View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Queensland University of Technology ePrints Archive

QUT Digital Repository:
http://eprints.qut.edu.au/

This is the author’s version published as:

Hibberd, Mark T., Lawley, Michael ., & Raymond, Kerry (2007)
Forensic debugging of model transformations. In: 10th
International Conference, MoDELS 2007: Model Driven Engineering
Languages and Systems, October 2007, Nashville, USA.

Copyright 2007 Springer

https://core.ac.uk/display/10882258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Forensic Debugging of Model Transformations

Mark Hibberd, Michael Lawley and Kerry Raymond

Queensland University of Technology, Brisbane, Australia
mt.hibberd@student.qut.edu.au, {m.lawley,k.raymond}@qut.edu.au

Abstract. Software bugs occur in model-driven development, just as
they do with traditional development techniques. We explore the types
of bugs that occur in model transformations and identify debugging ap-
proaches that can be applied or adapted to a model-driven context. In-
vestigation shows that the detailed source-to-target traceability avail-
able with model transformations enables effective post-hoc, or forensic,
debugging. Forensic debugging techniques are introduced for automated
bug localisation in model transformations. The methods discussed are
grounded with examples using the Eclipse Modeling Framework (EMF)
and Tefkat, a declarative model transformation engine.

1 Introduction

As model-driven engineering techniques have become widely adopted in com-
mercial environments the need for related high quality, pragmatic engineering
processes has become very apparent. A key aspect of this is the need for efficient
and effective debugging techniques.

Model transformations form the backbone of model-driven engineering, and
correspondingly become a primary point of failure. Transformation development
faces similar challenges to traditional programming; specifically, the possibility
of human error in any stage of the development life-cycle; thus the need for
debugging.

Debugging is readily classified into three parts, identifying the existence of
a problem, fault localisation and the actual correction of the problem [1]. Gen-
erally, once a problem is located, a developer who is adequately experienced
with the technology can correct the problem with minimal effort. Traditionally
the majority of effort is spent on bug localisation [1-3] and the case in model
transformations is no different. Based on the premise that automation of bug
localisation will provide the greatest benefit to the developer or modeler, we
describe debugging primarily in terms of this localisation.

In this paper we address bug localisation for model transformations in four
key parts: the identification of questions that are asked when debugging model
transformations; the classification of model transformation bugs into a set of bug
classes and patterns; the exploration of debugging approaches that can be applied
or adapted to these types of bugs; and, the demonstration of these approaches
to automate bug localisation in model transformations.

2 Concepts and Context

The goal of a model transformation is to produce one or more target models,
from an input of one or more source models. When talking about source and
target models in the context of a model transformation, there are two parts, the
meta-model that describes, or defines, the model and the model instance, which
is a specific occurrence of the meta-model.

2.1 Model Transformation Tools

There are a number of model transformation tools available which utilise different
techniques to solve the transformation problem. The defining characteristics [4—
6] of these techniques include:

— how the transformation is specified; as a general purpose language or as a
problem specific language.

— the transformation approach; either an imperative or declarative approach.
— what needs to be transformed; the types, described by a meta-model or free
text; the number of models involved, 1..m source and 1..n target models
— the traceability between transformation artifacts; firstly the detail of the

traceability (if any) and secondly the directionality, i.e. can the trace be
followed source-to-target, target-to-source or both.
— the level of automation; applied programatically or manually.

To look at debugging problems, the transformation approach and traceabil-
ity of the transformation are the most important characteristics. It is assumed
that most practical transformations will achieve an adequate level of automation
and that both source and target models are instances of a well defined meta-
model. The number of models involved in the transformation is disregarded as
the debugging concepts should extend to any number of models.

Using these characteristics as a guide, we have utilised the Eclipse Modeling
Framework (EMF [7] and the Tefkat [8] model transformation engine. Tefkat
uses a declarative approach to model transformations. It has a formal trace
model, which links the target, source and transformation. Another important
feature of Tefkat is that the abstract syntax of a transformation is represented
as a model, with corresponding meta-model. This allows the trace model to
accurately reference the transformation as well as the source and target models.

