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Abstract
The vast majority of studies in the field of audio-visual au-

tomatic speech recognition (AVASR) assumes frontal images of
a speaker’s face. In contrast, our recent research efforts have
concentrated on extracting visual speech information from pro-
file views. The introduction of additional views to an AVASR
system increases the complexity of the system as it has to deal
with the different visual features associated with the various
views. In this paper, we propose the use of linear regression to
find a transformation matrix based on synchronous frontal and
profile visual speech data, which is used to normalize the visual
speech in each viewpoint into a single uniform view. For our
experiments for the task of multi-speaker lipreading, we show
that this “pose-invariant” technique reduces the train/test mis-
match between visual speech features of different views and is
of particular benefit when there is more training data for one
viewpoint over another (e.g. frontal over profile).
Index Terms: audio-visual automatic speech recognition
(AVASR), pose invariance, profile and frontal views, lipreading

1. Introduction
Recently, a great deal of progress has been achieved in audio-
visual ASR (AVASR) [1]. However, practical deployment of an
AVASR system which will be useful in a variety of real-world
applications, has not yet emerged. A reason for this is that most
research conducted has neglected addressing variabilities in the
visual domain such as viewpoint, with nearly all of the present
work being conducted on video of a speaker’s fully frontal face.
This is mainly due to the lack of any large corpora which can
accommodate poses other than frontal. But as more work is be-
ing concentrated within the confines of a “meeting room” [2] or
“smart room” [3] environment, data is becoming available that
allows visual speech recognition or lipreading from multiple
views to become a viable research avenue. This last point has
motivated our recent research efforts in AVASR from multiple
views [4].

In our previous work, our experiments were constrained
with each viewpoint having its own dedicated AVASR system
(i.e. two systems, one dedicated for frontal views and another
for profile views). In this paper, we make our AVASR sys-
tem more “real-world”, by having one camera but allowing it
to lipread from both frontal and profile views. An example of
this is shown in Figure 1.

The implications of such a system is of major benefit to
AVASR. By loosening the constraint on the speaker’s pose, we
allow a more pervasive or “real-world” technology to develop,
which would be of major benefit to in-car AVASR, for example.
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Figure 1: Given one camera, the AVASR system is to be able to
lipread either frontal or profile visual speech.

Conversely, by allowing more flexibility in the system, we also
introduce more complexity. A possible solution to this would be
to model and recognize each view independently of each other,
thus minimizing the train/test mismatch. Unfortunately, this is
complicated to achieve in a continuous setting so a one model
for all approach is usually employed. Having one model which
can generalize over all views is also problematic, as it may over
generalize, causing large train/test mismatch.

Train/test mismatch can drastically affect the performance
of a classifier. Given that only one model is used, if some sort
of invariance in the feature space of an input signal is provided
then the entire system will benefit. A number of approaches
have been devised in the acoustic speech domain to lessen the
train/test mismatch caused by channel conditions and noise,
such as cepstral mean subtraction (CMS) [5] and RASTA pro-
cessing [6]. This type of approach has been used similarly in
the visual domain for face recognition, where techniques such
as linear regression have been used to project the unwanted non-
frontal view face image into a frontal face image. Blantz et al.
[7] cite the major advantage of doing this is because most state-
of-the-art face recognition systems are optimized for frontal
views of faces only, and their performance drops significantly if
the faces in the input images are shown from non-frontal view-
points due to large variation in train/test mismatch.

Motivated by these works, in this paper we describe our
“pose-invariant” AVASR system, which makes use of linear re-
gression to normalize the visual speech features into a single
viewpoint. In this paper, we show by using this type of view-
point normalization technique, we can make the system more
robust to viewpoint change. We describe this pose-invariant
technique in the next section (Section 2). Following that, Sec-
tion 3 focuses on the AVASR system description. Section 4
presents our experimental results, and, finally, Section 5 con-
cludes the paper with a summary and a few remarks.



W

Linear Regression/Tranformation Matrix

Calculation - Offline
xn

tn = W xn

tn

T X
^

^

Figure 2: The visual speech features in an undesired viewpoint
(e.g. profile) xn can be transformed into the wanted target fea-
tures (e.g. frontal) t̂n via the transformation matrix W. W is
calculated offline through a supervised approach with the target
training speech features T and their synchronized input features
X.

2. Pose Invariant Lipreading
Blantz et al. [7] cites two possible ways of performing pose-
invariant face recognition, either via a viewpoint-transformed
or a coefficient-based approach. Viewpoint-transform approach
acts in a pre-processing manner to transform/warp an image of
an unwanted viewpoint into the desired viewpoint. Coefficient-
based recognition attempts to estimate the face under all view-
points given a single view (i.e. frontal and profile in this case),
otherwise called the lightfield of the face [8].

