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Abstract 

         The development of wireless sensor devices in 

terms of low power and inexpensive data-relaying has 

been partially achieved because of the rapid progress 

in integrated circuits and radio transceiver designs and 

device technology. Due to these achievements, the 

wireless sensor devices are able to gather information, 

process them if required, and send them to the next 

sensor device.  In some applications, these wireless 

sensor devices must be secured, especially when the 

captured information is valuable, sensitive or for 

military usage. Wormhole attacks are a significant 

type of security attacks which can damage the 

wireless sensor networks if they go undetected. 

Unfortunately, these attacks are still possible, even if 

the communication is secured. The wormhole attack 

records packets at one point of the network, passes 

them into another node and this last node injects the 

packet into the wireless sensor network again. This 

type of attacks can not be avoided by using 

cryptographic techniques because attackers neither 

generate new nor alter existing packets. They only 

forward legitimate packets from part of the network 

to another part. This attack can cause damage to the 

route discovery mechanism used in many routing 

schemes. In this paper we build an actual test bed, 

which is called BANAID, to simulate the wormhole 

attack on a wireless sensor network and then 

implement one of the current solutions against this 

attack. BANAID consists of a combination of Mica2 

motes and Stargate sensor devices. 

 
1. Introduction 
         The capability of combining sensing, processing, 

and communicating wirelessly have been enabled by 

the advances in microelectronics fabrication [2]. A 

Wireless Sensor Network (WSN) is composed of a 

group of tiny sensor devices, which can be networked 

together and deployed in a wide spectrum of 

applications in various military and civil domains. The 

main objectives of deploying the Wireless Sensor 

Network (WSNs) are remote monitoring and gathering 

information [2]. Most of WSN’s applications run in 

non-trusted environments and require secure 

communications such as emergency response 

operations, military or police networks, and safety-

critical business operations. For example, in 

emergency response operations such as after a 

natural disaster like flood, tornado, or earthquake, a 

wireless sensor network could be used for real time 

feedback. So, emergency rescue will relay on that 

particular type of networks [3].  

 

Unfortunately, this type of network is vulnerable to 

several attacks. One major type of these attacks is 

known as a Wormhole attack where an attacker 

records a packet at one location in the network, 

tunnels the packet to another location, and replays it 

at other part of the network [3]. The wormhole attack 

places the attacker in a very powerful position, 

allowing him to gain unauthorized access, disrupt 

routing, or perform a Denial-of-Service (DoS) attack 

[3].  Current solutions for Wormhole attack such as [4, 

9,10] are evaluated by running the proposed 

techniques in different simulations.  There is no real 

deployment for any of these solutions.  To the best of 

our knowledge, this is the first work that built an 

actual test bed to show the visibility of the Wormhole 

attack in WSN.  BANAID consists of few numbers of 

Mica2 [1] and two Stargate [2] sensor devices. 

Moreover, one of the proposed solutions, which is 

Packet Leashes [4], will be implemented. 

 



 
Figure 1: MICA2 Motes without an antenna [1]. 

 
The rest of the paper is organized as follows. In 

Section 2, an introduction about different components 

used in building up BANAID will be given. Section 3 

describes the designing and the implementation of 

BANAID. Section 4 concludes the paper. 

 

2. BANAID Components 
        It is important to have some background about 

the wireless sensor devices used in this paper to build 

up the test bed. BANAID consists of several Mica2 

motes and two Stargate sensor devices. In the 

following subsections, brief information about these 

two types of wireless devices is given. 
 
 
2.1 MICA2  
       There are different models of Motes that have 

been produced by Crossbow
1

. Each of these models 

has different features. These models are MICAz, 

MICA2, MICA2DOT, and MICA. All models except 

MICA2 are beyond the scope of this paper. MICA2 

Motes have been used in this paper to build BANAID. 

Therefore, the features, hardware layouts, and 

software environment of MICA2 Motes are described 

in the following subsections. 
 
2.1.1 MICA2 Features 

         The MICA2 Motes come in three types according 

to their RF frequency band: the MPR400 (915 MHz), 

MPR410 (433 MHz), and MPR420 (315 MHz). The 

Motes use the Chipcon CC1000, FSK modulated radio. 

