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ABSTRACT 

Accurate identification of moving forces in bridge is an 
important issue from the aspects of design, control and 
diagnosis of bridges. Previous studies show that the 
identification results will often be highly sensitive to changes 
in parameters of both the bridge and vehicle. The different 
solutions to an equation ,4x = b, the over-determined 
system in the force identification, give results with different 
accuracy, particular when the systematic matrix A is close to 
rank deficient. Based on the time domain method (TDM) and 
frequency-time domain method (FTDM), this paper aims to 
evaluate the two solutions to the system equation, i.e. direct 
pseudo inversion (PI) solution and the singular value 
decomposition (SVD) solution. The effects of various 
parameters on both the TDM and FfDM are also discussed. 
Assessment results show that the moving force identification 
from the bridge strain responses is feasible and acceptable, 
but there exists different influence on the TDM and FTDM by 
means of the two solutions. The SVD solution can effectively 
improve the identification accuracy of the two methods, 
particular for the FTDM. 

1 INTRODUCTION 

Accurate identification of moving forces is often vital for 
accurate and cost effective design and maintenance of 
bridges. In some situations the forces can be measured 
directly using a force transducer in the load path. In other 
situations this is impossible or difficult. In such cases, it 
would be very convenient to resort to an indirect 
identification technique. Therefore, the indirect identification 
of the forces appears as a valuable alternative. In this 
context, “indirect force identification” refers to the process of 
deducing time histories of moving axle loads from 
measurements of bridge responses due to the passages of 
vehicles. This process is also frequently referred to as 
“moving force identification” or “moving force 
reconstruction”. 

Moving force identification has been studied extensively. 
Fryba [l] presented a comprehensive survey of the 
references and methods for solving the problems involving 
moving loads on structures. Stevens [2] provided an 
overview of the general problems involved in the 
identification of unknown stationary and transient forces. 
Dobson and Rider [3] reviewed different techniques and 
applications of indirect force identifications reported in the 
literature. A number of different applications of force 
identification were described, and the computational 
procedures and difficulties involved were outlined. However, 
the results from indirect force identification will often be 
highly sensitive to measurement noise and errors in the 
model of the structure. An interesting observation was made 
by Hillary and Ewins [4] who found that measurements of 
strain might lead to more accurate results than 
measurements of acceleration for beam-like structures. This 
is explained by the fact that there are generally more 
vibration modes significantly contributing to the strain 
response than to the acceleration response. This sensitivity 
of the results to the number of participating structural modes 
has been investigated in detail by Fabunmi [5], who 
suggested a scalar measure of the sensitivity based on this 
modal participation. Measures of the sensitivity have also 
been suggested by Starkey and Merrill [6] and by Hansen 
and Starkey [7]. The precision problems of dynamic load 
identification in time domain have been discussed by Tang 
[8]. Based on a system identification theory, the authors 
have developed another two moving force identification 
methods, namely the time domain method (TDM) [9] and 
frequency time domain method (FTDM) [lo]. Comparative 
studies [ll] showed that the two methods could identify 
moving forces with acceptable accuracy to some extent, the 
TDM was the best one but the FfDM suffered from several 
constraints. The results are sensitive to changes in both 
bridge and vehicle parameters. This is mainly associated with 
the solution by direct using the pseudo-rnverse technique to 
the over-determined equation with the rank deficient 
coefficient matrix. The singular value decomposition (SVD) 
technique should be used to calculate the pseudo inversion 
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of the system matrix if the system matrix is close to rank 
deficient [12]. The SVD technique is one of the most 
important tools in numerical analysis [13]. 

In this paper, both the TDM and FTDM are briefly described 
first. Laboratory experiments are then introduced. The 
results of an error study are evaluated, which show the 
effect of the change of bridge and vehicle parameters on the 
TDM and FTDM. They also show the robustness of the SVD 
technique that is adopted to solve the over-determined 
system equation in the TDM and FTDM. 

