

QUT Digital Repository:
http://eprints.qut.edu.au/

Alzaid, Hani and Abanmi, Suhail and Kanhere, Salil and Chou, Chun Tung (2008)
BANAID: A Sensor Network Test-bed for Wormhole Attacks . In Proceedings
AusCERT 2008, Gold Coast, Australia.

 © Copyright 2008 (please consult author)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10882798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BANAID: A Sensor Network Test-bed for Wormhole Attacks

Hani Alzaid

Information Security Institute

Queensland University of Technology

 Australia

halzaid@isi.qut.edu.au

Suahail Abanmi , Salil Kanhere , Chun Tung Chou

School of Computer Science and Engineering

University of New South Wales

Australia

{abanmis , salilk , ctchou} @cse.unsw.edu.au

Abstract

 The development of wireless sensor devices in

terms of low power and inexpensive data-relaying has

been partially achieved because of the rapid progress

in integrated circuits and radio transceiver designs and

device technology. Due to these achievements, the

wireless sensor devices are able to gather information,

process them if required, and send them to the next

sensor device. In some applications, these wireless

sensor devices must be secured, especially when the

captured information is valuable, sensitive or for

military usage. Wormhole attacks are a significant

type of security attacks which can damage the

wireless sensor networks if they go undetected.

Unfortunately, these attacks are still possible, even if

the communication is secured. The wormhole attack

records packets at one point of the network, passes

them into another node and this last node injects the

packet into the wireless sensor network again. This

type of attacks can not be avoided by using

cryptographic techniques because attackers neither

generate new nor alter existing packets. They only

forward legitimate packets from part of the network

to another part. This attack can cause damage to the

route discovery mechanism used in many routing

schemes. In this paper we build an actual test bed,

which is called BANAID, to simulate the wormhole

attack on a wireless sensor network and then

implement one of the current solutions against this

attack. BANAID consists of a combination of Mica2

motes and Stargate sensor devices.

1. Introduction
 The capability of combining sensing, processing,

and communicating wirelessly have been enabled by

the advances in microelectronics fabrication [2]. A

Wireless Sensor Network (WSN) is composed of a

group of tiny sensor devices, which can be networked

together and deployed in a wide spectrum of

applications in various military and civil domains. The

main objectives of deploying the Wireless Sensor

Network (WSNs) are remote monitoring and gathering

information [2]. Most of WSN’s applications run in

non-trusted environments and require secure

communications such as emergency response

operations, military or police networks, and safety-

critical business operations. For example, in

emergency response operations such as after a

natural disaster like flood, tornado, or earthquake, a

wireless sensor network could be used for real time

feedback. So, emergency rescue will relay on that

particular type of networks [3].

Unfortunately, this type of network is vulnerable to

several attacks. One major type of these attacks is

known as a Wormhole attack where an attacker

records a packet at one location in the network,

tunnels the packet to another location, and replays it

at other part of the network [3]. The wormhole attack

places the attacker in a very powerful position,

allowing him to gain unauthorized access, disrupt

routing, or perform a Denial-of-Service (DoS) attack

[3]. Current solutions for Wormhole attack such as [4,

9,10] are evaluated by running the proposed

techniques in different simulations. There is no real

deployment for any of these solutions. To the best of

our knowledge, this is the first work that built an

actual test bed to show the visibility of the Wormhole

attack in WSN. BANAID consists of few numbers of

Mica2 [1] and two Stargate [2] sensor devices.

Moreover, one of the proposed solutions, which is

Packet Leashes [4], will be implemented.

Figure 1: MICA2 Motes without an antenna [1].

The rest of the paper is organized as follows. In

Section 2, an introduction about different components

used in building up BANAID will be given. Section 3

describes the designing and the implementation of

BANAID. Section 4 concludes the paper.

2. BANAID Components
 It is important to have some background about

the wireless sensor devices used in this paper to build

up the test bed. BANAID consists of several Mica2

motes and two Stargate sensor devices. In the

following subsections, brief information about these

two types of wireless devices is given.

2.1 MICA2
 There are different models of Motes that have

been produced by Crossbow
1

. Each of these models

has different features. These models are MICAz,

MICA2, MICA2DOT, and MICA. All models except

MICA2 are beyond the scope of this paper. MICA2

Motes have been used in this paper to build BANAID.

Therefore, the features, hardware layouts, and

software environment of MICA2 Motes are described

in the following subsections.