Declarative approaches, like Tefkat, concentrate on what relationships ex-
ist between the source and target, compared with imperative approaches which
concentrate on how to explicitly transform from the source to target. By defin-
ing only the relationships, declarative transformations allow for complete and
correct transformations to occur without concern for execution order, source
traversal and target creation. The use of a declarative approach does introduce
complex concepts that make traditional imperative debugging techniques diffi-
cult. The most obtrusive of these is the lack of a pre-defined execution order.
This makes interactive or step-through debugging difficult as the execution order
is independent from the concrete syntax.

2.2 The Model Transformation Environment

To identify and localise bugs in model transformations, the model transforma-
tion environment must be understood. This environment may vary depending
on the specific model transformation technologies, however similar concepts are
applicable to most types of transformation. The core artifacts in the model
transformation environment are the source model(s), the target model(s), the
transformation and any available trace information. The Tefkat model transfor-
mation environment (figure 1) is comprised of:

Source extents: One or more source model instances and their meta-models.

— Target extents: One or more target model instances and their meta-models.
The transformation: The model transformation and its meta-model.

The trace extent: A trace model instance and meta-model that links tar-
get objects to the source objects that contributed to their creation and the
transformation rule involved (see figure 2).

(Source Meta-Model (SMMJJ (Transform Meta-Model (TFMMJJ (Target Meta-Model (TMMJJ
A A A
Instance of References Instance Of References Instance of
(source Instance (SM)) Transform Instance (TFM) m Target Instance (TM)
A
Link Links Links

Trace Instance (TRM) Trace Meta-Model iTRMMJJ
Instance of

Fig. 1. The model transformation environment.

The trace extent is a key enabling factor for the techniques presented in this
paper. Source-to-target traceability was identified as a key requirement in early
model research [9-11]. Gerber et al. [12] even noted the possibility of utilising
trace information for tasks such as debugging, change propagation and round-
trip engineering. As discussed further in section 4, this trace information is yet
to be fully exploited for debugging.

The information contained in the trace extent can be leveraged for more
effective post-hoc debugging techniques than is possible with traditional lan-
guages. Figure 2 provides a visual representation of the information contained
by the Tefkat trace model. Each trace object references a target object, the
transformation rule which created the target object and the source object(s)
which contributed to its creation.

Source Instance (SM) Trace Instance (TRM) Target Instance (TM)

Source Object (51)

Target Object (T1)
¢ ~] rreceobject (R ...--"'"">O

Source Object (52)

Trace Object (TR2)
o
L\ Target Object (T2)
[y
Source Object (53) g \)O

L
" Transformation (TFM)

Transformation Rule (R1) Transformation Rule (R2)

Fig. 2. Model trace environment.

3 Model Transformation Bugs

To start identifying model transformation bugs, the first step is to understand the
questions which modelers ask when something goes wrong or just doesn’t look
correct. These debugging questions, and the resultant classes of bugs are derived
from a combination of the author’s experience in model transformations and the
analysis of transformation problems raised by the Tefkat user community. The
identified questions aims to be a complete view of the information required to
identify and localise bugs in model transformations. However, as the questions
are based upon experience, it is expected that the set of questions will evolve
in the future; as model-transformation techniques are improved and adopted in
wider areas of software development.

3.1 The Debugging Questions

The debugging questions commonly asked by a modeler can be divided into
two high-level categories. These categories are characterised by model transfor-
mations that produce incorrect output, logical bugs, compared with those that
produce invalid output, well-formedness bugs.

Logical bugs, category A, can be identified by the violation of a relationship
constraint between the source and target of a given transformation. Commonly
these are only informal or implicit constraints, such as, we expect a few x’s in the
target as we know there are some y’s in the source. There are several ways which
these constraints could be provided. The first, the constraint could be provided
by an oracle, the modeler, as a direct input to the debugging process. Next the
constraint could possibly be inferred from the transformation itself. Finally, the
constraint could be specified as a part of a formal testing or validation framework.

This paper only deals with the first case, but recognises the benefits of, and the
requirement for, more formal specification and/or automated discovery of this
type of constraint. The set of logical bug related questions:

A.1 Why are there no objects of type t in the target?
A.2 Why are there so many objects of type ¢ in the target?
A.3 Why is there only one object of type ¢ in the target?
A.4 Why didn’t source type, t, result in any target objects being created?
A.5 Why doesn’t object x contain any references?
A.6 Why does a particular reference point to object =7
A.7 Why isn’t reference r set?
A.8 Why are references r; to r, out of order?
A.9 Why does attribute a have value v?
A.10 Why isn’t attribute a set?