2 TECHNICAL BASIS 

2.1 Equation of Motion 

Referring to Figure 1, the bridge superstructure is modeled 
with a simply supported beam. The effects of shear 
deformation and rotary inertia are not taken into account 
(Bernoulli-Euler beam). If  the force P moves from left to 
right at a speed C, then an equation of motion in term of 
modal coordinate q,,(t) can be expressed as 

P 
” x 

L 

Figure 1. Moving force on a steel beam bridge 

9,(‘)+2~“w”i(t)+mt9.(r)=~p,,(i) (II = 1,2;..xx) (11 

717rct 
con p,,(t) = P(t) sin(--- L ) t2) 

are the jlth modal frequency, the modal damping ratio and 
the modal force respectively. I f  the time-varying force p(t) is 
known, equation (1) can be solved to yield (f,,(t). The 

dynamic deflection r,(x,t) can then be obtained from the 
c,,,(t) and the fith mode shape I,, This is a forward 

problem. The moving force identification is an inverse 
problem in structural dynamics, in which the unknown time- 
varying force p(t) is identified using the measured 
displacements, accelerations or bending moments of real 
structures. The TDM and FfDM are developed here for 
moving force identification. 

2.2 Time Domain Method (TDM) 

Equation (1) can be solved in time domain by the 
convolution integral and the dynamic deflection v(T,~) of 

the beam at point xand time t can be obtained as 

Where OI; = ,,m, therefore, the bending moment of 

the beam at point xand time t is 

a%(* t) 
rn(x,t) = -EIL 

a.2 

(4) 
Assuming that both the time-varying force p(r) and the 
bending moment ,ll(.Y,t) are step functions in a small time 

interval At, equation (4) can be rewritten in discrete terms 
and rearranged into a set of equations as follows 

Where, P is the time series vector of time-varying force P(t), 
R is the time series vector of the measured response of the 
bridge deck at the point X, says the bending moment ,,r(s,r). 
The system matrix B is associated with the system of bridge 
deck and the force. The subscripts,vR = L~(<A,) and N are the 

number of data samples for the force P(t) and measured 
response R respectively when the force goes through the 
whole bridge deck. 

If  N=NHr p can be found by solving the N order linear 

equations. I f  ,v > N,Or i (I >I) responses are measured, the 
least squares method can be used to find the time history of 
the moving forces p(t). 

2.3 Frequency Time Domain Method (FTDM) 

Equation (1) can also be solved in the frequency domain. 
Performing the Fourier transform for Equations (1) and 

v(x, t) = 2 Q,, (~X)il (!), the Fourier transform of the dynamic // 
,,-I 

deflection v(x, t) is 

Where H,, (CO) are the Fourier Transform of r,,, (t) , and 

Substituting equations (7)-(g) into Equation (6), and 
assuming the Fourier transforms of both the force and the 
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bending moments are step functions in a small frequency 
interval, Equation (6) can be rewritten in discrete terms and 
rearranged into a set of equations as 

A (N+Z)r(h+Z,F~,\'+2,rl = Y,v-+, (10) 

where Y and F are Fourier transform of the dynamic 
deflection vector vand the force vector P(t) respectively. 
The matrix A is associated with the bridge-vehicle system. 
Because variables in Equation (10) are complex number, 
Equation (10) are often written in terms of real and 
imaginary parts of complex number as follows 

or 

Components F, and F, can be found from Equation (12) by 

solving the N order linear equations after taking account of 
initial conditions. The time history of the moving force 
p(t) can then be obtained by performing the inverse Fourier 

transformation. However, the computation cost for solving 
Equation (12) is high in finding the inverse of a full matrix, 
and therefore the following procedure is developed to 
overcome these difficulties. 

