

This is the author-manuscript version of this work - accessed from
http://eprints.qut.edu.au

Mendling, Jan and La Rosa, Marcello and ter Hofstede, Arthur H.M.
(2008) Soundness of EPC Process Models with Objects and Roles.

Copyright 2008 (The authors)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10882504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Soundness of EPC Process Models with
Objects and Roles

J. Mendling, M. La Rosa, A.H.M. ter Hofstede

BPM Group, Queensland University of Technology, Australia
{j.mendling,m.larosa,a.terhofstede}@qut.edu.au

Abstract. The verification of business process models is an important step in
the design phase of process-aware information systems. While a process model
often describes different perspectives like control flow, object flow, and role as-
signment, most of the contributions in the areas of verification consider only the
control flow. Hardly any work considers these three perspectives in a combined
verification approach. In this paper we address this gap and introduce Integrated
EPCs (iEPCs), a business process modeling language that extends EPCs with a
concept of object flow and role assignment. By abstracting from the subtle dif-
ferences of recent EPC semantics definitions, we show how any of these formal-
izations can be enhanced with transition rules that consider object existence and
role availability as part of the state concept. Furthermore, we define three theo-
rems that relate soundness of EPCs to soundness of iEPCs with different initial
role and object set. These theorems provide the basis for a systematic verification
approach of iEPCs that first identifies control-flow problems, then object-flow
problems, and finally suitable role subsets. This way, our work contributes to a
better identification of correctness issues already in conceptual process models in
the early design phases.

1 Introduction

The correctness of models is a major stream of research in process modeling. Its im-
portance stems from the observation that incorrect models can lead to wrong decisions
regarding a process and to unsatisfactory implementations of information systems. Al-
ready 25 years ago, it was clearly understood in the software engineering discipline that
correcting a modeling error in the early design phase is feasible with reasonable effort
while a post-implementation correction costs drastically more [1]. In process modeling,
the importance of verification techniques has recently been confirmed by studies that
reveal a significant error rate of more than 20% (depending on the sample) in process
model collections from practice [2, 3].

Based on Petri nets analysis techniques and respective tool implementations, it has
become feasible to verify different notions of soundness for various modeling languages
, e.g. Workflow nets, EPCs, YAWL, or BPMN [4–8]. All these approaches check aspects
related to proper completion of a process. To achieve that, they mainly focus on the
control-flow. Although there are correctness issues that relate to other perspectives of a
process model, e.g. data flow, these problems are hardly considered in current research.
The chapter on properties of business processes in [9] highlights this imbalance. Since

2 J. Mendling, M. La Rosa, A.H.M. ter Hofstede

most process modeling in the early design phase is done with languages like Event-
driven Process Chains (EPCs) or Business Process Modeling Notation (BPMN), we
need a better understanding of correctness issues in these conceptual languages that
goes beyond the control-flow.

This paper addresses this gap by extending the existing EPC language with formal
concepts of object flow and role assignment. This extension is called Integrated EPC (or
for short iEPC). Our contribution is twofold. In a first step, we formalize a notion of state
that reflects the existence of objects and the availability of resources. Then, we specify
the formal semantics of iEPCs as a transition system. This way we can use analysis
tools like the reachability graph to detect execution problems such as deadlocks. This
sort of analysis is important to resolve inconsistencies already in early-phase conceptual
models. Such quality assurance is deemed to reduce correction costs in later phases and
to increase the acceptance of high-level models for information system implementation.
Our second contribution is a set of three theorems that show how the soundness of
an iEPC with different sets of initial objects and roles relates to the soundness of a
corresponding EPC without the extensions. Based on this, we describe how one can
resolve problems with control-flow, object-flow, and roles in a step-by-step manner.

Against this background, the rest of the paper is structured as follows. Section 2
provides an illustrative introduction to iEPCs using an extract of a reference process
model from the film industry. In this section we also discuss correctness issues with the
object and resource perspective of the process and we informally sketch our approach.
In Section 3 we define the formalism to analyze the problem. Building on a definition
of syntactical correctness for iEPCs, we specify a notion of state along with a definition
of initial and final marking. Then, we formalize a transition system such that we can
calculate the reachability graph for deadlock analysis. Beyond that, we present theorems
on the relationship between an iEPC and its corresponding EPC. Section 4 discusses
related work and Section 5 concludes the paper.

2 Integrated Event-driven Process Chains

In this section we introduce Integrated Event-driven Process Chains (iEPCs). iEPCs ba-
sically extend EPCs with an object and a role perspective. In Section 2.1 we informally
describe iEPCs with the help of a process model from the film industry. In Section 2.2
we identify a set of problems that might prevent the process from being executed prop-
erly.

2.1 The Dialog Editing Process

We illustrate the concepts of iEPCs by means of a sample process model shown in
Fig. 1. This model is an extract of a reference process model for screen post-production
which focuses on dialog editing—the stage following the shooting of a movie in which
the dialogs from set are integrated with additional dialogs recorded in studio. This ref-
erence process model has been constructed and validated with domain experts of the
Australian Film Television & Radio School.

Soundness of EPC Process Models with Objects and Roles 3

EPCs main elements are events, functions, control-flow connectors, and arcs linking
these elements. Events model triggers or conditions, functions correspond to tasks and
connectors denote splits and joins of type AND, OR or XOR. The iEPC notation extends
these concepts by associating roles and objects with functions. A role, depicted on a
function’s left hand side, captures a class of organizational resources that is able to
perform that function: e.g. the role Dialog Editor captures the set of all the persons with
this role in a given screen project. A role is dynamically bound to one concrete resource
at runtime (e.g. for a specific project, the Dialog Editor associated to function Sync
dialogs will be bound to Michelle Portland). A resource can be human or non-human
(e.g. an information system), but for simplicity, we only consider human resources in
the example. An object, depicted on a function’s right hand side, captures a physical or
software artifact of an enterprise, that is used (input object) or produced (output object)
by a function. Each object in the process model is statically bound to a concrete artifact.