Well-formedness bugs, category B, can be identified by violation of the con-
straints specified by the target meta-model(s). Handling a model which is invalid
with respect to its defining meta-model is a more difficult problem than the in-
correct output case. To address this set of questions, debugging tools shall require
special case handling and dynamic discovery of the structure of model instances.
Dealing with invalid output models is out of scope for this paper, however it is
an important direction for future model-transformation debugging research.

The set of well-formedness bugs:

B.1 Why isn’t object z contained?

B.2 Why was the single valued reference, r, assigned more than once?

B.3 What violated meta-model constraint ¢?

B.4 Why is there no target model at all, i.e. no output compared with
empty output as described by question A.17

B.5 Why is there an instance, x, of an abstract class ¢?

B.6 Why is there an instance, x, that has been created with two different
classes ¢; and c¢y?

The questions provided for categories A and B are parametrised, indicating
the requirement for a debugging context to be well defined and provided as in-
put to the question. The problem of identifying this debugging context results in
the definition of a third set of questions, analysis questions. Analysis questions,
category C, encompass two sub-groups, bug smells or static-analysis questions,
category C.I, and information-discovery questions, category C.II. These ques-
tions are more about refinement of the problem than debugging questions but
they are relevant to localising bugs.

Bug smells represent a pattern or relationship between the source, target
and transformation that are commonly the result of a bug. It is important to
note that these smells are not always bugs, sometimes there will be a legitimate
reason for a bug smell pattern to be found. An example of a bug smells question
is question C.I.1.

C.I.1 Which source objects did not contribute to any target objects?

Bug smell questions often need to be refined to produce more meaningful
output. In the example (question C.I.1), there may be a lot of cases where it
is acceptable for a source object to not contribute to any target objects. An
example of this is where a transformation is not completely exhaustive for the
source meta-model. Any objects not referenced by the transformation will not
contribute to the target, but is clearly not a bug. This process leads to questions
aimed at refining the output. Extending the example in question (question C.I.1).

C.1.2 For all source types, which source objects of the selected type did not
contribute to the creation of any target objects?

As these debugging questions evolve, it is apparent that there is a need
for supplementary information to use as input to the parametrised debugging
questions. This supplementary information is gathered by asking information-
discovery questions, category C.II. The information required to answer these
questions is often directly available in the trace model, however in large trans-
formations it can still be quite time consuming and error prone to access the
information without tool support. The category C.II questions identified are.

C.II.1 Given a target object, what source objects contributed to its creation?

C.I1.2 Given a source object, what target objects did it contribute to?

C.II.3 Given an object type, which transformation rules reference the type?

C.I1.4 Given a target object, what are the relevant slices of the transformation
that could effect its creation and/or attributes?

C.I1.5 Which source objects contributed to the creation of target objects?

Figure 3 gives an overview of the debugging question categories that have
been defined. The next step in identifying model transformations is to turn these
debugging questions into a set of bug categories.

Debugging Questions

//

Logical Debugaging Well-Formedness
Questions (A) Debugging Questions (B)

Analysis Questions (C)

A

i Y

Information-Discovery

Bug Smells Questions (C.1) Questions (C.II)

Fig. 3. Question categories.

3.2 Classes of Bugs

The debugging questions raised in section 3.1 allow the classification of possible
bugs in model transformations. The bug classes identified can be used to facili-
tate several decision making processes, including allowing appropriate debugging

approaches to be linked to specific bug scenarios. Following is a set of bug classes
with descriptions to identify the different bug scenarios.

Existence bugs: Existence relationships often exist between the source and tar-
get, e.g. for all source objects of type x there will be only one target object
of type y. These bugs are characterised by the debugging questions A.1-4. Exis-
tence relationships are often specified as informal requirements rather than strict
rules, which can make them more difficult to identify.

Containment bugs: Meta-models which define containment references expect a
strict set of semantics to be adhered to. There are two bugs which result in a
containment reference being violated. An object that should be contained is not,
or too many objects are contained by a single container.