All types utilize a powerful Atmega128L micro-

controller and a frequency tunable radio with 

extended range. The MPR4x0 and MPR5x0 radios are 

compatible and can communicate with each other. 

(The x = 0, 1, or 2 depending on the type / frequency  

                                                           
1 http://www.xbow.com/Home/HomePage.aspx  

 
Figure 2: MIB510 Serial Interface Board [1]. 

 

band) [1]. Figure 1 shows a sample of MICA2 Mote.  

The current version of Mica2 uses a 16 bit, 8MHz 

Texas Instruments, 1024 KB external flash, and is 

powered by two AA batteries. 

 

2.1.2 Hardware Layout 

         The MICA2 Mote can be reprogrammed using an 

external board called MIB510 Serial Interface Board. 

This board is a multi-purpose interface board used 

with MICA, MICA2, MICAz, and MICA2DOT Motes 

family. It supplies power to the devices through an 

external power adapter option, and provides an 

interface for a RS-232 Mote serial port and 

reprogramming port [4].  The MIB510 serial interface 

board, as shown in Figure 2, is used to program the 

MICA2 Mote. This board has the PC connection 

capability using the RS-232 serial port. Programming 

the Motes requires a special operating system called 

TinyOS, which should be installed in the PC.  

 

 
2.1.3 Software Environment 

         MICA2 Motes uses a special operating system, 

which is used for wireless sensor nodes, called TinyOS 

[7]. This operating system is an open-source event-

driven operating system designed for wireless 

embedded sensor networks. It features a component-

based architecture which enables rapid innovation 

and implementation while minimizing code size as 

required by the severe memory constraints inherent 

in sensor networks. TinyOS's component library 

includes network protocols, distributed services, 

sensor drivers, and data acquisition tools – all of which 

can be used as-is or can be further refined for a 

custom application. TinyOS's event-driven execution 

model enables fine-grained power management, yet 

allows the scheduling flexibility made necessary by the 

unpredictable nature of wireless communication and 

physical world interfaces [1].  



 
Figure 3: Processor Board (Top View)[2]. 

 

TinyOS have been implemented in a language called 

nesC. This language is an extension to C which has 

been designed to embody the structuring concepts 

and execution model of TinyOS. Programs written in 

nesC language are built out of components, which are 

wired to form entire programs. Each component has 

interfaces which can provide its functionality to other 

users.   
 
2.2 Stargate 
         Stargate is a powerful single board computer 

with enhanced communications and sensor signal 

processing capabilities. This product was designed 

within Intel’s Ubiquitous Computing Research 

Program, and licensed to Crossbow for production. In 

addition to traditional single board computer 

applications, the Stargate directly supports 

applications around Intel’s Open-Source Robotics 

initiative as well as TinyOS based Wireless Sensor 

Networks.  

 
2.2.1 Stargate Features 

         Stargate uses Intel’s latest generation 400 MHz 

XScale processor (PXA255) and SA1111 StrongARM 

companion chip for I/O access. It has a reset button, 

real time clock, lithium ion battery option and 51-pin 

daughter card interface [2]. The Stargate sensor 

device used in this test bed has various features which 

can also be used in different applications.  The main 

feature that has been used extensively in the test bed 

is the Compact Flash slot. Stargate has the capability 

to have a WiFi Compact Flash card. Another expansion 

in Stargate is MICA2 Mote connector, which allows 

the Stargate to communicate with other MICA2 Motes 

through the radio channel. Stargate consists of two 

hardware pieces: the processor board and the 

daughter card. These pieces will be explained in 

details in the following subsection 

 
Figure 4: Processor Board (Bottom View) [2]. 

 
2.2.2 Hardware Layout 

 
      As mentioned in the previously, Stargate consists 

of two hardware pieces: a processor board and a 

daughter board. Each of these pieces will be described 

in this subsection. The processing board as appeared 

in Figure 3 and Figure 4 shows all the main buttons 

and slots. Figure 3 shows the top view of the 

processing board. It is clear from this view that  

 
Stargate has two slots. These slots can be used to 

communicate with other devices. The first slot is used 

to allow Stargate to communicate with other MICA2 

Mote by connecting a MICA2 Mote over the Stargate. 