2.1.1 MICA2 Features

 The MICA2 Motes come in three types according

to their RF frequency band: the MPR400 (915 MHz),

MPR410 (433 MHz), and MPR420 (315 MHz). The

Motes use the Chipcon CC1000, FSK modulated radio.

All types utilize a powerful Atmega128L micro-

controller and a frequency tunable radio with

extended range. The MPR4x0 and MPR5x0 radios are

compatible and can communicate with each other.

(The x = 0, 1, or 2 depending on the type / frequency

1 http://www.xbow.com/Home/HomePage.aspx

Figure 2: MIB510 Serial Interface Board [1].

band) [1]. Figure 1 shows a sample of MICA2 Mote.

The current version of Mica2 uses a 16 bit, 8MHz

Texas Instruments, 1024 KB external flash, and is

powered by two AA batteries.

2.1.2 Hardware Layout

 The MICA2 Mote can be reprogrammed using an

external board called MIB510 Serial Interface Board.

This board is a multi-purpose interface board used

with MICA, MICA2, MICAz, and MICA2DOT Motes

family. It supplies power to the devices through an

external power adapter option, and provides an

interface for a RS-232 Mote serial port and

reprogramming port [4]. The MIB510 serial interface

board, as shown in Figure 2, is used to program the

MICA2 Mote. This board has the PC connection

capability using the RS-232 serial port. Programming

the Motes requires a special operating system called

TinyOS, which should be installed in the PC.

2.1.3 Software Environment

 MICA2 Motes uses a special operating system,

which is used for wireless sensor nodes, called TinyOS

[7]. This operating system is an open-source event-

driven operating system designed for wireless

embedded sensor networks. It features a component-

based architecture which enables rapid innovation

and implementation while minimizing code size as

required by the severe memory constraints inherent

in sensor networks. TinyOS's component library

includes network protocols, distributed services,

sensor drivers, and data acquisition tools – all of which

can be used as-is or can be further refined for a

custom application. TinyOS's event-driven execution

model enables fine-grained power management, yet

allows the scheduling flexibility made necessary by the

unpredictable nature of wireless communication and

physical world interfaces [1].

Figure 3: Processor Board (Top View)[2].

TinyOS have been implemented in a language called

nesC. This language is an extension to C which has

been designed to embody the structuring concepts

and execution model of TinyOS. Programs written in

nesC language are built out of components, which are

wired to form entire programs. Each component has

interfaces which can provide its functionality to other

users.

2.2 Stargate
 Stargate is a powerful single board computer

with enhanced communications and sensor signal

processing capabilities. This product was designed

within Intel’s Ubiquitous Computing Research

Program, and licensed to Crossbow for production. In

addition to traditional single board computer

applications, the Stargate directly supports

applications around Intel’s Open-Source Robotics

initiative as well as TinyOS based Wireless Sensor

Networks.

2.2.1 Stargate Features

 Stargate uses Intel’s latest generation 400 MHz

XScale processor (PXA255) and SA1111 StrongARM

companion chip for I/O access. It has a reset button,

real time clock, lithium ion battery option and 51-pin

daughter card interface [2]. The Stargate sensor

device used in this test bed has various features which

can also be used in different applications. The main

feature that has been used extensively in the test bed

is the Compact Flash slot. Stargate has the capability

to have a WiFi Compact Flash card. Another expansion

in Stargate is MICA2 Mote connector, which allows

the Stargate to communicate with other MICA2 Motes

through the radio channel. Stargate consists of two

hardware pieces: the processor board and the

daughter card. These pieces will be explained in

details in the following subsection

Figure 4: Processor Board (Bottom View) [2].

2.2.2 Hardware Layout

 As mentioned in the previously, Stargate consists

of two hardware pieces: a processor board and a

daughter board. Each of these pieces will be described

in this subsection. The processing board as appeared

in Figure 3 and Figure 4 shows all the main buttons

and slots. Figure 3 shows the top view of the

processing board. It is clear from this view that

Stargate has two slots. These slots can be used to

communicate with other devices. The first slot is used

to allow Stargate to communicate with other MICA2

Mote by connecting a MICA2 Mote over the Stargate.

The second slot is used to connect WiFi Compact Flash

card to the Stargate, which allow it to communicate

through the standard 802.11a or 802.11b wireless

protocols.

Figure 5: Daughter Card (Top View) [2].