If  the DFTs are expressed in matrix form, the Fourier 
transform of the force vector Fwill be written as follows 

F=+WP (13) 

where w = e-‘2”“‘Yand all terms in Fare real [14] 

0 0 0 “’ 0 "1 0 I 2 N-2 N-l 
2 

k=I) : 
4 .I. N-4 N-2 (14) 

: 
: ., ; : 

1: ET: ET”, 1:: : : or, 

The matrix W is an unitary matrix, which means 

w-1 = (w*)’ (15) 

where W* is a conjugate of W. Substituting Equation (13) 

into Equation (12), it yields 

(Iv*)’ A w, f8 = Y (16) 
Nr.v yxy VINB N.“, ,M”’ 

W, and p, are the sub-matrix of the wand P respectively. 

Similarly, the relationships between bending moment 111 and 
the moving force vector P can be described as follows 

(17) 

If  N = N,, ps can be found by solving the N order linear 

equations in Equation (16) or (17). I f  N > N,or I (I >I) 

responses are measured, the least squares method can be 
used to find the time history of the moving forces p(t). 

The above procedure is derived for one single force 
identification in TDM and FTDM methods. They can be 
modified for multi-force identification using the linear 
superposition principle. 

2.4 Solutions 

As mentioned in the previous sections, it is easy to see that 
the TDM or the FTDM will usually result in a system of 
equation that is often of the form 

Ax=b (18) 

Assuming the size of Matrix A belongs to k x n , if k > n 
then the system Ax = b is an over-determined system of 
equation. In principle, Equation (18) will have a solution 
given by the least-squares method as 

x=A+b=[(A’A)-‘A’]b (1% 

where 4’ denotes the pseudo-rr~er~ (PI) of matrix A. The 
solution vector x is called PI solution. This definition requires 
A to have full rank. A* is an n x k array that is unique. If  
matrix A is square and non-singular then A’ = A~‘, Equation 
(18) becomes a linear equation system, and the force vector 
x can be directly found by solving Equation (18). I f  matrix A 
is singular, Equation (18) is ill-posed and the elements of the 
solution vector I will be sensitive to small changes in both 
matrix A and vector 6. If  matrix A is close to rank deficient 
then A+ is best calculated from the singular value 
decomposition (S/D) of 4 [12]. 

The SVD technique, applied to structural dynamics problems 
in the last fifteen year, is one of the most important tools in 
numerical analysis [13]. I f  matrix A is real, the SVD of A is 
(ISIfT, its inverse can easily be calculated from 
A’ = vs ‘Ur For simplicity, assuming that A has no exact 

zero singular values, it can be shown that the least-squares 
solution vector .t is given by 

.X= 

The solution vector x here is called SVD solution. Equation 
(20) clearly illustrates the difficulties associated with 
standard matrix solutions of Equation (18). I f  the numerator 
does not decay as fast as the singular value o;of the 

denominator, the solution is dominated by terms containing 
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the smallest gi. Consequently, the solution L may have 

many sign changes and thus appears to be random. When /I 
is rank deficient, only the r (v 5 min(k,n)) non-zero 

singular values of the matrix are taken into account so that S 
is a Y x Y matrix where r is the rank of A. To make the 
multiplication of Equation (20) conformable, the first I 
columns of V and the first r columns of C! in Equation (20) 
are used. 

3 EXPERIMENTS 

Both the model car and model bridge deck were constructed 
in laboratory. An Axle-Spacing-to-Span-Ratio (ASSR) is 
defined as the ratio of the axle spacing between two 
consecutive axles of a vehicle to the bridge span length. 
Here, the ASSR was set to be 0.15. The model car had two 
axles at a spacing of 0.55 111 and it ran on four rubber 
wheels. The static mass of the whole vehicle was 12.1 kg in 
which the mass of rear wheel was 3.825 kg. The model 
bridge deck consisted of a main beam, a leading beam and a 
trailing beam as shown in Figure 2. The main beam with a 
span of 3.678 111 long and 101 mm x 2s mm uniform cross- 

section, was simply supported. It was made from a solid 
rectangular mild steel bar with a density of 7335 kgirti3 and 

a flexural stiffness El = 29.97kN :m2. 

