations. For
each element, attribute or group in a schema, xslt-req provides extensions to specify:
1. whether the value of the element or attribute may be used in the output directly;
2. whether the value of the element or attribute may be used in the output indirectly;
3. whether the value of the element or attribute may be ignored; and
4. whether the values of the element’s children may be ignored.

xslt-req also supports the specification of conditions that determine when should
these rules be applied. These conditions are captured as XPath expressions over the
source document. They may also depend on the requested output format. Additionally
xslt-req can be used to limit the set of allowed output formats. Finally, xslt-req
supports versioning and allows developers to explicitly designate the root element of
the source document and to attach default policies to the document’s nodes.

As mentioned earlier, xslt-req was designed to be easy to learn for developers
familiar with XML Schema and XSLT. All xslt-req directives are in XML Schema
appinfo sections. The similarity with XSLT can be seen in the following listing.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
3 xmlns:xr="xslt-req" xr:schemaLocation="xslt-req.xsd">
4 <xs:annotation>
5 <xs:appinfo>
6 <!— Declaration of a new ruleset -->
7 <xr:xslt-requirements id="näide" version="1"
8 rootName="root" ignoreChildsDefault="false" />
9 <!— Output formats used in transformation rules-->
10 <xr:output-format name="xhtml" method="xml"
11 namespace="http://www.w3.org/1999/xhtml" />
12 <xr:output-format name="rss" method="xml"
13 namespace="http://backend.userland.com/rss2" />

14 <xr:output-format name="text" method="text" />
15 </xs:appinfo>
16 </xs:annotation>
17 <xs:element name="root">
18 <xs:complexType>
19 <xs:sequence>
20 <xs:element name="child">
21 <xs:annotation>
22 <xs:appinfo>
23 <xr:choose>
24 <xr:when matchOutputFormat="text|rss">
25 <!— Transformation rules -->
26 <xr:transformation-rules
27 ignoreChilds="true" outputIgnore="true"
28 outputValue="false" outputCondition="false" />
29 </xr:when>
30 <xr:otherwise>
31 <xr:transformation-rules
32 ignoreChilds="true" outputIgnore="false"
33 outputValue="true" outputCondition="false" />
34 </ ...>

The xslt-requirements element in lines 7-8 of this listing specifies the version of
the xslt-req ruleset, its identifier, and the name of the root element. XML Schema
allows multiple root elements in a document. However, xslt-req requires that there is a
single root element. This feature makes it easier to verify stylesheets. The
ignoreChildsDefault boolean attribute specifies that unless elsewhere overridden,
presentation component may not ignore child nodes of any element. Boolean
attributes outputValueDefault, outputConditionDefault, outputIgnoreDefault specify
other default values of xslt-req transformation rules, the meaning of which is
explained below. By default, these attributes are false except for outputValueDefault
which is true by default. Rules for unqualified elements and attributes can be
specified in the xslt-requirements element as well. One can specify multiple xslt-req
rulesets in one file by using different namespace prefixes.

Lines 10-14 specify the output formats affected by the ruleset. Output formats are
given a name, which is used later to specify rules specific to that output format. The
element for specifying output formats also includes an attribute called method,
corresponding to the method attribute of XSLT’s output element. Optionally, the URL
to the document schema can be supplied with attribute schemaLocation.

Lines 23 to 34 illustrate the choose-when-otherwise construct. The syntax of this
construct is defined in Figure 3. It is similar to XSLT’s choose-when-otherwise
construct. The main difference is that the element when in xslt-req contains an output
format selector attribute, namely matchOutputFormat. Lines 24-29 formulate rules
that apply only to “rss” or “test” output formats. Meanwhile, lines 30-34 formulate
rules that must be followed in other cases. Element when also allows using attribute
test as selector on the source document. This is similar to how XSLT elements when
attribute test is used. It is possible to have multiple when elements (i.e. multiple
selectors). It is also possible to use choose or if elements as children of when or
otherwise elements (i.e. nested conditional statements are allowed).

Figure 3 Syntax of choose-when-otherwise construct in xslt-req.

Figure 4 Syntax of transformation-rules in of xslt-req.

Lines 29-31 and lines 34-36 show examples of xslt-req transformation rules. The
syntax of such rules is given in Figure 4. Attribute ignoreChilds states whether or not
an element’s children may be ignored. Attributes outputIgnore, outputValue and
outputCondition state, respectively, whether or not the element or attribute may be
ignored in the output, whether or not the nodes value may be included in the output
(i.e. used in XSLT value-of or copy-of expressions) and whether or not the node’s
value may be used for formatting (i.e. used in XSLT when or if statements).

Even though the portal core is small and the structural descriptions and core
services amount to less than 1% of the internal data structures, they have a significant
impact on how presentations are built. This is the reason why about half the
customizations made by users are to the presentation of the core services. Therefore,
defining the internal data structures and using XML Schema with xslt-req to verify
user stylesheets has significantly reduced the human workload of verifying stylesheets
manually. This also allowed community-built presentation components to remain
functional despite changes in the core services.