Edited dialog tracks

Record
ADR

Record
Voice-over

v

v

ADR tracks Voice-over tracks

x

Edit
approved

Edit
not approved

x

Review notes Picture cut

V

Edit dialogs

Mix dialogs

Mixed dialog tracks

Edited dialog tracks

Dialog tracks ADR tracks Voice-over tracks

V

Approve edit

Review notes

X

Dialog tracks

V

Dialog tracks FX tracks Atmos tracks

Sync dialogs

Production sound Picture cut

V

ADR
required

Voice Over
required

Recording
finished

Shooting
finished

Edit finished

Dialog editing
finished

ADR Engineer V

2:k
Supervising

Sound Editor

Director

Producer

X X

Assistant
Dialog Editor

V

V

V

Assistant
Dialog Editor

Supervising
Sound Editor

Sound Mixer

Director

Producer

Dialog Editor

Review notes Picture cut

V

Dialog tracks

Dialog Editor

Supervising
Sound Editor

Supervising
Sound Editor

Dialog Editor

Supervising
Sound Editor

Dialog Editor

Dialog Editor

Supervising
Sound Editor

Director

Assistant
Dialog Editor

Edited dialog tracks

ADR Engineer V

Director

Assistant
Dialog Editor

V

Edit notes

Function

Connector

Event

Optional role / object / range connector

Role

Object

Initial Process Object

Final Process Object

Consumed Input Object

Fig. 1. The Dialog editing process model in iEPC.

The first function of the example is Sync dialogs, starting when the shooting has
completed. Roles and objects are linked to functions either directly or via a connector:

4 J. Mendling, M. La Rosa, A.H.M. ter Hofstede

the XOR-join between Dialog Editor and Supervising Sound Editor indicates that ex-
actly one of these roles is required to perform this activity, although both are capable
of doing it. The Dialog Editor or the Supervising Sound Editor may require the help
of an Assistant Dialog Editor. This role is connected to the function via a dashed arc,
which indicates that a role, object, or a combination thereof is optional, whereas a solid
arc indicates mandatoriness. To ensure that at runtime every function has a resource
for its execution, functions have to be connected to a mandatory role or a mandatory
combination of roles in the iEPC.

The synchronization of the dialogs consists of extrapolating the Dialog tracks from
the Production sound (the sound recorded on set) based on a Picture cut (a preview of
the movie). Thus, Production sound and Picture cut are both input objects connected
via an AND-join, while Dialog tracks is a mandatory output object. Sometimes, the
Production sound also contains effects (FX) and/or atmospheres (atmos) recorded on
set, which can also be extrapolated at this stage. FX tracks and Atmos tracks are thus
optional outputs of Synch dialogs, linked by an optional OR-split. Connecting two or
more roles or objects via an optional OR, is a shortcut to directly connecting each role
or object to the function via a dashed arc.

In an iEPC, an initial process input is an object which is input to the whole process,
i.e. an object for which there is no function in the process model that produces it. Sim-
ilarly, a final process output is an object which is output to the whole process, i.e. an
object for which there is no function in the process model that uses it. Production sound
and Picture cut are initial inputs, while FX tracks and Atmos tracks are final outputs as
they are only used by other process models in post-production.

Once the dialogs have been synchronized, automated dialog replacements (ADR)
may be recorded in the studio through the function Record ADR, to replace those pro-
duction dialogs of poor quality. Similarly, a Voice-over may also be recorded through
the function Record Voice-over, if it is needed in the movie. These functions are carried
out by the same roles, require the same inputs, and produce ADR tracks and Voice-over
tracks as output.

In Edit Dialog, the Dialog Editor and/or the Supervising Sound Editor work with the
Assistant Dialog Editor to clean-up and integrate Dialog tracks with ADR tracks and/or
Voice-over tracks, depending on which tracks have been recorded in the studio. This
function results in Edited dialog tracks as well as Edit notes reporting on the choices
made (a final process output).

The Edited dialog tracks need to be approved in Dialog edit approval by at least
two roles among Director, Supervising Sound Editor and Producer, that have creative
authority in the project. These roles are linked to a range connector. Generally speaking,
a range connector indicates the upper and lower bound for the number of elements (roles
or objects) required for the function that it is connected to (where k refers to the indegree
for a join or to the outdegree for a split; in the case of the range connector connected to
Approve edit k = 3). If the edit is not approved, the result of this task is a set of Review
notes describing the changes required. In this case, Record ADR and Record Voice-over
must be repeated by using the Review notes as input to guide the required amendments.

If the edit is approved (either directly or after a re-recording session), the process
ends with function Mix dialogs, in which the Edited dialog tracks are mixed by the

Soundness of EPC Process Models with Objects and Roles 5

Director, Sound Mixer and Supervising Sound Editor and delivered to the next stage.
Producer and Dialog Editor may help in this activity. The cross below Edited dialog
tracks indicates that the object is consumed by the function and is no longer available
afterwards. In fact, the mixing is directly performed on the edited tracks, by fine-tuning
each track’s volume.

Although the above example is only an extract of a broader reference model, it
shows how interdependencies among roles, objects and control-flow elements can be
quite intricate and thus need proper consideration.

2.2 Potential Problems with the iEPC Model

We now discuss the process model from a correctness point of view. The control-flow
of this model is quite simple and it is easy to verify that the process is sound, i.e. there
are neither deadlocks nor livelocks and proper completion of the process is guaranteed.
Indeed, the model is also structured: there is one OR-block which is properly nested
within an XOR-loop. Beyond the control-flow, there can be further issues related to
resources and objects. Such issues may occur when a required input object does not
exist or a required resource is not available at the time of executing a given function. In
the following, we will discuss some causes for these issues.