The processor board gets its power from the daughter

card. The daughter card has a power supply jack as it

appears in Figure 5 and Figure 6. Also, the daughter

card allows the user to communicate with Stargate

using different types of interfaces. There are three

different ways to communicate with Stargate. The first

one is using Serial RS232 Connecter.

Figure 6: Daughter Card (Bottom View) [2].

The second is using RJ-45 Ethernet Port. And the third

one is using USB Port. All these interfaces give the

ability to control or upload programs to the Stargate.

All switch buttons in the Stargate processor board and

daughter card have to be switched on before using

Stargate. There are two switch buttons S1 and S2 in

the processor board. The third switch button S3 is

located in the daughter card.

2.2.3 Software Environment

 As mentioned before, the Stargate is using an

embedded Linux operating system kernel. It is

installed on the processing board of the Stargate.

There is also additional software shipped with the

Stargate development platform, which could be used

to enable program development. The Stargate’s

platform provides the capability of installing programs

written in C language. The developer can control

various functions in Stargate by using C language

programs after compiling and installing them.

3. Building BANAID
 In this section the design, implementation,

explanation of the wormhole attack, and the

implementation of its solution will be described.

3.1 Design of BANAID
 The proposed test bed is developed with the

following underlying assumptions:

• The chosen network topology is assumed to

be fixed.
• Each node is assumed to know its neighbors.

Figure 7 shows that BANAID is composed of seven

Mica2 sensor nodes and two Stargate devices. In this

network design, the original source is Mote 1 and the

original destination is Mote 4. The global clock is a

normal sensor (Mote) which keeps sending a clock

packet to synchronize all other motes.

Figure 7: The proposed design of BANAID.

Each Mote in each Stargate will only forward any

received message from radio connection to WiFi

connection and vice versa without changing these

messages. The routing algorithm that has been used in

BANAID is the Ad hoc On Demand Distance Vector

(AODV). This routing algorithm will be explained in the

next subsection.

Moreover, the wormhole attack happens during the

phase of building the routes between nodes in AODV.

The attack will affect the routing table entries in the

original source and destination motes. Therefore, the

actual path that a message should pass from the

original source to the original destination will be

imprecise. The impact of the wormhole attack on the

network will appear clearly in both the original source

and the original destination motes. The original source

mote will deal with the original destination mote as its

direct neighbor and vice versa, which is not right

because they are separated by two intermediate

motes.

3.2 The AODV Algorithm
 The Ad hoc On Demand Distance Vector (AODV)

routing algorithm is a routing protocol designed for ad

hoc mobile networks. It is an on demand algorithm,

meaning that it builds routes between nodes only as

desired by source nodes. It maintains these routes as

long as they are needed by the sources.

AODV builds routes using route request and reply

query messages. When a source node desires a route

to a destination for which it does not already have a

route, it broadcasts a route request (RREQ) packet

across the network. Nodes receiving this packet

update their information for the source node and set

up backwards pointers to the source node in the route

tables. A node receiving the RREQ may send a route

reply (RREP) if it is either the destination or if it has a

route to the destination and the sequence number in

RREQ packet is not present in the node. If this is the

case, it sends a RREP back to the source. Otherwise, it

forwards the RREQ. Nodes keep track of the RREQ's

packets by storing their sequence numbers. If they

receive a RREQ which they have already processed,

they discard the RREQ and do not forward it.

As the RREP propagates back to the source nodes set

up forward pointers to the destination. Once the

source node receives the RREP, it may begin to

forward data packets to the destination. The routing

table for each node will be updated according to the

hop count field in RREQ or RREP packets. The received

packet with the smallest hop count will be chosen as

the best route path.

However, in this paper, not all of AODV routing

algorithm features have been implemented, features

that meet the aim of this paper are just implemented

for the sake of simplicity. For example, features like

sending and receiving RREQ/RREP packets, and

building the routing tables for each node have been

implemented whereas features like maintaining the

route paths and sending hello messages have not

been implemented.

3.3 Implementation of BANAID
 According to the proposed design of BANAID,

there are seven MICA2 Motes and two Stargate sensor

devices. Two motes have been combined with the two

Stargate sensor devices which are mote 5 and mote 6.

To implement BANAID, three types of programs have

been written and installed in the motes and the

stargate sensor devices. The first program has been

installed in motes 1, 2, 3, and 4, which is a simple

customized AODV algorithm. The second program has

been installed in motes 5 and 6, which forwards any

received packet from the radio antenna to the serial

port that connects the mote with the Stargate and

vice versa, without changing this packet. The third

program has been installed in both Stargate 1 and 2.