3.2 Exploiting implicit metadata

The workload for maintaining stylesheets was also lowered by using metadata
implicitly contained in the source XML documents. In the early days of
VabaVaraVeeb, the portal developers noted that the names of elements and attributes
gave valuable hints for their presentation, and this was used to make the stylesheets
simpler, forward-compatible and in line with the guidelines. In particular, the portal
developers found they could use the suffixes of element names to detect lists of items.
This enables the use of a single template for catalogue entries, search results, message
lists and other list-like structures within the portal. When an element is identified to
be a list, special attributes attached to this element are used to display information like
the total number of items, the number of displayed items, the list name, page number
(for multi-page lists) and buttons for navigating to previous and next page. The names
of these special attributes tend to follow certain naming conventions. If some of the
special attributes are missing, the features expressed by the missing attributes are not
displayed. Using this simple detection made it possible to implement a presentation
component for the search feature of one of the modules of the portal, and then reuse
this presentation component for other modules. Another usage scenario for this
technique is detecting modules themselves to display them in a special area of the
page. Also, user input areas can be identified similarly for presentation purposes.

Initially, the portal administrators applied this technique to simplify their
stylesheets and to increase reuse. After successful trials, third parties were also
encouraged to use implicit metadata when contributing presentation components. This
was achieved by emphasizing the transient nature of any internal structure and by
supplying examples of detection rules.

This technique, in conjunction with the hard-coded requirement that all user-
contributed stylesheets must have a fall-back to the default style, has made it possible
to enforce policy number 8 and indirectly helped to enforce policies 5 and 6. This
technique is, however, applicable only manually. It is interesting to note that users
apply this technique naturally in about 80% of cases.

This technique is not error fail-proof. Rare oddities of general rules can be
expressed by using templates with higher priority level than the priority level of the
general templates thus ensuring that specialized templates are chosen over general
ones. This kind of ‘overriding’ has been used in several cases to fine-tune the
detection rules. For example the template for displaying lists of messages overrides
the general template for rendering lists.

3.3 Additional techniques

Additional techniques included combining similar code snippets and updating the
portal’s core to manage services in an addressable and subscribable way.

Similar code snippets were identified automatically using code profiling scripts
that collect information on certain portions of code. The collected information
included function parameters or code block input values, code block length in lines of
code (with and without comments). This information was used to review code blocks
that were similar according to the profiler script output. If these code blocks did turn
out to have similar functionality, they were extracted and generalized functions were
made to replace these code blocks. The profiler found only a small portion (less than
0.5% of lines of code) of the whole code-base to have similar code blocks. Of these,
less than half were false positives. This technique is now used for all new services.

The new version of the portal’s core features improved support for tracking service
access. This allows one service to be responsible for tracking service usage and
therefore manage subscriptions to services. As the portal core manages the addressing
of portal services, services only need to handle their internal addressing and
subscription to their sub-services.

3.4 Outcomes

The guidelines put into effect have reduced the complexity of the presentation
layer significantly. Management of all the presentation components (i.e. styles) has
become a task requiring minimal manual intervention. And because the guidelines are
designed to ensure forward compatibility, styles written once can be and are often
used to display new features and services without modification. This has led to shorter
development effort for adding new features into the portal, since these new features
tend not to break the existing styles, and when they do, the source of the problem is
easier to find. Furthermore, guideline 8 has reduced the number of lines of code in the
presentation layer by almost half, lowering the human effort for verifying styles.

The impact of automatic tools used to verify the styles, based on xslt-req, is as high
as that of using code examples and suggestions on how to follow the guidelines. Also,
deviations from policies which are not automatically verified are often accompanied
by deviations from policies that are automatically verified. This might be caused by
the different levels of experience in programming among the contributors.

It is estimated that the cost of maintaining the portal has been reduced by more
than 50% thanks to the contributions from third parties, the enforcement of the
policies and guidelines, and the lowered costs of enforcement.

4 Related Work

There is extensive literature dealing with the enforcement of access control policies
on XML content [7]. Policy definition languages proposed in this area allow one to
attach access control policies to an XML document node and its descendants. In this
sense, these policy definition languages share commonalities with xslt-req. However,
they differ in several respects: First, access control policy languages focus on
capturing under which conditions can a given XML node be read or updated by a
user. Thus, they cover cases such as the one in the second policy outlined in Section
2. In contrast, they do not allow one to capture obligations such as “a given element
must be displayed” or “an element must be displayed only in certain formats”, both of
which are key features of xslt-req. Nevertheless, xslt-req may benefit from ideas in [7]
and in similar work, to improve its ability to capture access control requirements.