Edit dialogs

Edited dialog tracks

Dialog tracks ADR tracks Voice-over tracks

V

Recording
finished

Edit finished

V

Assistant
Dialog Editor

Dialog Editor

Supervising
Sound Editor V

Edit notes

if the OR-join is mandatory,
or if it is an AND, or both,
the process may deadlock.

If the AND-split is an OR or
XOR, the process may deadlock
in function Approve edit.

if Dialog tracks is destroyed
in function Edit dialogs, the
process may deadlock in a
further iteration of the loop,
e.g. at function Record ADR.

If Assistant Dialog Editor and
one role between Dialog Editor
and Supervising Sound Editor
are not available, function Edit
dialogs cannot be performed.

Fig. 2. Potential issues related to function Edit dialogs.

Fig. 2 shows the Edit dialogs function and some reasons why this function might not
be properly executed if the process model is varied. Firstly, this function is on a loop and
it requires Dialogs tracks as input object. If this object was destroyed by this function,
it would no more be available for the second iteration of the loop. Secondly, the OR-
join for ADR tracks and Voice-over tracks is optional. Since the functions that create
these objects (Record ADR and Record Voice-over) are optional, the objects might not
be produced in some instances of these functions. In this case, there would be an issue
if these objects were mandatory for Edit dialogs. Thirdly, if we replaced the AND-
split between the output objects Edited dialog tracks and Edit notes with an OR-split or
XOR-split, we would create non-deterministic behavior. This may block the execution
of function Approve edit, which always requires Edited dialog tracks. Finally, if the
Assistant Dialog Editor is not available, the function could not be executed due to the
lack of a mandatory resource, i.e. a resource with special expertise.

6 J. Mendling, M. La Rosa, A.H.M. ter Hofstede

Record
ADR

Record
Voice-Over

v

v

ADR tracks Voice-Over tracks

Review notes Picture cut

V

Dialog tracks

ADR
Record

prepared

Voice-Over
Record

prepared

Review notes Picture cut

V

Dialog tracks

Prepare ADR
Record

Prepare Voice-
Over Record

ADR
required

Voice-Over
required

Review comments Review comments

Review comments Review comments

Fig. 3. Potential Problems with concurrent object deletion.

The potential problem with the OR-join (second case) already points to the fact that the
resource and object perspectives interact with the control-flow one. Fig. 3 further high-
lights this interaction. It shows a variation process fragment enclosed between the two
OR connectors, in which functions Record ADR and Record Voice-over are performed
in parallel. There is now an additional preparation step for each of the functions. This
step is needed to create, for each of the two branches, an object Review Comments
that is used by the subsequent recording function. It turns out that the proper execution
of the parallel branches depends upon the order in which the four functions are pro-
cessed. Consider the case in which Prepare ADR Record is executed before the Prepare
Voice-over Record. The first function would create the Review Comments object. The
second function would then replace it with a new object. The Record ADR function
would take the Review Comments as an input and destroy them during execution. As
a consequence, the Record Voice-over function would miss one of its mandatory input
objects.

In the following section we will formalize this problem and capture control-flow,
object existence, and resource availability in an extended notion of state.

3 Formal Semantics and Verification of iEPCs

In this section we formalize iEPCs and their behavior. In Section 3.1 we specify the
syntax of iEPCs. This definition provides the basis for formalizing the iEPC semantics
in Section 3.2. For the semantics we define a mechanism to extend the transition rules
of existing EPC formalizations, e.g. [10, 8] and add rules to handle objects and roles as-
signed to functions. Furthermore, we discuss soundness of iEPCs and some interesting
properties related to it.

Soundness of EPC Process Models with Objects and Roles 7

3.1 iEPC Syntax

The following definition formalizes the notion of iEPC, which adds to EPCs a precise
representation of roles and objects participating in a process. In an iEPC each node
represents an instance of a function, role or object. The range connector is modeled by
a pair of natural numbers: lower bound (n) and upper bound (m). Indeed, an AND, OR
and XOR correspond to a range connector resp. with n = m = k, with n = 1,m = k
and with n = m = 1. So we do not need to model the logic operators with separate
connectors for roles and objects, although they can be graphically represented with the
traditional EPC notation, as in Fig. 1. For the sake of keeping the model consistent with
previous formalizations of EPCs, the range connector is not allowed in the control-
flow. Minimal effort would however be required to add this construct. The optionality
of roles, objects and range connectors, shown in the process as a property of the arc that
links the node with the function, is modeled in iEPC as an attribute of the nodes. The
consumption of input objects is modeled in the same way.

Definition 1 (iEPC). Let F be a finite set of functions, R a finite set of roles and
O a finite set of objects. An integrated EPC over F,R,O is a tuple iEPCF,R,O =
(E,F

N
, R

N
, O

N
,nm, C,A, L), where:

– E is a finite, non-empty set of events;
– FN is a finite, non-empty set of function nodes for the process;
– RN is a finite, non-empty set of role nodes for the process;
– ON is a finite set of object nodes for the process;
– nm = nf ∪ nr ∪ no, where:
• nf ∈ FN → F assigns each function node to a function;
• nr ∈ RN → R assigns each role node to a role;
• no ∈ ON → O assigns each object node to an object;

Furthermore, for a set X we define nm(X) = {nm(x) | x ∈ X}.
– C = CCF ∪ CR ∪ CIN ∪ COUT is a finite set of logical connectors, where:
• CCF is the set of control-flow connectors,
• CR is the set of range connectors for role nodes (role connectors),
• CIN is the set of range connectors for input nodes (input connectors),
• COUT is the set of range connectors for output nodes (output connectors),

where CCF , CR , CIN and COUT are mutually disjoint;
– A = ACF ∪AR ∪AIN ∪AOUT is a set of arcs, where:
• ACF ⊆ (E × FN) ∪ (FN ×E) ∪ (E ×CCF) ∪ (CCF ×E) ∪ (FN ×CCF) ∪ (CCF ×
FN) ∪ (CCF × CCF) is the set of control-flow arcs,