When a packet is received by the Stargate from its

serial port, which is connected to the corresponding

mote, the program forwards it to the other Stargate

through its WiFi connection and vice versa. The other

Stargate will receive this packet from its WiFi

connection and forward it to its serial port, which is

also connected to the corresponding mote. Then this

packet will be broadcasted via the radio antenna of

the mote.

3.3.1 The AODV Program

 Before describing the functionalities that are

done by this program, a brief explanation about the

important variables is given as follows:

OS OD C N HC MID MT S/M TS

Table 1: Packet Format.

Table 1 illustrates the packet format used in building

this test bed where

• OS represents original sender address.

• OD represents original destination address.

• C represents the current sensor address.

• N represents the next sensor’s address.

• HC represents the hop counter.

• MID represents the messages ID.

• MT represents the message type.

• S/M explains whether the message comes

from a Stargate or a Mica2 sensor.

• TS represent time stamp.

Dest. Address Next Hop Hop Count

…

Table 2: Routing Table Format.

Next, Table 2 describes the routing table format. It is a

k*3 array where k is a predefined value that

represents the maximum number of entries that the

routing table can hold. The table consists of three

fields: the destination address field which stores the

final destination for the current received packet, the

next hop field which holds the address for next hop,

and the hop count field which represents the number

of hops left before reaching the final destination.

Figure 8 illustrates the pseudo code
2
 that has been

used in this paper to implement AODV. It describes

the AODV’s functionalities that have been

implemented in order to build this test bed. It does

the most important part of this paper since it

implements the AODV routing algorithm, synchronizes

with global clock, and implements the a solution to

the wormhole attack. This program has been written

in combination of nesC and C languages and will be

upload into Mote 1,2,3, and 4.

2 The whole program can be obtained by contacting

the first author.

Figure 8: Pseudo Code of AODV.

3.3.2 TOSBase Program

 This program was written and delivered with the

TinyOS tool kit as one of many readymade

applications. The name of this application is TOSBase,

which can be found under the application directory in

TinyOS file. It simply forwards any received packet

from the radio antenna of the Mica2 sensor to the

serial port (51-pin Hirose Connector), which is shown

in Figure 1, without changing the content of the

packet. The Mica2 sensor is connected to the Stargate

through this serial port. This program is written in

nesC language and will be uploaded into Mote 5, and

6 (see Figure 7).

3.3.3 Stargate Program

 The program consists of two threads or

processes
3
. The first process is the main program,

which keeps listening to the serial port connected to

the mote and sends any received packet to the client

socket.

3 The whole program can be obtained by contacting

the first author.

Figure 9: Pseudo Code of Stargate’s Program

The client socket will initiate a WiFi connection with

the server socket in the other Stargate. The second

thread or process runs as a server that keeps listening

to any client connection via WiFi. It receives the

packet and forwards it to the serial port connected to

the mote, which will broadcast the packet via its radio

antenna. As explained in Figure 9, the program in

Stargate 1 will only forward messages from radio that

comes from the original source which is mote 1. The

other Stargate 2 will only forward messages from

radio that comes from the original destination mote 4.

The two versions of these programs are the same

except in checking the type of the message before

start forwarding it.

3.4 Demonstration of BANAID
 This subsection illustrates the usability of this test

bed. The Mica2 Motes have some indicators which

have been used to simulate this type of attack. Each

mote has three lights: red, green, and yellow. These

lights have been used in this paper to simplify the

demonstration of this solution such as showing how

packets are traveling from one mote to another and

showing when and how the wormhole attack

happens. For example when the green light blinks, it

means that the mote is sending a packet. The red light

indicates that the mote has received a RREQ packet

from other motes. The yellow light turns on when the

mote has received a RREP packet from other motes.

The green and yellow lights together indicate that a

RREQ or RREP has been received at the destination. It

is clear to say that the red light will be seen before the

yellow light since the request packet comes before the

reply. However, if the yellow light has been seen

before the green light, it means a wormhole attack

has been detected. The reason for this is the replay

comes before or faster than the request packet. By

doing this, it is easier now to understand what is

happening during the demonstration.

3.5 Visibility of BANAID

There are two situations to run BANAID. The first

situation is demonstrating the customized AODV

routing algorithm without implementing the

wormhole attacks. In other words, demonstrating

customized AODV without the Stargate sensor

devices. The second situation is demonstrating

wormhole attack beside the customized AODV.