Although it is not clear which approach is superior, for the
purposes of this paper, we used the viewpoint-transform ap-
proach. We chose this approach because our frontal-only sys-
tem is optimized for frontal mouths only, which was a simi-
lar motivation cited by Blantz et al. [7] for their face recog-
nition system. According to Blantz et al., the most common
way to perform this approach is the find the linear regres-
sion/transformation matrix W between a training set consisting
of N offline input examples of the unwanted viewpoint X, and
their synchronized target examples in the wanted viewpoint T.
The matrix W is then found by minimizing

tr[(WT−X)T (WT−X)] + λ · tr[WT W] (1)

where X = {x1, . . . ,xN} and T =
[
[t1, 1]T , . . . , [tn, 1]T

]
,

and xn and tn are of dimension D. A unit bias has been added
to T to allow for any fixed offset in the data. No such bias
was given to the input matrix X. The regularization term, λ,
was also introduced into this equation and is used to avoid over-
fitting [9]. Over-fitting was not an issue in these experiments
due to the large number of training samples (> 100k), and
therefore the value of λ was not significant. From this, the so-
lution to W is

W = TXT (XXT + λI)−1 (2)

For these experiments, the transformation matrix W was
found using the input visual speech features of a particular
viewpoint X and their synchronized counterparts T, and not
the raw mouth image data. By just mapping in the feature do-
main, we found that keeping the dimensionality low (D = 20)
compared to the image domain (D = 32 × 32 = 1024), im-
proved performance. The matrix W, was used to project all
visual speech features of an unwanted viewpoint (xn), into the
wanted viewpoint (̂tn). This full process is shown in Figure 2.

3. The AVASR System
There are four main components in our AVASR system: (a)
multi-view mouth detection; (b) feature extraction (both visual
and audio); (c) the audio-visual integration step; and (d) the
speech recognition system. Each will be discussed in the fol-
lowing subsections.

3.1. Multi-View Mouth Detection and Tracking

In these experiments we used the Adaboost framework of Vi-
ola and Jones [10], later extended by Leinhart and Maydt [11]
to perform the mouth region-of-interest (ROI) detection and ex-
traction. This framework allowed us to generate generic face
and facial feature detectors specific for each viewpoint. As we
assumed that we had prior knowledge of the pose of the speaker,
detection and tracking of the mouth ROIs was relatively simple,
as we just had to apply the specific face and facial feature de-
tection classifiers to the respective poses. These classifiers were
generated using OpenCV libraries [12].

The actual task of mouth detection and ROI extraction was
performed as follows. Given the video of a spoken utterance,
the face detector of the specific pose was applied to estimate
the location of the speaker’s face. For the frontal scenario, once
the face was found, the two eyes were detected and the mouth
region was estimated. From this estimate, we applied lip corner
detectors to find the mouth. A normalized 32×32 ROI based on
these lip corners was then extracted for use in our AVASR sys-
tem. For the profile case, the left eye and the nose were detected.
From these points we were able to estimate where the mouth re-
gion was. From there we detected the mouth center and the left
mouth corner. A normalized 32 × 32 profile mouth ROI was
then extracted based on the distance from the left mouth corner
to left eye. These two points were used as reference points, as
they were the most reliable to detect. For more information, see
[4]. As the Adaboost framework allows for extremely quick de-
tection (quicker than real-time), we were able to do detection
on every frame and used median filtering to allow for smooth
tracking.

3.2. Feature Extraction

Following the ROI extraction, the mean ROI over the utter-
ance was removed. This approach is very similar to cepstral
mean subtraction (CMS) in the audio domain and is called fea-
ture mean normalization for visual feature extraction [1]. Our
feature mean normalization is similar to that of Potamianos et
al. [1], however in our approach we perform normalization
in the image domain instead of the feature domain. A two-
dimensional, separable, discrete cosine transform (DCT) was
then applied to the resulting mean-removed ROI, with the 30
top DCT coefficients according to the zig-zag pattern retained,
resulting in a “static” visual feature vector. Subsequently, to in-
corporate dynamic speech information, 7 of these neighboring
static feature vectors over ±3 adjacent frames were concate-
nated, and were projected via an inter-frame linear discriminant
analysis (LDA) cascade to a 20 dimensional “dynamic” visual
feature vector. The classes used for the LDA matrix calculation
were the HMM states. The delta and acceleration coefficients
of this final “dynamic” vector were incorporated, resulting in a
60 dimensional visual feature vector at the video frame rate of
30Hz. This visual feature extraction system, is similar to the
state-of-the-art process of Potamianos et al. [1]. In the next sec-
tion, we show that these two systems have comparable results
on the same data.