Bi-directional reference bugs: A common bug pattern with bi-directional ref-
erences is where both ends of the reference don’t point back at each other.
Bi-directional constraints are enforced by EMF'; this means that a bi-directional
reference bug will only result from a bug in the meta-model.

Range bugs: Range bugs occur where there are invalid values in the target
instance with respect to the constraints defined by the target meta-model.

Completeness bugs: Completeness bugs occur when some non-optional part of
the target is not generated as a part of the transformation.

Well-formedness bugs: Well-formedness bugs are closely related to the category
B debugging questions which result from invalid output. A well-formedness bug
occurs when the target model instance does not conform to the target meta-
model. Well-formedness bugs are a superset of a number of other bug categories,
including completeness bugs and containment reference bugs.

Technology specific bugs: Technology specific bugs occur as a result of the
model transformation tools and techniques used. This paper limits the discussion
of technology specific bugs as there is limited benefit in approaching technology
specific problems from a generic model-driven development perspective.

Using these types of bugs as a reference, debugging techniques will now by
analyzed to determine effective approaches to bug localisation that may be ap-
plied to model transformations.

4 Debugging Techniques

Localisation is the key facet of any debugging process. Figure 4 visualises the
goal of bug localisation. The before snapshot represents a situation of a buggy
transformation, the developer knows there is a bug. However, there is a large
area (represented in white) of unexplored code where the bug may be located.
The after snapshot shows how a debugging process can be applied to narrow the
unknown area, and inturn help pinpoint the bugs location. It is important to note
that a realistic goal of bug localisation is not to pinpoint the precise problem,
merely to localise the possible causes to a minimum area. It is accepted that

BEFORE AFTER

®
& O

|:| K.nown Bug Free |:| Unknown - Buggy

Fig. 4. Before and after localisation of potential problems.

there may always be some level of developer interaction required to go from a
localised bug to the correct solution.

To achieve this bug localisation there are two primary categories which can
encapsulate most techniques: post-hoc or forensic debugging, and interactive or
live debugging.

4.1 Forensic vs Live Debugging

The key difference between forensic and live debugging is that live debugging re-
quires access to a complete runtime environment that is not required for forensic
debugging. Live debugging may always be required to solve more complex bugs.
However in model-driven engineering, the inherent traceability and the well-
understood nature of the source and target in model transformations provide a
unique opportunity for forensic debugging techniques. Leveraging the additional
traceability and artifacts available, a higher level of detail and most importantly
automation can be achieved with forensic debugging of model transformations
compared with traditional programming languages.

This paper concentrates on a static or forensic approach to bug localisation.
There are many advantages in pursuing the forensic case over live debugging.
These include:

— The time and effort cost for the developer usually associated with in-
teractive debugging.

— In a software development community where automation is contin-
ually being pursued, forensic debugging can save valuable resources
by using information from failed builds or tests to track down prob-
lems rather than relying on developers to re-run the problematic pro-
gram/transformation to perform live debugging tasks.

— Offline debugging means that bugs can be localised in inaccessible en-
vironments, such as production environments where live debugging is
often impossible.

— Transient errors or heisenbugs! can be difficult or impossible to repro-
duce in a live debugging environment.

To assist in the development of debugging techniques that can take advantage
of these aspects of forensic debugging we look to past debugging research in
comparative areas of software development.

4.2 Learning From The Past

There has been no significant research into the post-hoc debugging possibilities
specific to model transformation. However, the declarative paradigm used by
Tefkat and many other transformation engines is not new to software develop-
ment. They share similar debugging problems as those seen in fifth generation
and logic languages such as Prolog and Mercury. The difficulty in debugging these
declarative languages is well-understood, with significant research into debugging
techniques such as program slicing [13, 14] and algorithm debugging [15-19].

Many traditional automated debugging techniques such as anomaly detec-
tion [20], test based fault localisation [3], statistical based fault localisation [21]
and nearest neighbour queries [22] struggle with the paradigm shift from an
imperative to declarative approach. However, there is also a portion of auto-
mated debugging research which can apply equally, or at least be adapted, to
suit both imperative and declarative programs. These approaches include using
data-flow analysis to help with program slicing [23], predicate switching [24] and
knowledge-based localisation [1].

