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Abstract. Variability management is a recurrent issue in systems engineering. It
arises for example in enterprise systems, where modules are configured and com-
posed to meet the requirements of individual customers based on modifications to
a reference model. It also manifests itself in the context of software product fam-
ilies, where variants of a system are built from a common code base. This paper
proposes an approach to capture system variability based on questionnaire mod-
els that include order dependencies and domain constraints. The paper presents
analysis techniques to detect circular dependencies and contradictory constraints
in questionnaire models, as well as techniques to incrementally prevent invalid
configurations by restricting the space of allowed answers to a question based on
previous answers. The approach has been implemented as a toolset and has been
used in practice to capture configurable process models for film post-production.

Keywords: variability modeling, system configuration, questionnaire, software
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1 Introduction

Explicitly modeling the variability of information and software systems in order
to enable their configuration is a well-known approach to achieving reuse [22].
In this context, variability refers to “the parts of a [system] development pro-
cess and its resulting artefacts that is made to differ between products or in
certain situations within a single product” [31]. For example, enterprise system
packages such as SAP provide modules and business objects covering com-
mon functions such as invoicing, financial reporting and controlling. Analysts
and developers configure and compose these parts to meet the requirements of
individual customers. This individualization may be performed by means of so-
called reference models that capture the data, functionality and business pro-
cesses supported by the system [27, 28]. Similarly, software product families
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are an approach to package related functionality into generic software assets,
from which system variants are derived [14].

Variability of an information or software system may be captured as a col-
lection of parameters [16] as a collection of features [31], or more generally, as
a collection of choices. These choices determine the actions (e.g. model or code
transformations) that should be performed to derive an individualized model or
system from a generic one. Referring specifically to the configuration of busi-
ness process models, which is the focus area of this paper, such actions may
correspond to removing a fragment of a process model. For example, the con-
figuration of a procurement process model may involve a choice between “eval-
uated receipt settlement” versus “payment against invoice”. In the first case a
purchaser pays for goods based on data contained in the delivery receipts; in the
second case the purchaser waits for an invoice and pays it only after reconciling
it against purchase orders and delivery receipts.

The choices that need to be made during configuration of a model or sys-
tem are often interdependent. For example, once an evaluated receipt mode has
been selected, choices regarding the configuration of the invoice reconciliation
sub-process become irrelevant. Also, making a certain choice may restrict the al-
lowed choices subsequently. Indeed, not all sequences of configuration choices
may lead to valid configurations. Here, by valid configuration we mean a con-
figuration that satisfies a collection of constraints inherent to the application
domain (i.e. the domain constraints).

The work presented in this paper is motivated by the following question:
How to proactively guide a user through the configuration space in such a way
that choices are presented at a suitable moment, and choices that may lead to
invalid configurations are avoided a priori? With respect to this research ques-
tion, the contribution of this paper is a variability modeling framework with the
following characteristics:

– It provides fine-grained control over the order in which choices are presented
to users at configuration time.

– It incrementally prunes the space of allowed choices in order to prevent users
from making inconsistent choices during configuration. In particular, the frame-
work is able to statically detect inconsistent variability models.

In most existing variability modeling and system configuration tools (e.g. [33],
[9] and [3]), inconsistent choices are detected and reported a posteriori, with
the drawback that users need to backtrack and revise their choices when an
inconsistency is found. Also, limited control is given over the order in which
choices are presented to users.

As argued by Batory [5], these limitations can be explained by the lack
of a formal underpinning for variability models. In this paper, we follow the
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lines drawn by [5] to develop a formal framework for variability modeling that
addresses the above two limitations.

Figure 1 provides an overview of the approach. Configuration models com-
posed of questions capture the way in which the variability of a generic sys-
tem is resolved at configuration time. Each question refers to a set of facts that
can be set to true or false. Facts encode the variability of the system, e.g. op-
tional features, values of configuration parameters, etc. The individualization
of the generic system is captured by means of actions. As the questionnaire is
answered, values are assigned to facts, and the resulting valuation of facts de-
termines which actions should be performed on the generic system to derive an
individualized system. The framework supports the definition of domain con-
straints in the form of propositional logic expressions over facts. In addition,
questions and facts can be connected through precedence/order dependencies
in arbitrary ways, so long as these dependencies satisfy some well-formedness
rules. These well-formedness rules are shown to be sufficient to prevent contra-
dictory dependencies that lead to deadlocks during configuration.
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Fig. 1. Overview of the approach.

The proposal includes a technique to generate interactive questionnaires
from configuration models. These questionnaires guide the configuration pro-
cess by posing relevant questions in an order consistent with the dependencies
between questions and facts, and also in a way that prevents the violation of the
domain constraints.

A major assumption of the framework is that questions have a finite or dis-
cretized domain of possible answers, which essentially means that the space of
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possible system variants is finite. This assumption allows configuration models
to be efficiently analyzed so as to prevent the user from entering conflicting re-
sponses to successive questions, thus achieving the second requirement above.
The proposed framework does support the use of configuration parameters of
arbitrary types (e.g. integer, string), but such parameters can not be used in the
expression of domain constraints unless they are discretized.

The framework has been tested by capturing the variability of process mod-
els in the film industry. A number of configurable process models and questionnaire-
based configuration models have been defined with input from domain experts.
Using these configuration models, we have conducted experiments to demon-
strate the scalability of the technique for incrementally pruning the configura-
tion space. The experience has also shown that the framework is able to cope
with practical variability scenarios involving numerous facts, dependencies and
constraints, and that, at least in some domains, the restriction outlined above is
not a major impediment.