In parallel to the visual feature extraction, 39-dimensional
perceptual linear prediction (PLP) based cepstral features in-
cluding the zeroth, and the first and second time derivatives
were extracted to represent the acoustic signal at the audio rate
of 100Hz using a 25ms Hamming window.

3.3. Audio-Visual Integration

Following feature extraction, the visual features were upsam-
pled to 100Hz using nearest neighbor interpolation to make it
time-synchronous with the audio signal. In this preliminary ver-
sion of the paper, we will be reporting results using a feature
fusion approach. In this technique, the bimodal feature vectors
are concatenated, resulting to 99-dimensional features that are
subsequently projected onto 60 dimensions using LDA cascade.
Similarly to the above subsection, the HMM states were used
as classes for the LDA matrix calculation. The reduction in the
number of features assists in overcoming the curse of dimen-
sionality which allows convergence of the HMMs.

3.4. Speech Recognition System

In the experiments below we will be comparing five lipreading
systems. These systems were trained on the following data:

• (1) frontal

• (2) profile

• (3) combined frontal and profile

• (4) combined frontal and projected profile (into frontal)

• (5) combined profile and projected frontal (into profile)

In addition to these, we will be comparing audio-only and
audio-visual systems. All systems are designed to recognize
connected-digit sequences (10-word vocabulary with no gram-
mar), and they are based on single-stream HMMs operating on
sequences of 60-dimensional features (except the audio-only
which is 39). For both the audio and visual signals in these
experiments, each of the digits were modeled using 9 states and
7 Gaussian mixtures per state using HTK [13]. This topology
was used as experimental and heuristic evidence showed that
this was the optimal configuration. A silence and short-pause
model were also employed. All models were bootstraped from
time labeled transcriptions.

4. Experimental Results
4.1. Database

A total of 38 subjects uttering connected digit strings have
been recorded inside the IBM smart room, using two micro-
phones (head-mounted and far-field) and three pan-tilt-zoom
(PTZ) cameras (one frontal and two side views of subject). For
these experiments, we utilize the far-field audio channel and two
video views: the frontal and one of the two side views, namely
the one that consistently provides views closest to the profile
pose. A total of 1440 utterances are used in our experiments,
partitioned using a multi-speaker paradigm into 1198 sequences
for training, and 242 for testing. For full description see [4]. For
this work, we treated both the frontal and profile views indepen-
dently. This means that systems (3), (4) and (5) were trained
and tested on twice the amount of data (i.e. 2396 utterances for
training and 484 for testing.).

The projected profile features of system (4) were projected
into the frontal view via W by having the training frontal fea-
tures as the target variable T and the training profile features as

Table 1: Visual-only results in WER (%) for the various systems
tested on different data.

System Tested on
System Frontal Profile Projected Projected
Trained Profile Front

(1) 31.42 81.65 51.09 -
(2) 78.19 37.60 - 46.01
(3) 35.17 41.35 - -
(4) 33.56 - 41.40 -
(5) - 40.26 - 35.65

the input variable X. The projected frontal features were pro-
jected into the profile view by using the opposite configuration
of system (4).

4.2. Recognition Results

Table 1, gives the visual-only results for the experiments for the
various systems. Before any analysis occurs, it is worth not-
ing that in system (2), our visual feature extraction technique
gives comparable results to the visual feature extraction scheme
in [4], with the WER in this experiment 37.60% compared to
39.90% on the same profile dataset. Also from these results
it can be seen that systems (1) and (2) give best case scenario
results when they are tested on their own viewpoints (31.42%
for frontal in (1) and 37.60% for profile in (2)). However, when
they are tested on the other viewpoint, the performance severely
degrades due to the train/test mismatch. It can be seen that
our linear regression technique described in Section 2 reduces
this train/test mismatch by effectively normalizing the different
viewpoint features into a uniform mode (from 81.65% down to
51.09% for (1) and from 78.19% down to 46.01% in (2)). How-
ever, this improvement is still not as good as the performance
obtained by the combined systems of (3), (4) and (5). This
is because the systems of (3), (4) and (5) are trained on both
sets of data and are effectively averaged or generalized across
both views. This generalization does not seem to have affected
performance significantly, although the performance of systems
(3), (4) and (5) is still not as good as the best case scenarios of
(1) and (2).