The second slot is used to connect WiFi Compact Flash 

card to the Stargate, which allow it to communicate 

through the standard 802.11a or 802.11b wireless 

protocols.   

 
Figure 5: Daughter Card (Top View) [2]. 

The processor board gets its power from the daughter 

card. The daughter card has a power supply jack as it 

appears in Figure 5 and Figure 6. Also, the daughter 

card allows the user to communicate with Stargate 

using different types of interfaces. There are three 

different ways to communicate with Stargate. The first 

one is using Serial RS232 Connecter.  



 
Figure 6: Daughter Card (Bottom View) [2]. 

 

The second is using RJ-45 Ethernet Port. And the third 

one is using USB Port. All these interfaces give the 

ability to control or upload programs to the Stargate.  

All switch buttons in the Stargate processor board and 

daughter card have to be switched on before using 

Stargate. There are two switch buttons S1 and S2 in 

the processor board. The third switch button S3 is 

located in the daughter card.  

       
2.2.3 Software Environment 

         As mentioned before, the Stargate is using an 

embedded Linux operating system kernel. It is 

installed on the processing board of the Stargate. 

There is also additional software shipped with the 

Stargate development platform, which could be used 

to enable program development. The Stargate’s 

platform provides the capability of installing programs 

written in C language. The developer can control 

various functions in Stargate by using C language 

programs after compiling and installing them.   

 

3. Building BANAID 
         In this section the design, implementation, 

explanation of the wormhole attack, and the 

implementation of its solution will be described.  
 

3.1 Design of BANAID 
        The proposed test bed is developed with the 

following underlying assumptions: 

• The chosen network topology is assumed to 

be fixed. 
• Each node is assumed to know its neighbors.  

Figure 7 shows that BANAID is composed of seven 

Mica2 sensor nodes and two Stargate devices. In this 

network design, the original source is Mote 1 and the 

original destination is Mote 4. The global clock is a 

normal sensor (Mote) which keeps sending a clock 

packet to synchronize all other motes.   

 
Figure 7: The proposed design of BANAID. 

       
Each Mote in each Stargate will only forward any 

received message from radio connection to WiFi 

connection and vice versa without changing these 

messages. The routing algorithm that has been used in 

BANAID is the Ad hoc On Demand Distance Vector 

(AODV). This routing algorithm will be explained in the 

next subsection.  

 

Moreover, the wormhole attack happens during the 

phase of building the routes between nodes in AODV. 

The attack will affect the routing table entries in the 

original source and destination motes. Therefore, the 

actual path that a message should pass from the 

original source to the original destination will be 

imprecise. The impact of the wormhole attack on the 

network will appear clearly in both the original source 

and the original destination motes. The original source 

mote will deal with the original destination mote as its 

direct neighbor and vice versa, which is not right 

because they are separated by two intermediate 

motes. 

 
3.2 The AODV Algorithm 
         The Ad hoc On Demand Distance Vector (AODV) 

routing algorithm is a routing protocol designed for ad 

hoc mobile networks. It is an on demand algorithm, 

meaning that it builds routes between nodes only as 

desired by source nodes. It maintains these routes as 

long as they are needed by the sources. 

 

AODV builds routes using route request and reply 

query messages. When a source node desires a route 

to a destination for which it does not already have a 

route, it broadcasts a route request (RREQ) packet 

across the network. Nodes receiving this packet 

update their information for the source node and set 

up backwards pointers to the source node in the route 

tables. A node receiving the RREQ may send a route 

reply (RREP) if it is either the destination or if it has a 



route to the destination and the sequence number in 

RREQ packet is not present in the node. If this is the 

case, it sends a RREP back to the source. Otherwise, it 

forwards the RREQ. Nodes keep track of the RREQ's 

packets by storing their sequence numbers. If they 

receive a RREQ which they have already processed, 

they discard the RREQ and do not forward it. 

 

As the RREP propagates back to the source nodes set 

up forward pointers to the destination. Once the 

source node receives the RREP, it may begin to 

forward data packets to the destination. The routing 

table for each node will be updated according to the 

hop count field in RREQ or RREP packets. The received 

packet with the smallest hop count will be chosen as 

the best route path. 