• AR ⊆ (RN × FN) ∪ (RN × CR) ∪ (CR × FN) is the set of role arcs,
• AIN ⊆ (ON × FN) ∪ (ON × CIN) ∪ (CIN × FN) is the set of input arcs,
• AOUT ⊆ (FN ×ON) ∪ (FN × COUT) ∪ (COUT ×ON) is the set of output arcs,

where AR , AIN and AOUT are intransitive relations;
– L = lT

C
∪ lN

C
∪ lM

C
∪ lM

R
∪ lM

O
∪ lU

O
is a set of label assignments, where:

• lT
C
∈ CCF → {AND ,OR,XOR} specifies the type of control-flow connector,

• lN
C
∈ (CR ∪ CIN ∪ COUT) → N × (N ∪ {k}) ∪ {(k, k)}, specifies lower bound and

upper bound of the range connector,
• lM

C
∈ (CR ∪ CIN ∪ COUT) → {MND ,OPT} specifies if a role connector, an input

connector or an output connector is mandatory or optional,
• lM

R
∈ RN → {MND ,OPT} specifies if a role node is mandatory or optional;

• lM
O
∈ ON → {MND ,OPT} specifies if an object node is mandatory or optional;

8 J. Mendling, M. La Rosa, A.H.M. ter Hofstede

• lU
O
∈ OIN

N
→ {USE ,CNS} specifies if an input object node is used or consumed,

where OIN
N

= dom(AIN) ∩ON .

Given a connector c, let lN
C

(c) = (n,m) for all c ∈ C \ C
CF

. Then we use lwb(c) = n
and upb(c) = m to refer to lower bound and upper bound of c. If F , R and O are clear
from the context, we drop the subscript from iEPC . Also, we refer to all the function
nodes, role nodes and object nodes simply as functions, roles and objects, wherever this
does not lead to confusion.

We introduce the following notation for a more concise characterization of iEPCs.

Definition 2 (Auxiliary sets, functions and predicates). For an iEPC we define the
following subsets of its nodes, functions and predicates:

– NCF = E ∪ FN ∪ CCF , as its set of control-flow nodes;
– NR = FN ∪RN ∪ CR , as its set of role nodes;
– NIN = FN ∪OIN

N
∪ CIN , as its set of input nodes;

– NOUT = FN ∪OOUT
N
∪COUT , as its set of output nodes, whereOOUT

N
= dom(AOUT)∩ON ;

– N = NCF ∪NR ∪NIN ∪NOUT , as its set of nodes;
– ∀n∈Nα

α• n = {x ∈ Nα | (x, n) ∈ Aα}, as the α-preset of n, α ∈ {CF ,R, IN ,OUT};
– ∀n∈Nα n

α•= {x ∈ Nα | (n, x) ∈ Aα}, as the α-postset of n, α ∈ {CF ,R, IN ,OUT};
– ∀t∈F

N
in(t) =

⋃
o∈O

N
: (o,t)∈A+

IN

no(o) as the set of input objects for function node t;

– ∀t∈F
N

out(t) =
⋃
o∈O

N
: (t,o)∈A+

OUT

no(o) as the set of output objects for function node t;

– Oi
N

=
⋃
t∈F

N
in(t) \

⋃
t∈F

N
out(t) as the set of initial process objects;

– Of
N

=
⋃
t∈F

N
out(t) \

⋃
t∈F

N
in(t) as the set of final process objects;

– Es = {e ∈ E | | CF• e| = 0 ∧ |e CF• | = 1} as the set of start events;
– Ee = {e ∈ E | | CF• e| = 1| ∧ |e CF• | = 0} as the set of end events;
– As = {(x, y) ∈ ACF | x ∈ Es} as the set of start arcs;
– Ae = {(x, y) ∈ ACF | y ∈ Ee} as the set of end arcs;
– Aint = A \ (As ∪Ae) as the set of intermediate arcs;

– degree(x) =

| R• x|, if x ∈ CR , returns the indegree of a role connector,
| IN• x|, if x ∈ CIN , returns the indegree of an input connector,
|x OUT• |, if x ∈ COUT , returns the outdegree of an output connector;

– p = 〈n1, n2, . . . , nk〉 is a control-flow path such that (ni, ni+1) ∈ ACF for 1 6 i 6 k− 1.
For short, we indicate that p is a path from n1 to nk as p : n1 ↪→ nk. Also, P (p) =
{n1, . . . , nk} indicates the alphabet of p.

The following definition captures the essential syntactical requirements of an iEPC.

Definition 3 (Syntactically Correct iEPC). An iEPC is syntactically correct if it ful-
fills the following requirements:

1. iEPC is a directed graph such that every control-flow node is on a control-flow path from a
start to an end event:
let es ∈ Es and ee ∈ Ee, then ∀n∈N

CF
∃p∈N+

CF
,p:es↪→ee [n ∈ P (p)].

2. There is at least one start event and one end event in iEPC : |Es| > 0 and |Ee| > 0.
3. Events have at most one incoming and one outgoing control-flow arc:
∀e∈E [| CF• e| 6 1 ∧ |e CF• | 6 1].

4. Functions have exactly one incoming and one outgoing control-flow arc:
∀f∈F

N
[| CF• f | = |f CF• | = 1].

Soundness of EPC Process Models with Objects and Roles 9

5. Control-flow connectors have one incoming and multiple outgoing arcs or vice versa:
∀c∈C

CF
[(| CF• c| = 1 ∧ |c CF• | > 1) ∨ (| CF• c| > 1 ∧ |c CF• | = 1)], (split, join),

Role connectors have multiple incoming arcs and exactly one outgoing arc:
∀c∈C

R
[| R• c| > 1 ∧ |c R• | = 1], (join),

Input connectors have multiple incoming arcs and exactly one outgoing arc:
∀c∈C

IN
[| IN• c| > 1 ∧ |c IN• | = 1], (join),

Output connectors have exactly one incoming arc and multiple outgoing arcs:
∀c∈C

OUT
[| OUT• c| = 1 ∧ |c OUT• | > 1], (split).