There is also significant literature related to enforcing accessibility and usability
guidelines on web sites. For example, Vanderdonckt & Beirekdar [8] propose the
Guideline Definition Language (GDL) which supports the definition of rules
composed of two parts. The structural part designates the HTML elements and
attributes relevant to a guideline. This part is expressed in a language corresponding
to a limited subset of XPath. The second part (the evaluation logic) is a boolean
expression over the content extracted by the structural part. In contrast, xslt-req
operates over XML documents representing the internal data managed by the portal,
so that policies and guidelines are checked before the HTML code is generated.

The work presented in this paper is also related to the integration of services
(possibly from multiple providers) at the presentation layer. This integration is
supported by various portal frameworks based on standard specifications such as Java
Portlets or WSRP [10]. More recently, Yu et al. [9] have proposed an event-based
model for presentation components and a presentation integration “middleware” that
enables the integration of services from multiple providers at the presentation layer
without relying on specific platforms or APIs. However, these frameworks do not
consider the enforcement of policies and guidelines as addressed in this paper.

5 Conclusion and Future Work

The paper discussed various techniques for enforcing guidelines in community-
built web portals. Some of these techniques involve automatic verification of user-
contributed components, others were merely suggestive, meaning that they give
suggestions to the portal administrator regarding potential deadline violations, but
still, the administrator has to manually verify the suggestion. The usefulness of
automatic verification techniques was found to be at the same level as that of
suggestive techniques. Therefore, these latter techniques should not be undervalued.
Even though there are still verifications that require human intervention, much of the
enforcement occurs before the components reach the portal administrators.

The automatic verification techniques can be costlier to the portals maintenance
team as these techniques usually required human proofing or solving of the problems.
Even if the output of automatic verification were presented directly to the authors of

presentation components, (s)he might not be able to understand and solve the
problems reported without help from the portals developers.

Less than half of policy and guideline deviations detected by automatic verification
techniques were false positives, verification against xslt-req does not lead to false
positives due to its design. Automatic verification was used to detect less than 30% of
all identified types of policy/guideline deviations. However, this 30% of types of
deviations contained the most common deviations experienced.

The techniques presented in this paper have room for improvement along several
directions. For example xslt-req could be extended to support the specification of
rules based on patterns or XPath expressions. This way, xslt-req could be applied to
more than just the static core structure. This would make it possible to allow all
business layer services to have mandatory content or hidden content. In addition to
extending xslt-req, the verification methods that use xslt-req need to be reviewed, as
they currently assume that the document base structure is rigid.

As discussed in Section 3, templates that automatically extract semantics from
XML element names and values have been successfully used to achieve forward-
compatible stylesheets and to enhance reuse, despite the fact that these techniques are
not fail-proof. Making these techniques more robust and studying their applicability
in a wider setting is an avenue for future work.

References

1. C. Armbruster: Design for Evolution. White paper, 1999. Available at:
http://chrisarmbruster.com/documents/D4E/witepapr.htm, 1999

2. K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay, M. Munro: Service-Based
Software: The Future for Flexible Software. In Proceedings of the 7th Asia-Pacific Software
Engineering Conference (APSEC), Singapore, December 2000, pp. 214-221. IEEE
Computer Society.

3. J. Clark (Editor): XSL Transformations (XSLT), W3C Recommendation, 1999.
http://www.w3.org/TR/xslt

4. M. Jazayeri: Some Trends in Web Application Development. In Future of Software
Engineering (FOSE’07), May 2007, pp. 199-213. IEEE Computer Society.

5. S. Karus: Kasutajate poolt loodud XSL teisendustele esitavate nõuete spetsifitseerimine
(Specifying Requirements for User-Created XSL Transformations). Bachelors Thesis,
Faculty of Mathematics & Computer Science, University of Tartu, Estonia, 2005.
http://math.ut.ee/~siim04/b2005/bak1.0_word2.doc (in Estonian).

6. S. Karus: Forward Compatible Design of Web Services Presentation Layer. Masters Thesis,
Faculty of Mathematics & Computer Science, University of Tartu, Estonia, 2007.
http://www.cyber.ee/dokumendid/Karus.pdf/

7. I. Fundulaki and M. Marx: Specifying Access Control Policies for XML Documents with
XPath. In Proceedings of the 9th ACM Symposium on Access Control Models and
Technologies (SACMAT), Yorktown Heights, NY, USA, June 2004, pp. 61-69. ACM Press.

8. J. Vanderdonckt and A. Beirekdar: Automated Web Evaluation by Guideline Review.
Journal of Web Engineering 4(2): 102-117, 2005.

9. J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, M. Matera: A Framework for Rapid
Integration of Presentation Components. In Proceedings of the 16th International World
Wide Web Conference (WWW), Banff, Alberta, Canada, May 2007. ACM Press.

10. C. Wege: Portal Server Technology. IEEE Internet Computing 6(3): 73-77, 2002

http://chrisarmbruster.com/documents/D4E/witepapr.htm
http://www.w3.org/TR/xslt
http://math.ut.ee/%7Esiim04/b2005/bak1.0_word2.doc
http://www.cyber.ee/dokumendid/Karus.pdf/

	3.4 Outcomes