The rest of the paper is organized as follows. Section 2 outlines the approach
by means of a working example. Next, Section 3 presents the formal framework,
while Section 4 describes the generation of interactive questionnaires from con-
figuration models. This generation technique has been implemented as a tool
outlined in Section 5. Section 6 discusses the evaluation of the proposal through
a case study and experiments. Finally, Section 7 compares the proposal with
related ones and Section 8 draws conclusions.

2 Overview of Approach

We propose to depict variability independently of specific notations or lan-
guages, by means of a set of facts that represent the space of possible answers
to a set of questions. At configuration time, questions are answered via an in-
teractive questionnaire that guides the configuration by posing only the relevant
questions in an order consistent with the precedences between questions and
facts.

Making a choice corresponds to setting a fact within a question. Facts are
simply statements such as “Shipping via DHL” or features such as “Return Mer-
chandise Claim”. Initially, each fact is unset, while at configuration time its
value can be set to true or false. For example, setting “Shipping via DHL” to
false , would mean that we are not interested in using DHL for shipping, whilst
“Return Merchandise Claim”= true would mean that we want to support that
type of claim. Each fact has a default value (true or false), which is provided as a
suggestion (e.g., it may correspond to the most common choice in that domain).
Moreover, a fact can be marked as ‘mandatory’ if it needs to be explicitly set by
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the user (e.g., it can be used to refer to an important aspect of the domain that
cannot be overlooked).

Facts are grouped into questions according to their content, so that all the
facts of the same group can be set at once. For example, the facts “Return
Merchandise Claim” and “Loss or Damage Claim” can be grouped under the
question “Which Claims have to be handled?”. Questions are thus a structuring
mechanism to aid users when assigning values to facts, and are organized in a
partial order, such that the user is not posed all the questions at the same time.

A fact can appear in multiple questions. For example, in a screen business
project, a fact “DVD” (true if the project releases on DVD, false otherwise)
can be seen as a finish format as well as a distribution channel. It can thus be in-
cluded in the questions “What finish formats have to be supported?” and “What
are the distribution channels?”, with thee purpose of facilitating the configura-
tion process. In fact, since questions are organized in a partial order, users can
set the same fact by following different answering paths (i.e. by answering dif-
ferent questions), according to their preferences. The value of the fact can only
be set the first time, and is preserved in all the subsequent questions that contain
it. However, it is possible to change a decision, by rolling back an answered
question.

A facts valuation is any combination of facts’ values where all the facts have
been set, either explicitly by answering questions or by using their defaults.

2.1 Working Example

To illustrate these concepts, we consider an order fulfillment process model
extracted from the Voluntary Inter-industry Commerce Standard (VICS) [35].
VICS is an industry standard endorsed and used by various large companies
that interact with suppliers and logistics providers by means of Electronic Data
Interchange (EDI) transactions. This process model includes a number of vari-
ability points since it is intended to be adapted by user organizations in order to
fit their individual requirements.

The order fulfillment process involves three roles: Supplier, Buyer and Car-
rier, and may support one or more business functions among Product Merchan-
dising, Ordering, Logistics and Payment. Logistics may comprise one or more
sub-phases among Freight Tender, Carrier Appointment, Freight in Transit and
Freight Delivered. These phases range over the whole logistics sub-process,
from making an offer to a Carrier (Freight Tender), through agreeing on the
freight pick-up and delivery details (Carrier Appointment) and on the messages
to be exchanged during the shipment (Freight in Transit), to the types of claims
to be supported after the delivery (Freight Delivered).
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The planned usage of a Carrier’s supplied trailer can also be decided upon,
and thus configured, based on the size of the freight being shipped. It can be
“Truckload” (TL) for full usage, “Less-than Truckload” (LTL) for partial us-
age, or “Small Package” (SP) when just single packages are to be shipped.
This choice has a strong influence on subsequent decisions. For TL- or LTL-
shipments, the roles responsible for fixing the Pickup and the Delivery appoint-
ments can be decided, provided Carrier Appointment is included in Logistics.
For the pickup, this role can be played by either the Supplier or the Carrier; for
the delivery, by either the Buyer or the Carrier. The appointment negotiation is
not allowed in case of SP shipments, as the dates of pickup and delivery are
imposed by the Carrier.

The Carrier’s usage also affects the type of notifications to be sent during the
transit, if Freight in Transit is included in Logistics. For TL or LTL, a Supplier’s
or Buyer’s inquiry to the Carrier is followed by a shipment-status message for
each parcel of the freight, whilst for SP the inquiry is followed only by one
package-status message. Also, only in case of TL or LTL, and if Payment is
selected, the Carrier can support a module for charging incidental costs that
may be incurred during the transit.

Finally, in Freight Delivered, Claims support can be configured, in order to
handle a Merchandise Return and/or cases of Freight Lost or Damaged. If the
latter type of claim has been selected, then the Claim Manager is to be chosen
between the Supplier and the Buyer.