6. Roles have exactly one outgoing arc:
∀r∈R

N
|r R• | = 1.

7. Objects have exactly one outgoing input arc or one incoming output arc:
∀o∈O

N
[(|o IN• | = 1 ∧ | OUT• o| = 0) ∨ (|o IN• | = 0 ∧ | OUT• o| = 1)].

8. Functions are linked to at least a mandatory role or a mandatory role connector:
∀f∈F

N
[∃
r∈R•f

[lM
R

(r) = MND] ∨ ∃
c∈R•f

[lM
C

(c) = MND]], it follows that | R• f | > 0.

9. Roles and objects linked to connectors are mandatory:1

∀r∈R
N

[r ∈ dom((RN × CR) ∩AR) ⇒ lM
R

(r) = MND],
∀o∈OIN

N
[o ∈ dom((ON × CIN) ∩AIN) ⇒ lM

O
(o) = MND],

∀o∈OOUT
N

[o ∈ dom((COUT ×ON) ∩AOUT) ⇒ lM
O

(o) = MND].
10. Upper bound and lower bound of range connectors are restricted as follows:
∀c∈C

R
∪C

IN
∪C

OUT
[1 6 lwb(c) 6 upb(c) ∧ (lwb(c) 6 degree(c) ∨ upb(c) = k)],

where n 6 m iff (n 6 m) ∨ (m = k) ∨ (n = m = k).

The editing process model of Fig. 1 is syntactically correct. However, Def. 3 does not
prevent behavioral issues (e.g. deadlocks) that may occur at run-time.

3.2 iEPC Semantics

The dynamic behavior of iEPC has to take into account not only the routing rules of
the control-flow, but also the availability of the resources and the existence of the ob-
jects present in the model. A state of the execution of an iEPC can be identified by a
marking of tokens for the control-flow, plus the set of roles indicating the availability of
the respective resource, and the set of objects indicating their existence. A function is
enabled and can fire if it receives control (i.e. if at least a token marks its control-flow
input arc), if at least all resources for its mandatory roles are available and if at least
all its mandatory input objects exist. The state of roles and objects is evaluated directly
or via the respective range connectors. During a function’s execution, the associated
roles become unavailable and once the execution is concluded, the output objects are
created (i.e. they come into existence), and those ones that are indicated as consumed,
are destroyed. Initial process objects, i.e. those ones that are provided from outside the
process, exist before the process execution starts. A function does not wait for an op-
tional role to become available. However, if such a role is available before the function
is executed, it is treated as a mandatory role.

For our formal definition we assume that the control-flow semantics of a standard
EPC and its nodes N has been defined as a transition relation TSbase ⊆Mbase ×N ×

1 The optionality of a group of roles/objects linked by a range connector is modeled by making
the connector optional

10 J. Mendling, M. La Rosa, A.H.M. ter Hofstede

Mbase on the state space Mbase . In the most simple case, a marking mbase ∈ Mbase

is an assignment of tokens to the arcs of the EPC. Such a transition relation has been
formalized in [10, 8] using different concepts of state. Here, we abstract from these
differences and take Mbase as a starting point for extension with object existence and
resource availability. Then we define how TS of the iEPC can be derived from TSbase

of the base EPC. In essence, we modify the transition relation of functions to reflect
objects and resources. First, we have to define what the base EPC is.

Definition 4 (Base EPC). For an iEPCF,R,O = (E,F
N
, R

N
, O

N
,nm, C,A, L) we

define its base EPC as EPCiEPC = (E,F,CCF , ACF , lT
C

).

If it is clear to which iEPC the base EPCiEPC belongs we simply write EPCbase . In
the following we assume iEPCs to be syntactically correct. This way we fulfill syntactic
requirements of the base EPC that respective semantics definitions typically assume.

Definition 5 (Marking of an iEPC). Let EPCbase be the base EPC of an iEPC and
mbase ∈ Mbase a marking of EPCbase . Then m = (mbase , Θ, Γ) is the marking of
iEPC with Θ ⊆ P(O) and Γ ⊆ P(R) with P referring to the power set. We say an
object o exists if and only if o ∈ Θ. We say a role r is available if and only if r ∈ Γ .

The transition relation relates to the three sets Oin, Oout, and R, such that Oin makes
the constraint regarding incoming objects true,R fulfils the role requirements, andOout

complies with the output condition. In this context we need to define four cases:
IN

|= for
the set of input objects that make the activation condition true based on lower bound

satisfaction,
CNS

|= for the set of input objects that will be consumed restricted by the upper

bound,
OUT

|= for the set of output objects that make the output condition true, and
R

|= for
the set of roles that make the condition on required roles true.

Definition 6 (Satisfaction of Input, Output, and Role Conditions). For an iEPC, a
function node f ∈ FN , a set of objects Θ, and a set of roles Γ we define:

– Θ
IN

|= f if and only if
∀

o∈IN• f∩O
N

,lM
O (o)=MND

[no(o) ∈ Θ]

∀
c∈IN• f∩C

IN
,lM

O (c)=MND
[lwb(c) 6 | no(IN• c) ∩Θ |].

– Θ
CNS

|= f if and only if
∀

o∈IN• f∩O
N

,lM
O (o)=MND,lU

O (o)=CNS
[no(o) ∈ Θ]

∀
c∈IN• f∩C

IN
,lM

O (c)=MND,lU
O (o)=CNS

[lwb(c) 6 | no(IN• c) ∩Θ | 6 upb(c)].

– Θ
OUT

|= f if and only if
∀

o∈f
OUT• ∩O

N
,lM

O (o)=MND
[no(o) ∈ Θ]

∀
c∈f

OUT• ∩C
OUT

,lM
O (c)=MND

[lwb(c) 6 | no(c OUT•) ∩Θ | 6 upb(c)].