Figure 2. Experimental setup in laboratory 

A U-shape aluminum track was glued to the upper surface of 
the main beam as a guide way for the model car, which was 
pulled along by a string wound around the drive wheel of an 
electric motor. The speed of the motor could be adjusted. 
Seven photoelectric sensors were mounted on the beams to 
measure and check the uniformity of moving speed of the 
model car. Seven equally spaced strain gauges were 
mounted on the lower surface of the main beam to measure 
the bending moment response. A system calibration of the 
strain gauges was carried out before the actual testing 
program by adding masses at the middle of the main beam. 
A 14.channel tape recorder was employed to record the 
response signals. The software Global Lab from the Data 
Translation was used for data acquisition and analysis in the 
laboratory test. Before exporting the measured data in ASCII 
format for identification, the Bessel IIR digital filter with 
lowpass characteristics was implemented as cascaded 
second-order systems. The Nyquist fraction value was 
chosen to be 0.05. 

4 ERROR STUDIES 

In the moving force identification, many parameters affect 
the identification accuracy, such as the sampling frequency, 
the mode number, the speed of the vehicle, the measuring 
stations and locations. The error study is aimed to 
investigate the effects of the change of these parameters on 
the TDM and FTDM by means of comparing the SVD solution 
with the PI solution. 

4.1 Definition of Error 

In practice, the parameters were studied one at a time. The 
procedure was to examine each parameter in cases and to 
isolate the case with the highest accuracy for the 
corresponding parameter. The accuracy is quantitatively 
defined as follows, which is called a relative percentage error 

(RPE). 

Since the true forces are unknown, Equation (21) is not 
practical. The true force (f;,,,, 1 and identified force CL,,‘,,, 1 are 

here replaced by the measured response (R,,~,,~~,,,) and 

rebuilt response CR,,,,,, 1 respectively. The RPE between the 

measured and rebuilt responses are calculated instead of 
comparing the identified forces with the true forces directly. 
In the present error studies, the results were based on the 
measured bending moments. The maximum acceptable RPE 
value adopted here is 10% [ll]. 

4.2 Effect of Sampling Frequency 

In the laboratory experiment, all the responses were 
acquired at a sampling frequency of 1000 HZ per channel. To 
obtain new sequential data samples at a lower sampling 
frequency, the sequential data samples acquired at 1000 HZ 
were sampled again at a few intervals. New sequential data 
at the sampling frequencies of 333, 250 and 200 I/Z would 
be obtained by sampling the data again at every third, fourth 
and fifth point respectively. Because there is a computer 
memory problem in the computation of the inverse of a large 
matrix, the maximum sampling frequency is limited to be 
within 500 /Iz, the sampling frequencies of 200, 250 and 333 
f/z were set here. The case used here is for mode number 
MN=5, the sensor number is seven and the car speed is 15 
ulllts (1 CJllll 2 0.102 111 Is ). 

‘Underlined data are for the PI solution, the same applies to the following 
tables. 

TABLE 1. Effect of sampling frequency on TDM 
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Table 1 shows the identification accuracy that is acceptable 
for the TDM under all cases. The higher the sampling 
frequency, the lower are the RPE values for all stations. The 
TDM is suitable for the higher sampling frequency case. It 
can be observed from Table 1 that there is almost no 
difference for the RPE data at each station using whether the 
SVD or the PI technique. 

TABLE 2. Effect of sampling frequency on FTDM 

For the FTDM, Table 2 clearly shows the comparison of the 
identified results by both the SVD and PI solution. When 
using the PI, the effect on the identification accuracy 
increases with increase in the sampling frequency. When the 
sampling frequency is 333 HZ, the FTDM failed. However, 
when decreasing the sampling frequency to 250 HZ, further 
to 200 HZ, the FTDM is acceptable. This shows that the 
FfDM is suitable for a lower sampling frequency when the PI 
technique is used to solve the equation. Significantly, the 
identified results by the SVD are clearly different from that 
by the PI. They are all acceptable and almost constant at 
each station for the different sampling frequencies. This 
means that use of the SVD technique is independent to the 
sampling frequency, and use of the SVD can effectively 
improve the identification accuracy, especially when the 
sampling frequency is in the highest case 333 Hz 