A possible structure of questions-facts for the above process is depicted in
Figure 2 and will be used throughout the paper as a working example. Here
questions and facts are assigned a unique identifier and a description. For exam-
ple, facts f1 to f4 refer to the four business functions the process can implement.
These facts are grouped in question q1 that asks for the business functions to be
implemented. Question q2 groups the facts relating to the expected Carrier’s us-
age. Since this choice is rather important as it affects the process overall, these
facts are mandatory (labeled with a M© in the picture), so that they have to be
explicitly set to true or false when answering q2. Other questions would al-
low users to choose the roles responsible for Pickup and Delivery (q6, q7), the
Claims to be handled (q4) and the Manager for Loss or Damage Claims (q5).
Default values have been assigned to the facts of Figure 2 (a T© indicates a fact
whose default=true, while no symbol means that default=false). Selecting the
default values leads to a VICS process that implements all the business func-
tions (f1, f2, f3, f4 = true) and all the Logistics’ sub-phases (f8, f9, f10, f11 =
true), and that supports TL shipments (f5 = true, f6, f7 = false). In this type
of shipment, the Supplier is usually responsible for organizing and scheduling
the Pickup (so f16 = true and f17 = false) while the Buyer is responsible for
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organizing and scheduling the Delivery (f18 = true, f19 = false). The pro-
cess handles only Loss or Damage Claims (thus f12 = false and f13 = true),
managed by the Supplier which acts as intermediary between the Buyer and the
Carrier (f14 = true, f15 = false).

x             y
x             y
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q2: What is the 
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Carrier’s Usage?

q6: Which role has to be 
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T
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Fig. 2. A possible structure of questions-facts drawn from the VICS EDI Framework.

2.2 Order Dependencies and Constraints

Order dependencies (“dependencies” for short) can be introduced to enforce a
partial ordering on facts and on questions. Let us first consider the ordering of
facts. For example, we can use dependencies to impose that the role responsible
for Pickup (either f16 or f17) is to be chosen only after deciding on the Carrier
Appointment (f9), as the latter includes the pickup details. We express such de-
pendencies by associating a set of alternative preconditions with a fact x, where
a precondition is a group of facts that all need to be set before x. Only one pre-
condition needs to be satisfied for a dependency to be fulfilled. Therefore, fact
x can be set only if at least all the facts in one of its preconditions have already
been set. We say a fact partially depends on another fact if the latter belongs to at
least one of its preconditions. On the other hand, a fact fully depends on another
one if the latter belongs to all its preconditions. A full dependency subsumes a
partial dependency.
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A partial dependency is represented in Figure 2 by a dashed arrow connect-
ing a fact to its dependent fact, while a full dependency is depicted by a solid
arrow. Accordingly, f16 and f17 fully depend on f9, i.e. they can be set only
after f9, as they have one precondition containing only f9. However, if a fact x
partially depends on another fact y, it is still possible that x is set before y if a
precondition not including y is satisfied.

Dependencies over facts affect the order in which questions are posed to
users, since questions “inherit” the dependencies defined on their facts. In our
example, since f16 in q6 depends on f9 in q3, then q6 automatically depends on
q3, although this dependency is not explicitly shown in Figure 2. Similarly, q7

depends on q3 and q5 on q4.
Sometimes though, it may be more natural to express dependencies directly

at the level of questions. This is allowed so long as the dependencies defined
at the level of questions do not contradict those defined at the level of facts.
In Figure 2, q4 fully depends (directly) on question q3 and its facts have no
dependencies on other facts, whilst q2 has a (direct) partial dependency on q1

and q3, so it can be answered after at least one of q1 and q3 has been answered.
Figure 3 shows the final structure that defines the partial order in which the
questions of Figure 2 will be be posed to users. From the diagram we can see
that q5, q6 and q7 have inherited their facts’ dependencies. Circular dependencies
among questions and facts are prevented by means of simple well-formedness
rules (further details will be given in Section 3).

q1: Which Business Functions 
have to be implemented?

q2: What is the expected 
Carrier’s Usage?

q6: Which role has to be 
responsible for Pickup?

q3: Which Logistics phases
have to be implemented?

q7: Which role has to be 
responsible for Delivery?

q5: Which role has to act as Manager 
for Loss or Damage Claims?

q4: Which Claims have
to be handled?

Fig. 3. The partial order over the questions of Fig 2.

Dependencies provide a means for ordering questions but do not affect facts’
values. For example, with a dependency we cannot capture the restriction on the
Carrier’s Usage, which implies that only one type of shipment is to be sup-
ported in a configured system. This corresponds to asserting that exactly one
fact among f5, f6 and f7 holds in q2. Moreover, answering a question may re-
strict the allowed answers to subsequent questions, and not all combinations of
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answers may lead to valid facts valuations. Indeed, if SP (f7) is asserted in q2,
no appointment negotiation is allowed for Pickup and Delivery, i.e. f16, f17 have
to be negated in q6 and f18, f19 have to be negated in q7.

We model these constraints as propositional logic expressions over facts.
From an analysis of the VICS EDI Framework, we have derived the following
constraints (which refer to the facts shown in Figure 2):4

C1: f1 ∨ f2 ∨ f3 ∨ f4 C2: f3 ⇔ (f8 ∨ f9 ∨ f10 ∨ f11)
C3: (f5 Y f6 Y f7) ⇔ (f4 ∨ f9 ∨ f10) C4: (f12 ∨ f13) ⇒ f11

C5: ¬(f5 ∨ f6 ∨ f7) ⇔ ¬(f4 ∨ f9 ∨ f10) C6: f13 ⇔ (f14 Y f15)
C7: (f9 ∧ ¬f7) ⇔ ((f16 Y f17) ∧ (f18 Y f19)) C8: ¬f13 ⇔ ¬(f14 ∨ f15)
C9: ¬(f9 ∧ ¬f7) ⇔ ¬(f16 ∨ f17 ∨ f18 ∨ f19).