 

However, in this paper, not all of AODV routing 

algorithm features have been implemented, features 

that meet the aim of this paper are just implemented 

for the sake of simplicity. For example, features like 

sending and receiving RREQ/RREP packets, and 

building the routing tables for each node have been 

implemented whereas features like maintaining the 

route paths and sending hello messages have not 

been implemented.  

 
3.3 Implementation of BANAID 
         According to the proposed design of BANAID, 

there are seven MICA2 Motes and two Stargate sensor 

devices. Two motes have been combined with the two 

Stargate sensor devices which are mote 5 and mote 6.  

 

To implement BANAID, three types of programs have 

been written and installed in the motes and the 

stargate sensor devices. The first program has been 

installed in motes 1, 2, 3, and 4, which is a simple 

customized AODV algorithm. The second program has 

been installed in motes 5 and 6, which forwards any 

received packet from the radio antenna to the serial 

port that connects the mote with the Stargate and 

vice versa, without changing this packet. The third 

program has been installed in both Stargate 1 and 2. 

When a packet is received by the Stargate from its 

serial port, which is connected to the corresponding 

mote, the program forwards it to the other Stargate 

through its WiFi connection and vice versa. The other 

Stargate will receive this packet from its WiFi 

connection and forward it to its serial port, which is 

also connected to the corresponding mote. Then this 

packet will be broadcasted via the radio antenna of 

the mote.  

 

3.3.1 The AODV Program 

         Before describing the functionalities that are 

done by this program, a brief explanation about the 

important variables is given as follows: 

 

 

OS OD C N HC MID MT S/M TS 

Table 1: Packet Format. 

 

Table 1 illustrates the packet format used in building 

this test bed where 

• OS represents original sender address. 

• OD represents original destination address. 

• C represents the current sensor address. 

• N represents the next sensor’s address. 

• HC represents the hop counter. 

• MID represents the messages ID. 

• MT represents the message type. 

• S/M explains whether the message comes 

from a Stargate or a Mica2 sensor. 

• TS represent time stamp.  

 

Dest. Address Next Hop Hop Count 

…   

Table 2: Routing Table Format. 

 
Next, Table 2 describes the routing table format. It is a 

k*3 array where k is a predefined value that 

represents the maximum number of entries that the 

routing table can hold.  The table consists of three 

fields: the destination address field which stores the 

final destination for the current received packet, the 

next hop field which holds the address for next hop, 

and the hop count field which represents the number 

of hops left before reaching the final destination. 

 

Figure 8 illustrates the pseudo code
2
 that has been 

used in this paper to implement AODV. It describes 

the AODV’s functionalities that have been 

implemented in order to build this test bed.  It does 

the most important part of this paper since it 

implements the AODV routing algorithm, synchronizes 

with global clock, and implements the a solution to 

the wormhole attack. This program has been written 

in combination of nesC and C languages and will be 

upload into Mote 1,2,3, and 4.  

                                                           
2  The whole program can be obtained by contacting 

the first author. 



Figure 8: Pseudo Code of AODV. 
 

3.3.2 TOSBase Program 

         This program was written and delivered with the 

TinyOS tool kit as one of many readymade 

applications.  The name of this application is TOSBase, 

which can be found under the application directory in 

TinyOS file. It simply forwards any received packet 

from the radio antenna of the Mica2 sensor to the 

serial port (51-pin Hirose Connector), which is shown 

in Figure 1, without changing the content of the 

packet. The Mica2 sensor is connected to the Stargate 

through this serial port. This program is written in 

nesC language and will be uploaded into Mote 5, and 

6 (see Figure 7).  

 

3.3.3 Stargate Program 

         The program consists of two threads or 

processes
3
. The first process is the main program, 

which keeps listening to the serial port connected to 

the mote and sends any received packet to the client 

socket.   

                                                           
3 The whole program can be obtained by contacting 

the first author. 

 
Figure 9: Pseudo Code of Stargate’s Program 

 

The client socket will initiate a WiFi connection with 

the server socket in the other Stargate. The second 

thread or process runs as a server that keeps listening 

to any client connection via WiFi. It receives the 

packet and forwards it to the serial port connected to 

the mote, which will broadcast the packet via its radio 

antenna. As explained in Figure 9, the program in 

Stargate 1 will only forward messages from radio that 

comes from the original source which is mote 1. The 

other Stargate 2 will only forward messages from 

radio that comes from the original destination mote 4. 