5 Localisation of Model Transformation Bugs

To address the debugging questions, section 3.1, we present two forensic de-
bugging approaches: analysis and re-enactment. These approaches adapt and
extends the techniques discussed above in section 4.2, to best suit forensic de-
bugging of model transformations.

5.1 Analysis

Analysis involves gathering evidence from the artifacts available in the normal
model transformation environment (see figure 1). At its simplest level this is
simply a collation and refinement of the available data. Analysis is best suited
to addressing category C debugging questions by identifying bug smells, and
gathering evidence to be used as input to the re-enactment processes. All the in-
formation is readily available, however the volume and complexity of the output
can prevent viable manual processing.

We have experimented in the use of analysis techniques to gather the informa-
tion required for bug-localisation. To implement and automate the information
gathering required, we have used two different methods. Firstly, programatically

! A bug that disappears or changes its behavior when debugging [25].

through the EMF API and secondly, as a Tefkat transformation where the static
environment; the original source, target, transform and trace; form the trans-
form inputs and the transform output is a reference or set of references which
answer the query. Both techniques have been successful, and the best choice of
implementation depends greatly on the specific tools and automation techniques
that are being utilised.

The following sections describe, in generic terms, how the model transfor-
mation environment can be utilised to answer some of the debugging question
using analysis.

Tracing from a target object to its contributers. To address question
C.I1.1, the required information is readily provided by the trace model (TRM).
A direct look-up for each target object will find the rule which created it and
the source objects which contributed to its creation.

Tracing from source objects to target objects. Question C.II.2 is effec-
tively addressed by the algorithm specified for question C.II.1, with the source
and target roles reversed.

Source objects that contributed to the creation of target objects. The
source references in the trace model (TRM), (T'RM [source-references]), is a
subset of the source model (SM). Using this, question C.IL.5 is addressed by
finding the intersection of all the source references in the trace model and the
objects in the source model.

x = TRM |[source-references] N .SM

Source objects that did not contribute to the creation of a target
object. Similarity, question C.I.1 is addressed by determining the relative com-
plement of all the source references in the trace model and those in the source
model.

y = TRM[source-references| — SM

As discussed in section 3.1 and presented in question C.I.2, the output of
this question must be refined to produce a useful result. An additional filter is
applied to reduce the output; the objects found by the first process that have a
type referenced by the transformation (TFM).

z={o|oey A oclass e TFM[MOFInstance]}

Analysis of the model transformation environment has provided enough infor-
mation to answer straight forward, query based questions. Re-enactment extends
this information to pinpoint specific rules and/or terms in rules that trigger a
bug.

5.2 Re-enactment

Re-enactment involves the selective re-execution of logical parts of the model
transformation in a controlled runtime environment to gather knowledge about
specific problems. Typically there are two parts to the re-enactment, determining
a part of the transformation which could potentially cause a given problem,
and executing that part in isolation. The execution phase of the re-enactment
will utilise program slicing [13, 14] and predicate switching [24] to narrow down
possible failures over a number of iterations.

The re-enactment process developed involves executing modified slices of
the transformation in isolation. The transformation slices shall be created using
predicate switching to replace irrelevant or at least suspected irrelevant parts of
the transformation. The predicate switching is implemented by replacing con-
ditional terms with an explicit TRUE term. The re-enactment algorithms have
been designed with automation in mind. As such, they utilise only information
available in the model-transformation environment and they do not rely on any
additional knowledge to be provided by the user.

Re-enactment is best suited to answering category A debugging questions.
For the following examples it is assumed that the output is always valid, but is
not the expected output.

Choosing a slice. The process of choosing a slice is dependent on the con-
straint being tested. Currently this research assumes that a slice has already
been identified. There is space for future work in this area, as it may be possi-
ble to choose a slice using a heuristics based approach for selecting rules from
the transformation or by interacting with a test framework that uses formal
constraints to identify bugs.

An example. The first example, figure 5, shows a Tefkat transformation rule.

RULE FindPersistentClasses
FORALL UMLClass uml
WHERE uml.kind = "persistent" AND uml.parent.kind = "persistent"
MAKE UMLClass result
SET result.name = uml.name, result.kind = uml.kind,
result.parent = uml.parent;

Fig. 5. Simple Tefkat rule containing a bug.