C1 ensures that at least one business function is chosen in q1. C3 and C5 state
that exactly one type of shipment is to be selected as Carrier’s usage in q2, if and
only if at least one phase among Payment, Carrier Appointment and Freight in
Transit is selected in q3, otherwise no shipment type can be chosen. Indeed,
as mentioned before, TL, LTL and SP affect the above process phases, so it
makes no sense to decide on the shipment type unless a phase that is affected
by the Carrier’s Usage is selected. Likewise, as per C7 and C9, exactly one role
between Supplier and Carrier is to be responsible for Pickup (q6), and exactly
one role between Buyer and Carrier is to be responsible for Delivery (q7), if
and only if Carrier Appointment is selected and one of TL and LTL is true.
This is because the Pickup and Delivery appointments are handled during the
Carrier Appointment phase of the VICS process and only in case of TL- or
LTL-shipments.

Constraints can also be defined over questions (e.g., an OR question is a
question whose facts are all in an OR relation). However in the end they need to
be traced back to the level of facts. From the above list of constraints it is easy
to derive that q1 is always an OR question, while q3 and q4 are OR questions
and q2, q5, q6 and q7 are XOR questions, provided some conditions are met. For
example, q5 is an XOR question as exactly one Manager is to be chosen for Loss
or Damage Claim, provided Loss or Damage Claim has been set to true in q4.

Dependencies and constraints are not overlapping concepts. Rather, they
complement each other. An example is shown by C4: (f12∨f13) ⇒ f11 and the
full dependency that q4 has on q3. Here the behavior we want to capture is that
Claims can be handled only if Freight Delivered ‘has been’ selected, viz., f12

and f13 can be set to true only if f11 has been set to true before. Similarly, due
to C6: f13 ⇔ (f14 Y f15) and q5 which indirectly depends on q4, exactly one

4 Y indicates the exclusive disjunction (XOR), i.e., f1 Y f2 ⇔ (f1 ∨ f2) ∧ (f1 6= f2).
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Manager for Loss of Damage Claim is to be selected in q5, but only after Loss
or Damage Claim (f13) ‘has been’ set to true in q4.

Because of the domain constraints, answering certain questions can lead to
other questions becoming constrained or irrelevant. This suggests that questions
should be ordered such that the most discriminating questions are asked first.
This way, the configuration space is pruned and the total number of questions
that need to be answered is minimized. For example, q1 and q3 in the exam-
ple are highly discriminating questions and it makes sense that they are posed
before the other ones. However, dependencies can be defined based on other
considerations. For example, in some contexts, dependencies may be defined
based on the role of the user(s) that will configure the system. For example, a
logistics expert can be first posed questions related to Logistics, while a mer-
chandise expert can be first asked questions related to Product Merchandising.
Alternatively, each user can be assigned a subset of questions according to their
expertise (distributed configuration).

The framework relies on boolean encodings of the space of possible an-
swers. This encoding enables the use of efficient techniques to incrementally
prune the space of answers, so that questions that become constrained or irrel-
evant due to answers given to previous questions, can be simplified or skipped.
On the other hand, this boolean encoding can be a limitation in some scenar-
ios. While enumerated types can be encoded as a collection of boolean val-
ues (and this encoding can be made transparent with appropriate tool support),
this approach is not applicable for non-enumerated types (e.g. integers, strings).
As a tradeoff, the framework supports the definition of questions with non-
enumerated types as their space of possible answers. For example, one can de-
fine a question “number of carriers?” of type integer and use this as the answer
to a question. However, this configuration parameter can not be used in the do-
main constraints. Alternatively, if a discretization of this configuration parame-
ter is defined (e.g. ”one carrier”, ”between 2 and 5 carriers”, and ”more than 5
carriers”), each of these discretized values can then be mapped to a fact that can
be used to express domain constraints.

2.3 Actions

To propagate configuration decisions to the derivation of an individualized model
or system from a generic one, we associate facts to actions. Actions denote mod-
ifications to be performed on the system or model to be configured. For exam-
ple, in the field of software product families, such an action could correspond
to removing a code fragment from a software asset. Meanwhile, in the area of
business process model configuration, an action could be associated to adding
or removing a fragment of the model.
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Figure 4 shows an overview of the order fulfillment process model.5 For
readability purposes, the model has been divided into a set of configurable pro-
cess fragments, where fragments are delimited by dashed boxes and identified
by the facts of Figure 2.

Freight in Transit

Freight Delivered

Product Merchandising

Freight Tender

Payment

Ordering

cb.214

Carrier Appointment

f1

f2

f8

f9

f4
f10

f11

Logistics

f3

f5

f16 f17 f18 f19

f16 f17 f18 f19

f6

f7

TL LTL

SP

f15 f12

f13

f14

f7 f5, f6

f7 f5, f6

Fig. 4. The order fulfillment process model associated to the facts of Figure 2.

The four main process fragments refer to the Business Functions – Product
Merchandise, Ordering, Logistics and Payment – that the process can imple-

5 A full representation of this process using the YAWL notation [1] can be found at http:
//www.fit.qut.edu.au/˜dumas/ConfigurationTool.zip
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ment. As such, their boxes encompass all the other configurable fragments. For
example, Logistics (box “f3”) contains the fragments for its sub-phases, i.e.
Freight Tender (“f8”), Carrier Appointment (“f9”), Freight in Transit (“f10”)
and Freight Delivered (“f11”). By associating to each of these facts an action
that corresponds to the removal of the affected process fragments, setting f3 to
false would imply to remove Logistics as well as all the fragments therein. This
complies with C2, which has been built to reflect this ‘parent-child’ relation that
Logistics holds with its sub-phases.