The two versions of these programs are the same 

except in checking the type of the message before 

start forwarding it.  

 

3.4 Demonstration of BANAID 
         This subsection illustrates the usability of this test 

bed. The Mica2 Motes have some indicators which 

have been used to simulate this type of attack. Each 

mote has three lights: red, green, and yellow. These 

lights have been used in this paper to simplify the 

demonstration of this solution such as showing how 

packets are traveling from one mote to another and 

showing when and how the wormhole attack 

happens. For example when the green light blinks, it 

means that the mote is sending a packet. The red light 

indicates that the mote has received a RREQ packet 

from other motes. The yellow light turns on when the 

mote has received a RREP packet from other motes. 

The green and yellow lights together indicate that a 

RREQ or RREP has been received at the destination. It 

is clear to say that the red light will be seen before the 



yellow light since the request packet comes before the 

reply. However, if the yellow light has been seen 

before the green light, it means a wormhole attack 

has been detected. The reason for this is the replay 

comes before or faster than the request packet. By 

doing this, it is easier now to understand what is 

happening during the demonstration.  

 
 
3.5 Visibility of BANAID 
 
There are two situations to run BANAID. The first 

situation is demonstrating the customized AODV 

routing algorithm without implementing the 

wormhole attacks. In other words, demonstrating 

customized AODV without the Stargate sensor 

devices. The second situation is demonstrating 

wormhole attack beside the customized AODV.  

 

To demonstrate the first situation, it is important to 

turn the Stargate sensor devices off. The wormhole 

attack will not occur in this situation. To start this 

demonstration, firstly turn on motes 2, 3, 4, and 7. 

Then, turn on the mote 1 which acts as the original 

source. Mote 1 will start sending RREQ packet by 

blinking its green light. This sending will be after 

synchronized with global clock. Mote 2 will receive the 

RREQ packet, turn on its red light, and forward this 

packet by blinking its green light. Mote 3 will do the 

same thing that mote 2 has done. Finally, mote 4 will 

receive the RREQ packet, turn on its red light and 

yellow light indicating that the RREQ has reached its 

destination, and prepare the RREP packet. The same 

process will happen for RREP packet, but the 

difference is that each mote will turn on its yellow 

light on receiving the RREP packet. Finally, Mote 4 will 

turn on its red and yellow lights on receiving the RREP 

packet indicating that the RREP has reached its 

destination. 

 

The other situation is demonstrating the wormhole 

attack by adding the two Stargate with their motes. 

Firstly, turn on all motes and Stargates except mote 1 

which is the original source. Then, turn on mote 1 to 

start sending the RREQ packet. In this situation, mote 

4 which is the original destination will receive the 

RREQ from mote 1 directly through the Stargate path 

since the WiFi path is faster than the radio path. This 

happens when Mote 5 receives the RREQ packet from 

mote 1 and sends it directly through the WiFi 

connection to the other Stargate. Mote 6 in the other 

Stargate will send this packet to mote 4 via its radio 

antenna. The RREQ packet will travel through the WiFi 

connection faster than the normal path which is 

through the intermediate motes 2 and 3. In this 

situation, mote 4 will think that mote 1 is its direct 

neighbor and it will turn on its red light and yellow 

light preparing for the RREP packet. Mote 4 will send 

the RREP packet which will be delivered through the 

WiFi connection between the two Stargates. Mote 1 

will turn on its red and yellow lights when it receives 

the RREP packet. Also, mote 1 will think that mote 4 is 

its direct neighbor and this is how the wormhole 

attack happens. It is possible to display the 

information of the packets and the final routing table 

in mote 1 by using a PC. More details of how to 

perform that have been provided in Chapter 3.  

 

There are a number of techniques to solve the 

wormhole attack in a wireless sensor network. In the 

next section, some of these techniques will be briefly 

described. The implementation of one of them will be 

explained in section 3.7. 