This rule is working with a simplified UML meta-model, figure 6. The rule is
attempting to locate all persistent classes, that is classes with a kind attribute
of “persistent” or a parent with a kind attribute of “persistent”.

The rule contains a bug in the conditional logic. The use of AND instead of
OR prevents the finding any persistent classes. The modeler knows that there
are some persistent classes in his input model, so he asks debugging question

H ModelElement

contents
B UMLPackage |#»
g,=| = name: EString
| e [
| g Attribute I;)‘ H CQuassifier I B Association
1 Z%

attributg 0. *
H PrimitiveDataType

1

H UMLClass

sOurce
1

= kind: EString|

target
| 0 "Tparenls

owiner

Fig. 6. Simple UML meta-model.

A.1,“why are there no UMLClasses in my output?”. To answer this question
re-enactment is used.

A simple slice. To answer the question posed, a head-first or tail-first predi-
cate switching approach can be applied to this problem. Our experiments have
identified benefits to both approaches. An important point to note when evalu-
ating each approach is that the head or tail is logical only, to re-iterate the point
in section 2, there is no explicit execution order so the terms in the rule may
be re-ordered by the transformation engine as required. The choice of starting
from the head or tail is arbitrary, but draws on techniques commonly applied
by developers attempting to localise a bug.

The head-first switching algorithm is shown in figure 7. This approach re-
places all conditional terms with a TRUE term, adding the conditions back one at
a time until the transformation output goes from the correct output to the buggy
output. The last term switched is identified as a potential problem. If no terms
made a difference to the output it indicates that the input to the rule actually
caused it to produce the unexpected output.

The tail-first switching algorithm is shown in figure 8. Tail-first switching
iterates through each conditional term, replacing it with a TRUE term until the
transformation goes from the “buggy” output to the “correct” output. Similar to
the head-first approach, if no terms made a difference to the output it indicates
that the input to the rule actually caused it to produce the unexpected output.

To produce a complete picture it is possible to combine both approaches.
Often both approaches will return the same result, but it is possible that two
potential problems can be identified. An advantage of using both approaches
is the removing terms in different orders helps the elimination of down-stream
bugs; those which would not occur except for a problem earlier on in the rule.

In the uml example, applying both of these rules highlights the uml.parent
.kind = "persistent" term. As highlighted by figure 4 and section 5 this may
not be the root cause of the bug, however it localises the problem sufficiently to

1 Select source term for rule (current slice)
mofInstances <- new list, conditions <- new list
3 For each term
3.1 If source term is a MOFInstance, add to mofInsances
3.2 Otherwise term is potentially a condition, add to conditions
4 For each condition in conditions
4.1 Replace condition with TRUE term
Execute new version of rule
6 If result contains NO required objects, the input is at fault,
return mofInstances as potential bug
7 For each condition in conditions (from head to tail)
7.1 Replace TRUE term with condition
7.2 Execute new version of rule
7.3 1If result contains NO required objects, return condition
8 return Rule is OK

N

o

Fig. 7. Head-first predicate switching.

1 Select source term for rule (current slice)
2 mofInstances <- new list, conditions <- new list
3 For each term

3.1 If source term is a MOFInstance, add to mofInsances

3.2 Otherwise term is potentially a condition, add to conditions
4 For each condition in conditions (from tail to head)

4.1 Replace condition with TRUE

4.2 Execute new version of rule

4.3 1If result contains any of required object, return condition
5 No terms effected output, the input is at fault,

return mofInstances as potential bug

Fig. 8. Tail-first predicate switching.

realise that it doesn’t make sense that the term always has to be true and the
bug can be corrected by modifying the AND to an OR.

There are a number of caveats to this approach. Most importantly, it is not
possible to easily differentiate between a source term that will bind a variable
and one that acts as a condition or filter. This means that removing the source
term could break the injection part of the rule and cause the transformation
to flounder?. To address this problem the transformation rule can be modified
to not depend on any variables possibly bound in the source term. The first
step to this is eliminating all target conditions (SET clause in the example). The
second step is to eliminate all non-default injections. The example does not have
any non-default injections, which take the form of a MAKE ...FROM ... clause.
These changes to the transformation rule do not affect the algorithms in figures 7
and 8 as, although some values will differ from the “correct” output, there will
be no changes to the objects that are created.