To demonstrate the first situation, it is important to

turn the Stargate sensor devices off. The wormhole

attack will not occur in this situation. To start this

demonstration, firstly turn on motes 2, 3, 4, and 7.

Then, turn on the mote 1 which acts as the original

source. Mote 1 will start sending RREQ packet by

blinking its green light. This sending will be after

synchronized with global clock. Mote 2 will receive the

RREQ packet, turn on its red light, and forward this

packet by blinking its green light. Mote 3 will do the

same thing that mote 2 has done. Finally, mote 4 will

receive the RREQ packet, turn on its red light and

yellow light indicating that the RREQ has reached its

destination, and prepare the RREP packet. The same

process will happen for RREP packet, but the

difference is that each mote will turn on its yellow

light on receiving the RREP packet. Finally, Mote 4 will

turn on its red and yellow lights on receiving the RREP

packet indicating that the RREP has reached its

destination.

The other situation is demonstrating the wormhole

attack by adding the two Stargate with their motes.

Firstly, turn on all motes and Stargates except mote 1

which is the original source. Then, turn on mote 1 to

start sending the RREQ packet. In this situation, mote

4 which is the original destination will receive the

RREQ from mote 1 directly through the Stargate path

since the WiFi path is faster than the radio path. This

happens when Mote 5 receives the RREQ packet from

mote 1 and sends it directly through the WiFi

connection to the other Stargate. Mote 6 in the other

Stargate will send this packet to mote 4 via its radio

antenna. The RREQ packet will travel through the WiFi

connection faster than the normal path which is

through the intermediate motes 2 and 3. In this

situation, mote 4 will think that mote 1 is its direct

neighbor and it will turn on its red light and yellow

light preparing for the RREP packet. Mote 4 will send

the RREP packet which will be delivered through the

WiFi connection between the two Stargates. Mote 1

will turn on its red and yellow lights when it receives

the RREP packet. Also, mote 1 will think that mote 4 is

its direct neighbor and this is how the wormhole

attack happens. It is possible to display the

information of the packets and the final routing table

in mote 1 by using a PC. More details of how to

perform that have been provided in Chapter 3.

There are a number of techniques to solve the

wormhole attack in a wireless sensor network. In the

next section, some of these techniques will be briefly

described. The implementation of one of them will be

explained in section 3.7.

3.6 Wormhole Attack Solution

 To detect and deter the Wormhole attack, some

solutions have been proposed in different papers such

as [4,9,10]. Hu et al. proposed a defense against the

Wormhole attacks in WSN called packet leashes [4]. It

is the most commonly cited solution and therefore it

is the only solution that is implemented in this paper.

A leash is a portion of information that is added to the

packet to restrict its traveling distance or time. This

solution consists of two types of leashes: geographic

leashes and temporal leashes. Each of these types will

be described briefly in this section and more details

are available in [4].

A geographic leash detects and prevents the

wormhole attack by ensuring that the sender and the

receiver are within a specified distance. To do that,

each node must know its location and be timely

synchronized with other nodes. The other type of

solution is a temporal leash. It detects and prevents

the wormhole attack by ensuring that the packet’s

traveling time is within a specified period of time. To

do that, all nodes must be timely synchronized in

terms of their clocks. When the sender starts sending

the packets, it stores its sending timestamp in the

packet. Then, the receiver can compare its receiving

timestamp with the value in the packet. Therefore,

the receiver will be able to detect if the packet

traveled so fast according to a specified transmission

time. In BANAID, the temporal leash solution has been

used and implemented to detect and prevent the

wormhole attack in the wireless sensor network. The

geographic leash solution has not been considered in

this paper because it is complicated to be

implemented. It needs a special hardware that can

specify the locations of all nodes such as GPS, which is

expensive.

3.7 Implementation of the 'Packet Leashes

 Solutions'

 As it has been discussed earlier, timing mechanism

is required to distinguish if the packet received from

the fake path or the real path to avoid the wormhole

attack. A packet received from the Stargate is going to

be faster than the packet received from the mote

since the WiFi transmission is faster than the radio

transmission. Therefore, applying this timing

mechanism will allow the destination to recognize the

real packet by comparing it’s time stamp with the time

stamp of the received packet. If the difference

between these two time stamps is less than or equal

to X, it means that it is a fake packet. To compute the

value of X according to BANAID design:

• There is a transmission delay in each mote.

The average transmission delay is around 45

msec(Tr = 45 msec).[5].