Carrier Appointment, in turn, includes a fragment for handling each type
of shipment (“f5”,“f6”,“f7”) and each role that can be responsible for Pickup
(boxes “f16” and “f17”) and for Delivery (boxes “f18” and “f19”). The last four
fragments occur only within the boxes for “f5” and “f6”, as only for TL- or
LTL-shipments the Pickup and Delivery details can be decided. Since all the
above facts are mapped to fragments within Logistics, if at least one of them is
chosen in the configuration process, then Logistics cannot be removed anymore
(i.e. f3 must be set to true). At the level of facts, these interactions are described
by constraints C3, C5, C7 and C9. Similar considerations hold for the remaining
process fragments and constraints.
The following section formalizes the notions discussed above. The formaliza-
tion allows us to convey the ideas in an unambiguous way and will be used as a
basis for the implementation presented in Section 5.

3 Configuration Models

We use the concept of Configuration Model (CM ) to directly capture variants
of a system or model in terms of facts, questions and their dependencies. Given
a configuration model, a configuration is the result of assigning values to each
fact by answering the questions. Abstracting away from questions that are not
encoded in boolean form (and that are therefore not used to capture domain
constraints), we can view a configuration as a valuation of facts that complies
with the domain constraints. Below we formally capture this intuition.

Definition 1 (Configuration Model). A configuration model is a ten-tuple CM =
(F, FD, FM , Q,Act ,mapQF ,mapFA, preF , preQ,CS ) where:

– F is a finite, non-empty set of facts,
– FD ⊆ F is the default valuation, i.e. the set of facts whose default is true,
– FM ⊆ F is the set of mandatory facts,
– Q is a finite (non-empty) set of questions,
– Act is a finite set of actions,
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– mapQF ∈ Q → P(F ) \ {∅}6 is a function mapping a question onto a set of
facts, such that

⋃
q∈Q mapQF (q) = F ,

– mapFA ∈ F → P(Act) is a function mapping a fact onto a set of actions,
such that

⋃
f∈F mapFA(f) = Act ,

– preF ∈ F → P(P(F )) \ {∅} is a function mapping a fact onto a set of sets
of facts, where for any f ∈ F , preF (f) is the set of preconditions of f , i.e.,
each F ′ ∈ preF (f) represents a precondition. A precondition is satisfied if
all its facts are set. Only one precondition needs to be satisfied to set f . There
is always at least one precondition (preF (f) 6= ∅), hence a situation with
no order dependencies is represented by the empty precondition (preF (f) =
{∅}). Moreover, function preF needs to satisfy the following well-formedness
rules:

1. ∀f∈F ∀r,p∈preF (f) (r ⊆ p ⇒ r = p), i.e. no redundancies,
2. @G∈P(F )\{∅} ∀f∈G ∀F ′∈preF (f) F ′ ∩ G 6= ∅, i.e. no undesired circular

dependencies,
– preQ ∈ Q → P(P(Q)) \ {∅} is a function mapping a question onto a set

of sets of questions. For any q ∈ Q, preQ(q) is the set of preconditions of q.
Each precondition corresponds to a set of questions that need to be answered
before q is answered, but it is sufficient to satisfy at least one precondition.
There is always at least one precondition, hence a situation with no order
dependencies is represented by the empty precondition. Moreover, function
preQ needs to satisfy the following well-formedness rules:

1. ∀q∈Q ∀r,p∈preQ(q) (r ⊆ p ⇒ r = p), i.e. no redundancies,
2. @G∈P(Q)\{∅} ∀q∈G ∀Q′∈preQ(q) Q′ ∩ G 6= ∅, i.e. no undesired circular

dependencies,
3. ∀q∈Q ∀Q′∈preQ(q) ∀f∈mapQF (q) ∀F ′∈preF (f) F ′ ⊆

⋃
q′∈Q′ mapQF (q′), i.e.

facts dependencies must be preserved at the level of questions,
– CS ⊆ P(F ) is the set of the allowed valuations of the facts in F , such that

FD ∈ CS , i.e. the default valuation is always allowed.

Elements of CS are those facts valuations that satisfy all the constraints, where
only the facts asserted are present in each element. Hence, if a fact is not con-
tained in a clause of CS , it follows that the fact is negated in that valuation. For
example, if F = {f1, f2, f3, f4} and {f1, f2, f4} ∈ CS is a facts valuation, then
in the latter all the facts but f3 are set to true.

As the default valuation must always be allowed, set CS is non-empty. If no
constraints are defined, CS = P(F ). A situation where CS = {F}, means that
all the facts must be asserted (upper-bound case), while CS = {∅} corresponds
to negating all the facts (lower-bound case).

6 P indicates the power set, i.e., each question is mapped onto a non-empty set of facts.



14 M. La Rosa et al.

We say a fact f is meaningful if it truly represents a variation, i.e. if it al-
lowed by the constraints to assume both values true and false . Formally, if there
exist F ′

1, F
′
2 ∈ CS such that f ∈ F ′

1 and f 6∈ F ′
2. If a fact is not meaningful, it

should not be included in the model, as it would represent a commonality, which
is a stable element of the configurable domain.