An advanced slice. The algorithms presented in figures 7 and 8 address
a simple case where all the effecting logic is encapsulated within a single rule

2 The transformation can not complete execution as a rule is dependent on variable
that is never bound.

and with no branching. A more realistic example would involve the use of an
OR condition, IF/THEN/ELSE statement, PATTERN use or implicit dependencies
between rules created by LINKS/LINKING terms. These more complex structures
require additional checks that must be made to ensure a complete set of results
is determined. For example, in the case of OR, a potential problem could be
identified for each branch within the rule.

Figure 9 shows the recursive execution of the predicate tail first switching
algorithm on each branch of the OR condition. This algorithm can be inserted
at step 7.1 in figure 7 or step 4.1 in figure 8. The first additional check is for an
OR condition. If either of these statements are encountered, each of its branches
must be traversed separately. It is possible that the conditional statement will
result in 0, 1 or 2 additional results.

1. If the condition is an ’OR’ term
1.1 Replace the first nested term with FALSE and recursive apply
predicate switching algorithm to right hand side of ’OR’ term
1.2 Replace the second nested term with FALSE and recursive apply
predicate switching algorithm to left hand side of ’OR’ term
1.3 Replace entire ’OR’ term with TRUE
2. Otherwise continue normal predicate switching algorithm

Fig. 9. Handling multiple branches.

Other advanced constructs; IF/THEN/ELSE statements, PATTERNs and LINKS/
LINKING statements; can be approached with similar predicate switching algo-
rithms. The IF/THEN/ELSE case is identical to the OR case where each branch
is replaced then the whole statement is replaced. Patterns can be addressed by
identifying and recursively applying the predicate switching to each PATTERN dec-
laration, and finally to the PATTERN use. This approach can be used to identify
any terms inside the PATTERN declaration that effect the output.

Dependencies between rules, normally identified by the LINKS construct in
Tefkat, present additional problems. In the simple slice example it was noted
that floundering could be prevented by modifying the MAKE and SET clauses
to only depend on variables that are not bound by the terms involved in the
predicate switching. A rule containing a LINKS term may not depend on any
other input and as a result the LINKS term can not be switched out. There
are two approaches to handling this situation. Firstly, the LINKS term can be
processed last (similar to the MOFInstances in the simple slice). If none of the
other terms affect the output then it can be said the rule does not produce the
expected output as no dependent objects were created. This information can be
used to identify the rules which create those dependent objects, allowing the
debugging questions to be asked again for the new rule. The second approach is
to ensure that the dependency always exists. This approach is useful when there
is more than one LINKS term that must be processed.

6 Conclusion

The key to addressing the debugging problem, with respect to model transforma-
tions, is understanding the types of questions raised when a problem is identified.
In section 3.1, we presented a framework, as a set of questions, to define the goals
of model-tranformation debugging.

Utilising forensic debugging approaches we have addressed a number of the
model transformation debugging questions highlighted. We have demonstrated
the potential that leveraging the trace available in model transformations brings
to forensic debugging. We have also demonstrated the adaptability of previously
live debugging approaches into forensic algorithms.

Analysis techniques do benefit from leveraging the current trace informa-
tion. However as the research has progressed it has highlighted the potential for
improvements to the information provided by the trace model. Some of these
possible enhancements include linking target objects to the specific injection
that created them and also the rules that resulted in the objects’ attributes
being set.

The re-enactment approach is able to greatly extend the value which forensic
debugging can provide. However, it is important to realise that the re-enactments
can rarely (if ever) provide a definitive answer to its queries without help from the
user. That said, it contributes significantly towards solving the original problem
of localising the fault and minimising developer debugging effort.

6.1 Future Work

In presenting these debugging approaches we have found that some of the de-
bugging questions lend themselves to a forensic debugging solution more than
others. In some cases this can be attributed to the level of detail provided by
the trace model which is insufficient to answer state based questions, requiring
closer examination of the execution chain and intermediate states. In the future
we aim to propose improvements to the current trace model and extend our
debugging algorithms into the live debugging space to assist in answering more
complex and state based debugging questions.