– Γ
R

|= f if and only if
∀

r∈R•f∩R
N

,lM
R (r)=MND

[nr(r) ∈ Γ]

∀
c∈R•f∩C

R
,lM

R (c)=MND
[lwb(c) 6 | nr(R• c) ∩ Γ |].

Soundness of EPC Process Models with Objects and Roles 11

These satisfaction conditions are used to define the transition relation of an iEPC. For a
transition of a function the lower bound of mandatory input objects and roles is consid-
ered for activation. The transition destroys at least as many mandatory input objects as
defined as consumable, but not more than the upper bound as specified by the input ob-
ject range connectors. After that, the lower bound of the mandatory output connectors
define the minimum amount of objects to be added to Θ, the set of existing objects.

Definition 7 (Transition Relation of an iEPC). Let EPCbase be the base EPC of an
iEPC, mbase ∈Mbase a marking of EPCbase , and TSbase its transition system. Then
the transition system TS of the iEPC is defined as follows:

– For all n ∈ N \ F :
if and only if (mbase , n,m

′
base) ∈ TSbase , then (m,n,m′) ∈ TS.

– For all n ∈ F :

1. If and only if (mbase , n,m
′
base) ∈ TSbase and

2. There exists Θ ⊆ no((IN• f∪ IN• (IN• f)) ∩O
N
) such that Θ

IN

|= f and

3. There exists ∆ ⊆ no(IN• f∪ IN• (IN• f)) ∩ON) such that ∆
CNS

|= f and

4. There exists Γ ⊆ nr((R• f∪ R• (R• f)) ∩RN) such that Γ
R

|= f and

5. There exists Σ ⊆ no((f OUT• ∪(f OUT•) OUT•) ∩O
N
) such that Σ

OUT

|= f .
Then (m,n,m′) ∈ TS withm = (mbase , Θ, Γ) andm′ = (m′base , (Θ\∆)∪Σ,Γ).

Fig. 4 shows an execution instance for function Edit Dialogs. The function is enabled
as it fulfills the conditions of Def. 7. Firstly, there is a control token on the input arc to
the function. Secondly, the combination of existing input objects (marked with a check)
is sufficient to execute Edit Dialogs: the mandatory Dialog tracks exist and the optional

Voice-over tracks are provided, i.e. {Dialog tracks,Voice-over tracks}
IN

|= Edit Dialogs.
Thirdly, the roles Dialog Editor and Assistant Dialog Editor are available, i.e. {Dialog

editor,Assistent Dialog Editor}
R

|= Edit Dialogs. Firing this function moves the control
token to its output arc and adds both the output objects to the set of existing objects, i.e.

{Edited dialog tracks, Edit notes}
OUT

|= Edit Dialogs and ∅
CNS

|= Edit Dialogs.

Edit dialogs

Edited dialog tracks

Dialog tracks ADR tracks Voice-Over tracks

V

Recording
finished

Edit finished

V

Assistant
Dialog Editor

Dialog Editor

Supervising
Sound Editor

V

Edit notes

Fig. 4. A marking that enables function Edit dialogs

12 J. Mendling, M. La Rosa, A.H.M. ter Hofstede

The definition of a transition relation adds three sources of complexity compared to
plain EPCs. There are different combinations of roles that activate a function. At this
stage we do not consider durations and dynamics. Therefore, those roles that are avail-
able before the execution of the function remain available afterwards. For simulation
purposes one could consider duration of unavailability which affects concurrent tasks
for which a role is needed. Furthermore, there can be different combinations of input
objects that activate a function. In Fig. 4 any combination of inputs that covers Dialog
tracks is allowed. Finally, different combinations of output objects (e.g. if the output
connector was an XOR) can introduce non-determinism to the firing of a function. In
case of the Edit Dialogs example there is only one output set permitted.

Based on this definition of a transition system we can define a reachability graph
for iEPCs. In order to do so we first need to define a notion of initial and final marking.
Since the definition of those may be different depending on the concept of state, we
extend an abstracted version of the definition by [8] to reflect object existence and role
availability.

Definition 8 (Initial Marking of an iEPC). Let iEPC be a syntactically correct iEPC
and MiEPC its marking space. IiEPC ⊆ MiEPC is defined as the set of all possible
initial markings, i.e. i = (ibase , Θ, Γ) ∈ IiEPC if and only if:

– ∃as ∈ As : i(as) > 0,
– ∀a ∈ Aint ∪Ae : i(a) = 0,
– Θ ⊆ Oi

N ,
– Γ ⊆ R.

Definition 9 (Final Marking of an iEPC). Let iEPC be a syntactically correct iEPC
and MiEPC its marking space. OiEPC ⊆ MiEPC is defined as the set of all possible
final markings, i.e. o = (obase , Θ, Γ) ∈ OiEPC if and only if:

– ∃ae ∈ Ae: o(ae) > 0 and
– ∀a ∈ As ∪Aint : o(a) = 0.
– There are no requirements regarding output objects and roles.

Based on the set of initial markings IiEPC and the transition relation TS, we can cal-
culate the reachability graph similar to the algorithm proposed in [11]. This algorithm
determines all initial markings and adds for each possible transition a new marking
to the reachability graph. Since the semantics of [11] are safe, the reachability graph is
finite. The reachability graph can then be analyzed for verification purposes. The sound-
ness definition for workflow nets cannot be directly used for an iEPC since it may have
multiple start and end events. Therefore, we need to extend the property of EPC sound-
ness [8] to iEPCs. This requires that every start arc has an associated initial marking that
is included in the set of initial markings. Then, the soundness definition demands that
there exists such a non-empty set of initial markings, and that for each initial marking
in this set proper completion is guaranteed. Furthermore, there must be a set of final
markings reachable from some of these initial markings such that there exists at least
one final marking in which a particular end arc holds a token. If that is fulfilled, proper
completion is guaranteed for a set of initial markings that cover all start arcs.