- FTDM -- TDM -Static 

0 05 1 15 2 25 
rime (SW, 

Figure 3. Comparison of identified forces 

Comparing Table 2 with Table 1, it can be found that the 
RPE data due to the SVD are much closer when the highest 
sampling frequency I, = 333 HZ is used. Figure 3 shows the 
comparison of the identified forces by the TDM and FTDM 
respectively when the SVD is used. It clearly illustrates the 
identified results are feasible and in a good agreement with 
each other, especially during both the two axles of the car 
are on the beam. 

4.3 Effect of Mode Number (MN) 

The case f, = 250H~, c = 15 Units was chosen in this 
section. The mode number was varied from three to seven. 
Table 3 lists the RPE values by the TDM using the SVD. The 
results using the PI are not listed here because the accuracy 
is almost the same as that using the SVD. When MN=3, the 
identified results are acceptable except there are bigger RPE 
values than 10% at the 1’ and 7’ stations. If the mode 
number is larger than 3, the RPE values increase gradually 
with an increase in the mode number. If the mode number 
increases up to MN=7, the RPE data at the 1” and 7’h station 
are bigger than 10% again. This shows that the TDM is 
unstable using whether the SVD or the PI. 

TABLE 3. Effect of mode number (MN) on TDM 

TABLE 4. Effect of mode number (MN) on FTDM 

The results by the F’TDM are given in Table 4. They show 
that the RPE values decrease slightly with an increase in the 
mode number using whether the SVD or the PI technique. 
Further, comparing the data at each station, it can be found 
that the SVD result is clearly improved in identification 
accuracy, particular for the lower mode number cases, says 
MN=3 and MN=4. When MN=3 and using the PI technique, 
the FTDM failed, but using the SVD the identified results are 
acceptable except there are bigger RPE values than 10% at 
the 1” and 7rh stations. When MN=4, using the SVD can 
effectively improve the identification accuracy more than 
50% at each station. These show using the SVD technique to 
solving the system equation can clearly improve the FTDM. 

If the mode number is less than 3, both the RPE values and 
the identified forces become badly terrible and both the TDM 
and FTDM fail to identify the two moving forces. The above 
fact shows the two methods are effective only if the required 
mode number is achieved or exceeded but otherwise fail. 
Further, using the SVD can effectively improve the 
identification accuracy of the two methods, especially for the 
FTDM. 
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4.4 Effect of Vehicle Speed 

Three vehicle speeds were set manually at 5,lO and 15 L%lrs 
respectively in the experiments, If  the speed was stable, the 
experiment was repeated five times for each speed case. The 
average speed of the vehicle on the whole beam is used to 
identify the moving forces in the TDM and FTDM. If the 
mode number, the sampling frequency and bridge span 
length are not changed in this case, a change of the vehicle 
speed would mean a change of the data samples, which will 
in turn change the dimensions of matrix A in Equation (18). 
Therefore, in order to make the TDM and FTDM effective 
and to analyze the effects of various vehicle speeds on the 
identified results, the case with MN=4, j”s = 200 Hz was 

selected. The RPE values are calculated and tabulated in 
Table 5 for the TDM and Table 6 for the FTDM under cases 
5-2, 10-4 and 15-2. Where, case ‘5-2” means the secmd set 
of data was recorded when the vehicle moved across the 
bridge at the speed 5 Urrts. Others are similarly identified. 
The data in Table 5 show that the TDM is effective for all 
three various vehicle speeds. The RPE data at each station 
are almost same under each speed using whether the SVD or 
the PI technique. Although the change in the RPE value is 
not so significant, the RPE values tend to be reduced with 
the increase in the vehicle speed, especially for those at the 
middle measuring stations. 