Actions depend on the type of the system or model to be configured and the
language used for its description. For example, if they refer to the configuration
of software code trunks/features, the programming language needs to be taken
into account. Likewise, if actions refer to process/data models, the modeling no-
tation used for the representation of such models needs to be considered. This is
important as actions (and their relations) must not violate the syntactic and se-
mantic rules of the description language. Since we aim at providing a language-
independent formalization of variability, a detailed description of actions is left
out. In separate work [19] we have explored the use of actions for business pro-
cess models configuration (further details can be found in Section 7).

The set of preconditions for facts and questions are used to specify the order
dependencies as follows.

Definition 2 (Order Dependencies). Let CM = (F, FD, FM , Q,Act ,mapQF ,
mapFA, preF , preQ,CS ) be a configuration model and f, f ′ and q, q′ pairs of
facts, resp. questions:

– f partially depends on f ′ iff ∃F ′∈preF (f) f ′ ∈ F ′,
– f fully depends on f ′ iff ∀F ′∈preF (f) f ′ ∈ F ′,
– q partially depends on q′ iff ∃Q′∈preQ(q) q′ ∈ Q′,
– q fully depends on q′ iff ∀Q′∈preQ(q) q′ ∈ Q′.

For a fact or question, its set of preconditions represents the disjunction of pre-
conditions being conjunctions of the dependencies. In other words, a fact can
be set (to true or false), or a question can be answered, only if at least all the
facts in one of its preconditions have already been set (to true or false), or all
the questions in one of its preconditions have already been answered. Thus facts
(questions) in the same precondition are in an AND relation, while preconditions
are in an OR relation.

Example 1. Let preF (f1) = {{f2, f3}, {f2, f4}} be the set of preconditions of
fact f1. Then either f2 and f3 or f2 and f4 have to be set before f1 can be set.
We can observe that f2 must be set in any case before f1, since it appears in all
the clauses of preF (f1). This is a full dependency. On the other hand, there is a
partial dependency from f1 to f3 and from f1 to f4, as f3 and f4 do not belong
to each clause of preF (f1).
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As per the definition, for any fact f and question q, both preF (f) and preQ(q)
are not the empty set. Thus, if we want to model a situation where no depen-
dencies are defined for a fact f or question q, then preF (f) or preQ(q) should
contain only the empty set.

The first well-formedness rule on preF and preQ (see Definition 1) is used to
avoid redundancies among preconditions. Accordingly, if a precondition con-
tains the empty set it cannot contain other sets, since all the sets would include
the empty one.

Example 2. A situation where preF (f1) = {{f2}, {f2, f3}} is not allowed
since the first clause is a subset of the second. Since all the preconditions are
in an OR relation, it does not make sense for f1 to depend on f2 OR on (f2 AND
f3), as the latter set of dependencies implies the former. In such cases only one
clause should be selected.

The second well-formedness rule on preF and preQ (see Definition 1) avoids
‘undesirable circular dependencies’. These occur whenever, for each fact (or
question) of a given set, all its preconditions contain at least one element of the
set itself.

Example 3. A case where preF (f1) = {{f2}}, preF (f2) = {{f3}} and preF (f3) =
{{f1}} (Figure 5 - a), or a case where preF (f1) = {{f2}}, preF (f2) = {{f3}}
and preF (f3) = {{f1}, {f2}} (Figure 5 - b) are not allowed according to Def-
inition 1. The reason is that there exists a G = {f1, f2, f3} ⊆ F such that for
all f ∈ G, all the clauses in preF (f) contain at least a fact in G. This violates
the second well-formedness rule on preF given in Definition 1 because of an
undesirable cycle. Such undesirable cycles can be caused by both partial and
full dependencies.

f1 f3

f2

f4

denied alloweddenied

a) b) c)

allowed

d)

f1 f3

f2

f1 f3
q1 q2

f2 f4

q1

q3

q1 q1 q2

allowed denieddenied

q1
q2

q3

q2

q3

q2

q3

mapping question-fact

f1 f3

f2

x         y
x         y

x partially depends on y
x fully depends on y

Fig. 5. Examples of circular dependencies over facts and questions.
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Not all circular dependencies are undesirable, though. For example, a loop cre-
ated by a set G of facts (questions) can be allowed if there exists an entry point
to the loop, i.e. an element of the given set which satisfies all the preconditions
one by one. This entry point is a fact (question) with at least one precondition
that contains only elements not in this set G.

Example 4. A combination where preF (f1) = {{f2}, {f3}, {f4}}, preF (f2) =
{{f1}, {f3}}, preF (f3) = {{f1}, {f2}}, preF (f4) = {∅} (Figure 5 - c) is al-
lowed as f4 does not have dependencies on the set {f1, f2, f3} and thus it first
enables f1, and then f2 and f3 in any order. We cannot find a G ⊆ F such that
the second well-formedness rule on preconditions does not hold.

The only difference between the definitions of preF and preQ is the addition
of a third well-formedness rule to the latter (see Definition 1), so as to move
dependencies over facts to the level of questions without violating them. Given
a question q, the formula checks for the existence of preconditions F ′ on the
facts of q. If these exist, it forces each precondition Q′ of q to contain a set
of questions whose facts cover all the facts in all the preconditions F ′. These
dependencies that q inherits from its facts can be extended by adding further
dependencies directly at the granularity of questions, provided they comply with
the first two conditions. This is possible since

⋃
q′∈Q′ mapQF (q′) is defined as

a superset of all preconditions F ′.