Soundness of EPC Process Models with Objects and Roles 13

Definition 10 (Soundness of an iEPC). Let iEPC be a syntactically correct iEPC,
N

CF
= E ∪ F

CF
∪ C

CF
its set of control-flow nodes, MiEPC its marking space, and

IiEPC and OiEPC the set of all possible initial and final markings. An EPC is sound
if there exists a non-empty set of initial markings I ⊆ IiEPC and a set of final markings
O ⊆ OiEPC such that:

(i) For each start-arc as there exists an initial marking i ∈ I where the arc (and hence
the corresponding start event) holds a token. Formally:
∀as ∈ As : ∃i ∈ I : i(as) = 1

(ii) For every marking m reachable from an initial state i ∈ I , there exists a firing
sequence leading from marking m to a final marking o ∈ O. Formally:
∀i ∈ I : ∀m ∈M : (i ∗→ m)⇒ ∃o ∈ O (m ∗→ o)

(iii) The final markings o ∈ O are the only markings reachable from a marking i ∈ I
such that there is no node that can fire. Formally:
∀m ∈M : ((i ∗→ m) ∧ @m′(m→ m′))⇒ m ∈ O

Please note that with free-choice behavior of an iEPC, this definition implies that all
end arcs can be reached from some initial marking included in IiEPC . Furthermore,
from Definition 7 we can directly derive the following three theorems.

Theorem 1 (Soundness of iEPC and base EPC). If the iEPC is sound, the base EPC
is also sound.

Theorem 2 (Initial Objects and Soundness). If iEPC is sound and an initial marking
i = (ibase , Θ, Γ) is in IiEPC , then also i = (ibase , O, Γ) is in IiEPC with the complete
set of input objects.

Theorem 3 (Roles and Soundness). If iEPC is sound and an initial marking i =
(ibase , Θ, Γ) is in IiEPC , then also i = (ibase , Θ,R) is in IiEPC with the complete
set of roles.

The proof of Theorem 1 builds on the implication of the “if and only if” definition of
the transition system of the iEPC and base EPC. Among others, this implies that if a
transition of the iEPC can fire, there must be a corresponding transition in the base EPC

that can fire, too. Theorem 2 follows from the activation condition
IN

|= that builds on the
lower bound of the range connectors. This means any enlargement of the set of input

objects still fulfills
IN

|=. The same argument holds for Theorem 3.
The three theorems have strong implications for an efficient approach to verifica-

tion of iEPC soundness. Since an iEPC can only be sound if the base EPC is sound,
one should first calculate the reachability graph for the base EPC. This way, potential
deadlocks can be traced back to control flow problems. When the control flow has been
corrected, one can calculate the reachability graph for the iEPC. Since the iEPC can
only be sound, if it is sound with the complete set of role and initial objects, these sets
should be considered for the initial markings. Obviously, any deadlocks found in this
phase stem from missing input objects because all roles are available. Once the object
flow is corrected, one can verify the iEPC with different role sets, e.g. when a company
is not able to staff all roles defined in the process.

14 J. Mendling, M. La Rosa, A.H.M. ter Hofstede

4 Related Work

Our work relates to two areas of research: integrated modeling of different process
perspectives and verification of process models.

Integrated modeling of business processes combines a number of perspectives such
as the control-flow, the data and the resource perspectives [12]. A common approach
to capturing resources in process models is to associate a role, a capability and/or an
organizational group to each task [13]. In UML Activity Diagrams (ADs) [14] and
BPMN [15], this association is encoded by means of swimlanes. Each task (or activity)
is associated to a swimlane representing a role or an organizational unit. UML ADs
allow multiple swimlanes (or partitions) to be associated to an activity. In extended
EPCs [16], symbols denoting roles or organizational units can be attached to tasks, but
with no specific semantics. The flow of data and physical artifacts is generally captured
by associating objects to tasks. UML ADs support the association of object nodes to
tasks to denote inputs and outputs. One can associate multiple objects as input or as
output of an activity. The execution of an activity consumes one object from each of the
activity’s input object nodes and produces one object in each of its output object nodes.
Similar features are found in BPMN and extended EPCs. In this paper, we defined more
sophisticated role-based resource modeling features, and proposed a more fine-grained
approach to object flow modeling, which go beyond those found in UML ADs, BPMN
and extended EPCs. Furthermore, we identify suitable verification techniques. Yet, we
do not consider data mapping issues which are important for executable languages such
as ADEPTflex [17], BPEL [18] or YAWL [19]. This body of work is complementary to
our proposal.

In the area of process model verification the focus has mainly been on control and
properties of proper completion. The soundness property [4] and its derivatives play an
important role for this purpose. For an overview see [9]. While these properties were
originally defined for Petri nets, they have been also applied to other languages, e.g.
UML Activity Diagrams, EPCs or BPMN [20, 5, 7]. Some work directly deals with data
flow issues in workflows. Our work complements the research by [21] where the authors
identify different data flow error types. Those errors that do not relate to data types and
input constraints can be analyzed with our technique. In [22] the author captures control
flow and data flow in UML Activity Diagrams in terms of Colored Petri nets (CPN)
[23]. Indeed, CPN have been used for the formalization of EPCs already in [24]. Our
approach extends this work with complex role assignment and non-deterministic data
flow. Another stream of research discusses the interplay between control flow and role-
based access control models. Most notably, [25] formalize authorization constraints
and discuss their specification and enforcement in workflow management systems. This
body of work is complementary to ours.

5 Conclusions

In this paper we have discussed quality issues of the role and object perspective in con-
ceptual business process models. These issues are neglected by existing verification ap-
proaches. In order to provide suitable verification support, we have formalized iEPCs, a

Soundness of EPC Process Models with Objects and Roles 15

process modeling language that extends EPCs with objects and roles. Abstracting from
the subtle differences of EPC semantics approaches, we have shown how any of these
formalizations can be extended with transition rules that consider object existence and
role availability as part of the state concept. Furthermore, we have defined three theo-
rems that relate soundness of EPCs to soundness of iEPCs with different initial role and
object set. These theorems provide the basis for a systematic verification approach of
iEPCs that first identifies control-flow problems, then object-flow problems, and finally
suitable role subsets.