Section 3.1 identified a category of questions to do with the well-formedness
of the output; category B. This set of questions have not been thoroughly ad-
dressed due to the complexities in handling an invalid model instance. We aim
to investigate this special case of debugging question further in the future.

Another important piece of work was highlighted in section 3.1. Category A
questions were based around constraints on the relationship between the source
and target models. It was noted that these constraints need to be communi-
cated more effectively to assist in automating the debugging process, Currently
the only way this type of constraint is provided is through manual interaction
between the developer and the debugging tools.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Sedlmeyer, R., Thompson, W., Johnson, P.: Knowledge-based fault localization
in debugging: preliminary draft. Proceedings of the ACM SIGSOFT/SIGPLAN
software engineering symposium on high-level debugging 8(4) (1983) 25-31
Ducassé, M., Emde, A.: A review of automated debugging systems: knowledge,
strategies and techniques. Proceedings of the 10th international conference on
Software engineering (1988) 162-171

. Jones, J., Harrold, M., Stasko, J.: Visualization of test information to assist fault

localization. Proceedings of the 24th international conference on Software engi-
neering (2002) 467477

Mens, T., Czarnecki, K., Van Gorp, P.: A Taxonomy of Model Transformation.
International Workshop on Graph and Model Transformation (2005)

. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches.

Proceedings of the 2nd Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA) Workshop on Generative Techniques in the Context of
the Model Driven Architecture (2003)

Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3) (2006) 622

Eclipse Foundation: Eclipse Modeling Framework Project (EMF). Available at:
http://www.eclipse.org/modeling/emf/ (2007) accessed February 20th, 2007.
Lawley, M., Steel, J.: Practical Declarative Model Transformation With Tefkat.
Lecture Notes In Computer Science 3844 (2006) 139

. Object Management Group: MOF 2.0 Query - Views - Transformations RFP.

OMG Document ad/2002-04-10, April (2002)

Miller, J., Mukerji, J., et al.. MDA Guide Version 1.0.1. OMG Document
omg/2003-06-01, June (2003)

DSTC-IBM-CBOP: MOF 2.0 Query/Views/Transformations, Second revised sub-
mission. OMG Document ad/2004-01-06, January (2004)

Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The
Missing Link of MDA. Lecture Notes in Computer Science 2505 (2002)

Weiser, M.: Programmers use slicing when debugging. Communications of the
ACM 25(7) (1982) 446-452

Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.
ACM SIGSOFT Software Engineering Notes 30(2) (2005) 1-36

Shapiro, E.: Algorithmic program diagnosis. Proceedings of the 9th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (1982)
299-308

Shapiro, E.: Algorithmic Program DeBugging. MIT Press Cambridge, MA, USA
(1983)

Fritzson, P., Shahmehri, N., Kamkar, M., Gyimothy, T.: Generalized algorithmic
debugging and testing. ACM Letters on Programming Languages and Systems
(LOPLAS) 1(4) (1992) 303-322

Naish, L.: Declarative Debugging of Lazy Functional Programs. Dept. of Computer
Science, University of Melbourne (1992)

Naish, L.: A Declarative Debugging Scheme. Department of Computer Science,
University of Melbourne (1995)

Hangal, S., Lam, M.: Tracking down software bugs using automatic anomaly de-
tection. Proceedings of the 24th International Conference on Software Engineering
(2002) 291-301

21.

22.

23.

24.

25.

Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.: SOBER: Statistical Model-based Bug
Localization. Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations
of software engineering (2005) 286295

Renieres, M., Reiss, S.: Fault localization with nearest neighbor queries. Auto-
mated Software Engineering, 2003. Proceedings. 18th IEEE International Confer-
ence on (2003) 30-39

Agrawal, H., Horgan, J., London, S., Wong, W.: Fault localization using execution
slices and dataflow tests. Software Reliability Engineering, 1995. Proceedings.,
Sixth International Symposium on (1995) 143-151

Zhang, X., Gupta, N., Gupta, R.: Locating faults through automated predicate
switching. International Conference on Software Engineering (2006) 272-281
Bourne, S.: A conversation with Bruce Lindsay. Queue 2(8) (2004) 22-33