Example 5. Consider a situation where mapQF (q1) = {f1, f2}, mapQF (q2) =
{f3, f4}, mapQF (q3) = {f3}, preF (f1) = {{f3}} and preF (f4) = {{f2}}
(Figure 5 - d). Here f3 is a shared fact between q2 and q3. If we lift facts depen-
dencies to the level of questions, we see that q3 does not inherit any dependen-
cies as it is mapped to f3 only, q2 fully depends on q1 by means of f4, while there
are four possible sets of preconditions for q1, i.e. preQ(q1) = {{q2}, {q3}} or
{{q3}} or {{q2, q3}} or {{q2}}. All these sets meet the third well-formedness
rule as f3 – the only fact f1 depends on – is contained in at least one question
q′ ∈ Q′ for each Q′ ∈ preQ(q1). However for the second rule, only the first two
alternatives are valid, as they do not create undesirable circular dependencies
between q1 and q2.

4 Generation of Interactive Questionnaires

This section completes the formal description of the approach presented so far
by defining the configuration process for a CM . This way we provide executable
semantics for the configuration model defined in Definition 1. In a configuration
process questions are dynamically posed to users according to the order depen-
dencies, and answers can be given only if these comply with the constraints.
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We first define some concepts to work with facts valuations, such as set of
facts valuations, answer, state and state space. These concepts are needed to
specify when a question can be posed to users. In particular, an answer is any
facts valuation where only a subset of facts (the ones that relate to a question) are
set, while a state of CM is identified by a facts valuation and a set of answered
questions.

Definition 3 (Set of fact valuations, Answer, State, State space). Let CM =
(F, FD, FM , Q,Act ,mapQF ,mapFA, preF , preQ,CS ) be a configuration model:

– V = F → {true, false, unset} is the set of all facts valuations, independently
of set CS ,

– a ∈ V is an answer, i.e. a facts valuation where all f ∈ F for which a(f) 6=
unset are set,

– s = (vs, qs) is a state of CM if and only if vs ∈ V and qs ⊆ Q, where qs is
the set of questions answered and vs is the valuation of the facts thus far,

– SCM = V × P(Q) is the state space of CM .

Elements of V are facts valuations, i.e. “answers” (a) as well as “parts of state”
(vs). Hereafter SCM is shortened to S whenever the configuration context is
clear.

In order to perform operations on facts valuations, we define the following
notation.

Definition 4 (Facts Valuation Notation). Let CM = (F, FD, FM , Q,Act ,mapQF ,
mapFA, preF , preQ,CS ) be a configuration model and let s = (vs, qs) ∈ S be
a state of CM and a ∈ V an answer:

– t(s) = t(vs) = {f ∈ F | vs(f) = true} is the set of facts that are true in
state s,

– f(s) = f(vs) = {f ∈ F | vs(f) = false} is the set of facts that are false in
state s,

– u(s) = u(vs) = {f ∈ F | vs(f) = unset} = F \ (t(s) ∪ f(s)) is the set of
facts that are unset in state s. t(vs), f(vs) and u(vs) can be applied to any
valuation vs ∈ V , thus to any answer a ∈ V :

– t(a) = {f ∈ F | a(f) = true}, is the set of facts set to true by answer a,
– f(a) = {f ∈ F | a(f) = false}, is the set of facts set to false by answer a,
– u(a) = F \ (t(a) ∪ f(a)), is the set of facts left unset by answer a,
– compl(s) = compl(vs) = {f ∈ F | vs(f) = true ∨ (f ∈ FD ∧ vs(f) 6=

false)} is the set of facts set to true through answers, merged with those facts
left unset which are true by default,
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– for x, y ∈ V and f ∈ F :

x⊕ y(f)


true, if y(f) = true ∨ (x(f) = true ∧ y(f) = unset),
false , if y(f) = false ∨ (x(f) = false ∧ y(f) = unset),
unset , otherwise.

For each state a set of valid questions is presented to the user. For a question to
be valid in a state (valid(q, s)), two conditions must hold: i) the question has
not been answered yet, and ii) at least one of its preconditions is satisfied.

Users can answer one valid question at a time. An answer to a question in a
certain state is valid (valid(a, q, s)) if and only if all the facts within that ques-
tion are set and the outcome of the answer (outcome(a, q, s)) results in a valid
state (valid(s)), i.e. a state whose facts valuation complies with the constraints
on facts. Also, since facts can appear in more than one question, those already
set in previous questions (if they exist) must keep their values in the answer, i.e.
it is possible to reconfirm answers.

Definition 5 (Valid answer). Let CM = (F, FD, Q,Act ,mapQF ,mapFA, preF ,
preQ, FM ,CS ) be a configuration model and let s = (vs, qs) ∈ S be a state of
CM , q ∈ Q a question, and a ∈ V an answer:

– valid(q, s) = q 6∈ qs ∧ ∃Q′∈preQ(q) Q′ ⊆ qs , i.e., question q may be asked if
it has not been answered yet and at least a group of preceding questions has
been answered,

– outcome(a, q, s) = (vs⊕a, qs∪{q}), i.e. the state resulting after answering
a to question q in state s,

– valid(s) = ∃F ′∈CS (t(s) ⊆ F ′ ∧ f(s) ∩ F ′ = ∅), i.e. the facts valuation of
the state has to comply with the constraints on facts,

– valid(a, q, s) = valid(q, s) ∧ t(a)∪f(a) = mapQF (q) ∧ ∀f∈mapQF (q)\u(s)

a(f) = vs(f) ∧ valid(outcome(a, q, s)), i.e. a valid answer to a valid
question has to set all the facts of the question without changing the value of
the facts already set, and the given valuation must result in a valid state.