The foundations defined in this paper allow us to implement verification support for
the notion of soundness in a straight-forward manner. We are currently investigating
how EPC transition system implementations such as EPC Tools [10] and ProM [8] can
be extended in the simplest way. In future research we want to identify reduction rules
that take objects and roles into account. The problem that we have discussed related to
concurrent creation and deletion of objects shows that the definition of such rules is not
trivial. Still, due to the potential complexity of the EPC reachability graph and the non-
determinism introduced by role and object connectors we need such rules for scalable
verification. Beyond that, the concept of an iEPC provides different access points for
further extensions. In this context, one direction is to consider probabilities at XOR-
splits and OR-splits and to assign duration times to functions. This way, each leaf in the
reachability graph would capture its probability and cumulated execution time.

References

1. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
2. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis for

business process models through sese decomposition. In Krämer, B., Lin, K.J., Narasimhan,
P., eds.: Service-Oriented Computing - ICSOC 2007, Fifth International Conference, Vienna,
Austria, September 17-20, 2007, Proceedings. Volume 4749 of Lecture Notes in Computer
Science. (2007) 43–55

3. Mendling, J., Neumann, G., van der Aalst, W.: Understanding the occurrence of errors in
process models based on metrics. In Meersman, R., Tari, Z., eds.: OTM Conference 2007,
Proceedings, Part I. Volume 4803 of Lecture Notes in Computer Science. (2007) 113–130

4. van der Aalst, W.: Verification of Workflow Nets. In Azéma, P., Balbo, G., eds.: Application
and Theory of Petri Nets 1997. Volume 1248 of Lecture Notes in Computer Science. (1997)
407–426

5. Dehnert, J., van der Aalst, W.: Bridging The Gap Between Business Models And Workflow
Specifications. International J. Cooperative Inf. Syst. 13 (2004) 289–332

6. Wynn, M., van der Aalst, W., ter Hofstede, A., Edmond, D.: Verifying Workflows with
Cancellation Regions and OR-Joins: An Approach Based on Reset Nets and Reachability
Analysis. In Dustdar, S., Fiadeiro, J., Sheth, A., eds.: Business Process Management, 4th
International Conference, BPM 2006. Volume 4102 of Lecture Notes in Computer Science.
(2006) 389-394

7. Puhlmann, F., Weske, M.: Investigations on soundness regarding lazy activities. In Dustdar,
S., Fiadeiro, J., Sheth, A., eds.: Business Process Management, 4th International Conference,
BPM 2006. Volume 4102 of Lecture Notes in Computer Science. (2006) 145–160

8. Mendling, J., van der Aalst, W.: Formalization and Verification of EPCs with OR-Joins
Based on State and Context. In Krogstie, J., Opdahl, A., Sindre, G., eds.: Proceedings of

16 J. Mendling, M. La Rosa, A.H.M. ter Hofstede

the 19th Conference on Advanced Information Systems Engineering (CAiSE 2007). Volume
4495 of Lecture Notes in Computer Science. (2007) 439–453

9. Weske, M.: Business Process Management: Concepts, Languages, Architectures. (2007)
10. Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. Data & Knowledge

Engineering 56 (2006) 23–40
11. Mendling, J., van Dongen, B., van der Aalst, W.: Getting Rid of the OR-Join in Business Pro-

cess Models. In: Proceedings of the 11th IEEE International Enterprise Distributed Object
Computing Conference (EDOC’07), Annapolis, Maryland, USA, IEEE (2007) 3–14

12. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK (1996)

13. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and Systems.
MIT press, Cambridge, MA (2002)

14. Engels, G., Förster, A., Heckel, R., Thöne, S.: Process Modeling Using UML. In M.Dumas,
van der Aalst, W., ter Hofstede, A., eds.: Process-Aware Information Systems. Wiley (2005)
85–117

15. Object Management Group: Business Process Modeling Notation (BPMN) Specification.
Final Adopted Specification, dtc/06-02-01, Object Management Group (2006)

16. Scheer, A.: ARIS - Business Process Frameworks. 3rd edn. Springer, Berlin (1999)
17. Reichert, M., Dadam, P.: ADEPTflex: Supporting Dynamic Changes of Workflow without

Loosing Control. Journal of Intelligent Information Systems 10 (1998) 93–129
18. Alves, A., et al.: Web services business process execution language version version 2.0.

Committee specification 31 january 2007, OASIS (2007)
19. van der Aalst, W., ter Hofstede, A.: YAWL: Yet Another Workflow Language. Information

Systems 30 (2005) 245–275
20. Eshuis, R., Wieringa, R.: Tool support for verifying uml activity diagrams. IEEE Trans.

Software Eng. 30 (2004) 437–447
21. Sadiq, S.W., Orlowska, M.E., Sadiq, W., Foulger, C.: Data flow and validation in workflow

modelling. (2004) 207–214
22. Störrle, H.: Semantics and verification of data flow in UML 2.0 activities. Electronic Notes

in Theoretical Computer Science 127 (2005) 35–52
23. Jensen, K.: Coloured Petri nets: basic concepts, analysis methods and practical use: volume

1. 2nd edition. Springer-Verlag (1996)
24. van Hee, K., Oanea, O., Sidorova, N.: Colored Petri Nets to Verify Extended Event-Driven

Process Chains. In Meersman, R., Tari, Z., eds.: Proceedings of CoopIS/DOA/ODBASE
2005. Volume 3760 of Lecture Notes in Computer Science. (2005) 183–201

25. Bertino, E., Ferrari, E., Atluri, V.: The Specification and Enforcement of Authorization Con-
straints in Workflow Management Systems. ACM Transactions on Information and System
Security (TISSEC) 2 (1999)