TABLE 5. Effect of vehicle speed on TDM 

TABLE 6. Effect of vehicle speed on FTDM 

The data in Table 6 show that the FTDM failed to identih/ the 
forces when the PI technique is adopted and the vehicle 
speed is lower, says 5 0~~s. But the identified results are 
getting better and better when the vehicle speed increases. 
Fortunately, the identified result is acceptable at last in the 
case of 15 Lb&s. However, once using the SVD the situation 
is completely changed. It predicts that it is better to use the 
SVD technique to solve the system equation so that the 
FTDM can be effective and can identify the moving forces 
with a higher accuracy. Besides, these results also show that 
the identification accuracy at a faster vehicle speed IS higher 
than that at a lower vehicle speed for both TDM and FTDM. 

4.5 Effect of Measuring Station 

The station numberN, was set to 3, 4, 5, and 7 respectively 

while the other parameters MN=5, f, = 250 Hz, 

c = 15 UJZ~~S were not changed for all study cases in this 

section. The RPE values by using the SVD and the PI 
technique are given in Table 7 for the TDM and Table 8 for 
the FTDM, respectively. When using the PI technique, the 
underlined RPE data show that the TDM requires at least 
three, best having four measuring stations to obtain the two 
correct moving forces. However, the FTDM should have at 
least one more measuring station than using the TDM, i.e. 4, 
to obtain the same number moving forces. However, the RPE 
errors are increased obviously when the measuring station 
number is equal to 5 for the FTDM. This is because the 
addition of the fifth station is placed on the 1/2L point, which 
is the node of the second and fourth modes of the supported 
beam. Nevertheless, when N, = 7, i.e. put two more stations 

at the 1/8L and 7/8L respectively, the RPE values by the 
FTDM recover normal level to within 10%. It indicates that 
the FTDM is sensitive to the locations of measuring station, 
and they should be selected carefully. In general, for the 
TDM and FTDM, the identification accuracy increases with 
increase in the measuring station number, but if the 
increased station is put on any node of modes, it will make 
the identified results worse, especially for the FTDM. 

TABLE 7. Effect of measuring stations on TDM 

TABLE 8. Effect of measuring stations on FTDM 

According to the data in Table 7, when the station number is 
equal to or bigger than four, there is a little difference in the 
RPE values for the TDM, using whether the SVD or the PI. 
When the station number equals to three, using the SVD can 
dramatically improve the identification accuracy. Same 
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situation also appears in Table 8 for the FTDM when the 
station number equals to three and five. Obviously, when 
N, = 3 and wi =5, the FTDM is failed to identify the two 
moving forces if using the PI to solve the system equation. 
However, if using the SVD the FTDM can effectively identify 
the two moving forces and the identification accuracy is 
feasible and acceptable. This shows that both the TDM and 
FTDM can effectively identify the two moving forces when 
using the SVD technique to solve the over-determined 
system equation. Particular for the FTDM, it is really 
important to adopt the SVD to solve the system equation. 

5 CONCLUSIONS 

In this paper, the time domain method (TDM) and 
frequency-time domain method (FTDM) are presented to 
identify the axle loads of a moving vehicle on bridges. A 
bridge-vehicle system model is made in laboratory for 
purpose of moving force identification. A series of 
experiments on measurement of bending moment responses 
caused by the vehicle moving across the bridge are 
conducted. Error studies on moving force identification have 
been carried out. The effects of bridge-vehicle system 
parameters have been investigated. The singular value 
decomposition (SVD) solution and the pseudo-inverse (PI) 
solution used in both the time domain method and the 
frequency-time domain method have been compared. The 
following conclusions are drawn: 1) Both the TDM and FTDM 
are successful in the moving force identification from the 
measured bending moment responses caused by the vehicle 
moving across a bridge. 2) The effects of the change of 
bridge-vehicle system parameters on the TDM and FTDM are 
obvious and dependent on the solution to the over- 
determined system equation. 3) The use of the SVD 
technique can effectively improve the identification accuracy 
for both the TDM and the FTDM, particular for the FTDM. 4) 
The SVD technique is recommended as the first solution in 
over-determined system equation involved in both the TDM 
and FTDM. 
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