• The real path consists of mote 1, 2, 3, and 4

where the fake path consists of mote1, 5, 6,

and 4.

• Processing time at each mote will be

neglected since both paths have the same

number of motes. Therefore, the total

processing time for motes in each path will

be almost same.

• The WiFi transmission delay is neglected

since the data rate is high.

Delay on the real path:

 = No. of motes that will transmit * Tr

 = 3 (mote1, 2, and 3) * 45

 = 3 Tr.

Delay on the fake path:

 = No. of motes that will do transmission * Tr

 = 2 (mote1, and 6) * 45

 = 2 Tr.

Therefore, the destination node is able to distinguish

between the real and the fake packet by subtracting

the time stamp at destination by the time stamp at

the source. If the result <= 2 Tr, then the packet is

fake. Otherwise, it is real.

4. Conclusion and Future Work

 The rapid development in the wireless sensor

networks field has allowed this technology to be used

in many applications. Some of these applications are

critical and require secure and trusted environment.

Therefore, different research studies have been

conducted to analyze the wireless sensor networks

and discovering their threats. One of the attacks

which may damage wireless sensor networks is the

Wormhole attack. Thus, this paper built a test bed of a

group of sensor devices to simulate the wormhole

attack and implement one of the solutions to detect

and prevent this attack. In this paper, a brief

background about the types of wireless devices, which

are used in building up BANAID, is introduced. Then,

the design and the implementation of BANAID are

illustrated by describing the proposed network

topology, the algorithms, and the chosen solution.

Finally, detailed steps of setting up BANAID are given.

In future, the timing mechanism that has been used

might be improved especially with the new version of

TinyOS that give the opportunity to implement

internal clock in the mote. Also, BANAID could be

enhanced by some additional improvements such as

implementing and evaluating different solutions for

the Wormhole attack, and extending the size of the

size of the network implemented in BANAID.

Acknowledgement
The authors would like to acknowledge Dr. Wen Hu,

CSE, UNSW for his support with setting environment

for TinyOS, Mica2, and Stargae. Also, the authors

would like to acknowledge Manal Alfaraj, Griffith

University and Teresa Desmarchelier, University of

Queensland for the valuable feedback on the paper.

This work was supported by King Abdulaziz City for

Science and Technology (KACST).

5. References

[1] Crossbow Technology, Inc., MPR/MIB Mote

Hardware Users Manual,

http://www.xbow.com/Support/Support_pdf_file

s/MPR-MIB_Series_Users_Manual.pdf

[2] Crossbow Technology, Inc., Stargate Developer’s

Manual,

http://www.xbow.com/Support/Support_pdf_file

s/Stargate_Manual.pdf

[3] Ganeriwal, S., Kumar, R., & Srivastava, M.B.

“Timing-sync protocol for sensor networks,”

ACM Conference on Embedded Networked

Sensor Systems (SENSYS 2003).

[4] Hu, Y., Perrig, A., & Johnson, D.B. “Packet Leashes:

A Defense against Wormhole Attacks in Wireless

Ad Hoc Networks,” Proceedings of the Twenty-

Second Annual Joint Conference of the IEEE

Computer and Communications Societies

(INFOCOM 2003), vol. 3, pp. 1976-1986, IEEE, San

Francisco, CA, April 2003.

[5] Paek, J., Chintalapudi, K., & Govindan, R.“A

Wireless Sensor Network for Structural Health

Monitoring: Performance and Experience”2005.

[6] Stargate Mailing List,

http://www.cens.ucla.edu/pipermail/stargate-

users

[7] TinyOS website, http://www.tinyos.net/

[8] TinyOS Mailing List,

http://www.tinyos.net/search.html

http://www.cens.ucla.edu/pipermail/stargate-

user/

[9] Lazos, L.; Poovendran, R.; Meadows, C.; Syverson,

P.; Chang, L.W., "Preventing wormhole attacks on

wireless ad hoc networks: a graph theoretic

approach," Wireless Communications and

Networking Conference, 2005 IEEE , vol.2, no., pp.

1193-1199 Vol. 2, 13-17 March 2005.

[10] Khalil, I.; Saurabh Bagchi; Shroff, N.B.,

"LITEWORP: a lightweight countermeasure for the

wormhole attack in multihop wireless networks,"

Dependable Systems and Networks, 2005. DSN

2005. Proceedings. International Conference on,

vol., no., pp. 612-621, 28 June-1 July 2005.