 
3.6 Wormhole Attack Solution 
 
       To detect and deter the Wormhole attack, some 

solutions have been proposed in different papers such 

as [4,9,10]. Hu et al. proposed a defense against the 

Wormhole attacks in WSN called packet leashes [4].  It 

is the most commonly cited solution and therefore it 

is the only solution that is implemented in this paper. 

A leash is a portion of information that is added to the 

packet to restrict its traveling distance or time. This 

solution consists of two types of leashes: geographic 

leashes and temporal leashes. Each of these types will 

be described briefly in this section and more details 

are available in [4].  

 

A geographic leash detects and prevents the 

wormhole attack by ensuring that the sender and the 

receiver are within a specified distance. To do that, 

each node must know its location and be timely 

synchronized with other nodes. The other type of 

solution is a temporal leash. It detects and prevents 

the wormhole attack by ensuring that the packet’s 

traveling time is within a specified period of time. To 

do that, all nodes must be timely synchronized in 

terms of their clocks. When the sender starts sending 

the packets, it stores its sending timestamp in the 

packet. Then, the receiver can compare its receiving 

timestamp with the value in the packet. Therefore, 

the receiver will be able to detect if the packet 

traveled so fast according to a specified transmission 



time. In BANAID, the temporal leash solution has been 

used and implemented to detect and prevent the 

wormhole attack in the wireless sensor network. The 

geographic leash solution has not been considered in 

this paper because it is complicated to be 

implemented. It needs a special hardware that can 

specify the locations of all nodes such as GPS, which is 

expensive.   
 
3.7 Implementation of the 'Packet Leashes  

       Solutions' 
 
       As it has been discussed earlier, timing mechanism 

is required to distinguish if the packet received from 

the fake path or the real path to avoid the wormhole 

attack. A packet received from the Stargate is going to 

be faster than the packet received from the mote 

since the WiFi transmission is faster than the radio 

transmission. Therefore, applying this timing 

mechanism will allow the destination to recognize the 

real packet by comparing it’s time stamp with the time 

stamp of the received packet. If the difference 

between these two time stamps is less than or equal 

to X, it means that it is a fake packet. To compute the 

value of X according to BANAID design: 

• There is a transmission delay in each mote. 

The average transmission delay is around 45 

msec( Tr = 45 msec ).[5]. 

• The real path consists of mote 1, 2, 3, and 4 

where the fake path consists of mote1, 5, 6, 

and 4.  

• Processing time at each mote will be 

neglected since both paths have the same 

number of motes. Therefore, the total 

processing time for motes in each path will 

be almost same. 

• The WiFi transmission delay is neglected 

since the data rate is high. 

 

Delay on the real path: 

  = No. of motes that will transmit * Tr 

  = 3 (mote1, 2, and 3) * 45  

  = 3 Tr. 

 

Delay on the fake path: 

  = No. of motes that will do transmission * Tr 

  = 2 (mote1, and 6) * 45  

  = 2 Tr. 

Therefore, the destination node is able to distinguish 

between the real and the fake packet by subtracting 

the time stamp at destination by the time stamp at 

the source. If the result <= 2 Tr, then the packet is 

fake. Otherwise, it is real.  

 

4. Conclusion and Future Work 
 
       The rapid development in the wireless sensor 

networks field has allowed this technology to be used 

in many applications. Some of these applications are 

critical and require secure and trusted environment. 

Therefore, different research studies have been 

conducted to analyze the wireless sensor networks 

and discovering their threats. One of the attacks 

which may damage wireless sensor networks is the 

Wormhole attack. Thus, this paper built a test bed of a 

group of sensor devices to simulate the wormhole 

attack and implement one of the solutions to detect 

and prevent this attack. In this paper, a brief 

background about the types of wireless devices, which 

are used in building up BANAID, is introduced. Then, 

the design and the implementation of BANAID are 

illustrated by describing the proposed network 

topology, the algorithms, and the chosen solution. 

Finally, detailed steps of setting up BANAID are given. 

In future, the timing mechanism that has been used 

might be improved especially with the new version of 

TinyOS that give the opportunity to implement 

internal clock in the mote. Also, BANAID could be 

enhanced by some additional improvements such as 

implementing and evaluating different solutions for 

the Wormhole attack, and extending the size of the 

size of the network implemented in BANAID.   
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