Over generalization can be particularly costly, if one view is
more prevalent than the other. As mentioned previously, most
AVASR systems are set up for fully frontal faces. This is be-
cause the system typically expects the speaker to be predomi-
nantly in the frontal pose, rather than the profile pose. Conse-
quently, it would be intuitive that the system be trained more
on frontal examples than profile to cater for this bias. To see
what impact this has, we decided to conduct a secondary exper-
iment which biased the various systems to the frontal scenario.
To do this, we estimated a speaker would be in the frontal pose
for approximately 80% of the time and in the profile pose for
about 20%. This was reflected in the training of the various
models for the systems, with systems (3) and (4) being trained
on 100% of the frontal data, but only 25% of the profile data
(systems (2) and (5) were not used as they were biased towards
the profile pose). These profile training sequences were ran-
domly selected from the original training set. The testing sets
remained the same. The results for this experiment are shown
in Table 2. Note the regression training sets remained the same
due to the limited number of synchronized examples.

From Table 2, it can be seen that system (1) outperforms
system (3) for the frontal case. It can also be seen that system
(1) obtains slightly better performance than system (3) for the



Table 2: Visual-only results in WER (%) for the various systems
biased towards the frontal pose tested on different data.

System Tested on
System Frontal Profile Projected
Trained Profile

(1) 31.42 - 51.09
(3) 32.60 52.04 -
(4) 31.84 - 47.29

profile case (51.09% compared to 52.04%). This result suggests
that when the models are biased towards one particular view-
point, such as the frontal one, it is advantageous to normalize
all viewpoints into the strongly trained viewpoint. A possible
reason for this could be that the train/test mismatch between the
projected features and the frontal features is less or comparable
to the train/test mismatch between the profile features and the
frontally biased combined features due to the increased impor-
tance placed on the frontal viewpoint. It would be expected that
when the number of non-dominant viewpoints is increased, this
result will be even more dramatic, as these non-dominant views
increase the amount of variation in the train/test set. As ex-
pected, system (4) achieved better performance than (1) and (3)
for recognizing profile speech. However, this small improve-
ment in the profile performance may be of little consequence if
the majority of visual speech is in the frontal domain.

For the fusion experiments, we wanted to see how our pose-
invariant AVASR system performed when it is biased towards
the frontal pose. We chose this scenario, as we believe this
would be more likely in a “real-world” situation (i.e. speaker
in frontal pose more than profile). For ease of comparison,
we selected system (1), as it had the same training set as the
audio-only system. It also achieved the best performance for
the frontal scenario and gave comparable results for the pro-
file view. We compared this AVASR system to the audio-only
system and the visual-only system of (1). Of the original test
set, we randomly selected 80% of them to be frontal and 20%
of them to be profile (this did not affect the audio test set, as
the audio-only signal does not depend on pose). For the clean
acoustic case, the audio-only and AVASR system achieved sim-
ilar performance (3.80% WER). However, their difference be-
comes more pronounced if we corrupt the audio channel by
“speech babble” noise. The results are shown in Table 3. As ex-
pected, in high noise environments, the visual modality benefit
to the audio-only system is dramatic. This once again highlights
the importance of the visual modality, even in the presence of
pose variability, to an ASR system when operatining in noise.

5. Conclusions and Further Work
In this paper, we presented an AVASR system which is able to
recognize speech from both frontal and profile views. We also
presented a pose-invariant technique based on linear regression
which effectively normalizes visual speech features into a sin-
gle uniform viewpoint. To our knowledge, this is the first work
conducted on the topic of pose-invariant AVASR. The topic of
pose-invariant AVASR is central to the future deployment of
an AVASR system in a “real-world” scenario as we showed that
the train/test mismatch between the different viewpoints is large
and severely degrades performance. By employing linear re-
gression as our pose-invariant technique, we showed that we
can reduce the train/test mismatch between the visual speech
features of the different viewpoints. We showed that this is of
particular benefit when an AVASR system is biased to one par-

Table 3: Comparison of audio-only, visual-only and audio-
visual results in WER (%), when the audio signal is corrupted
by additive noise to the specified signal to noise ratio (SNR).
Both the visual-only and audio-visual systems were tested on a
80%-20% mixture of frontal and projected profile data.

SNR Audio-only Visual-only (1) AVASR (1)
12dB 5.75 35.36 5.77
6dB 33.46 35.36 16.38
0dB 79.82 35.36 33.22

ticular viewpoint (such as frontal).
In future work, we plan to develop our system across more

poses (e.g. ±90o,±60o,±30o and frontal etc.) and benchmark
the pose variation effect on performance. Also, we plan to de-
velop a continuous pose-invariant AVASR system that can deal
with pose change within video sequences.
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