The valuation resulting from an answer has to be checked against set CS , so as
to verify if it complies with the constraints defined on facts’ values. In this way
we ensure it is always possible to complete the current facts valuation by setting
any remaining fact still unset.

By joining the possible states of a configuration process, we can now build
a labeled transition system (LTS ) on top of CM . This is later used to formally
define the concept of configuration.

Definition 6 (Labeled Transition System of CM). Let CM = (F, FD, FM ,
Q,Act ,mapQF ,mapFA, preF , preQ,CS ) be a configuration model and let S
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be the state space of CM and V the set of facts valuations. The labeled transi-
tion system of CM is a five-tuple LTS = (Sv, L, T, sinit, SF ) where:

– Sv = {s ∈ S | valid(s)} is the set of states of LTS , corresponding to the
valid states of CM ,

– L = {(a, q) ∈ V × Q | t(a) ∪ f(a) = mapQF (q)} is the set of transition
labels of LTS , where each element of L is a pair composed of an answer and
a question of CM ,

– T = {(s, (a, q), s′) ∈ Sv ×L×Sv | valid(a, q, s) ∧ s′ = outcome(a, q, s)}
is the set of transitions of LTS , where for each t = (s, (a, q), s′) ∈ T
source(t) = s and target(t) = s′,

– sinit = ({(f, unset) | f ∈ F}, ∅) ∈ Sv is the initial state of LTS , i.e. the
state in which all the facts are unset and all the questions are unanswered,7

– SF = {(vs, qs) ∈ Sv | (f ∈ FM ⇒ vs(f) 6= unset) ∧ valid(s∗)} is the set
of final states of LTS , where s∗ = (vs∗, qs) ∈ S with t(vs∗) = compl(vs)
and f(vs∗) = F \ t(vs∗). A final state is a state where all the mandatory facts
have been set, and the facts still unset, if these exist, can take their default
value without violating the constraints on facts.

A configuration process always starts from an initial state where no questions
are answered and all the facts are unset, and terminates in a final state where
all the questions have been answered, or all the mandatory facts have been set
and the remaining unset facts can take their defaults. As shown in the definition
of final state of the labeled transition system, this is possible only if the facts
valuation that results after applying the defaults complies with the constraints
on facts’ values, i.e. if it does not violate the configuration process so far.

Example 6. Consider a configuration model where mapQF (q1) = {f1}, mapQF

(q2) = {f2, f3, f4, f5}, FD = {f2, f3}, FM = {f1}, and the constraint f1 ⇒
((f2 ∧ f4) Y (f3 ∧ f5)). It follows that CS = {{f1, f2, f4}, {f1, f3, f5}, ...},
where the remaining elements of CS are the elements of P({f2, f3, f4, f5}),
thus including FD. If f1 is set to true by answering q1, although all the manda-
tory facts have been set, the default valuation cannot be applied for the remain-
ing unset facts in q2, since only either f2 and f4 or f3 and f5 can assume value
true. Hence, we cannot find an F ′ ∈ CS such that {f1, f2, f3} ⊆ F ′. On the
other hand, if we set f1 to false we reach a final state straightaway, where all the
mandatory facts have been set and the remaining ones can take their default.

A configuration trace of CM is a sequence of transitions of LTS , linking the
initial state to a final state.

7 sinit is valid by definition, since t(sinit) = f(sinit) = ∅.
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Definition 7 (Configuration Trace of CM ). Let CM = (F, FD, FM , Q,Act ,
mapQF ,mapFA, preF , preQ,CS ) be a configuration model, V the set of facts
valuations, S the state space of CM and let LTSCM = (Sv, L, T, sinit, SF ) be
its labeled transition system:

– σ = (t1, ..., tn) ∈ T+ is a trace of LTS iff target(ti) = source(ti+1) for each
1 6 i 6 n− 1, where firsts(σ) = source(t1) and lasts(σ) = target(tn),

– valid(σ) = (firsts(σ) = sinit ∧ lasts(σ) ∈ SF ), i.e. a trace is valid iff
it joins the initial state with a final state. Each valid trace is a configuration
trace of CM .

A configuration of CM is the result of any configuration trace of CM , i.e. the
facts valuation reached with the last state of a configuration trace, completed
with default values. Therefore, a configuration always complies with the con-
straints.

Definition 8 (Configuration of CM , Configuration Space of CM ). Let CM =
(F, FD, FM , Q,Act ,mapQF ,mapFA, preF , preQ,CS ) be a configuration mo-
del, V the set of facts valuations, S the state space of CM , LTSCM = (Sv, L, T,
sinit, SF ) its labeled transition system, and let σ ∈ T+ be a configuration trace
of CM :

– cf σ ∈ V is a configuration of CM resulting from σ, iff t(cf σ) = compl
(lasts(σ)) and f(cf σ) = F \ t(cf σ),

– Cf CM = {cf σ ∈ V | (σ ∈ T+) ∧ valid(σ)} is the configuration space of
CM , i.e. the set of all the possible configurations of CM .

We now show that a configuration process can always terminate in a final state,
since i) the state space is finite, and ii) for all the valid non-final states, there
always exists at least one valid question whose answer leads to another valid
state, taking the process closer to a final state.

In particular, the following theorem proves that the definition of preQ and
CS are sufficient to avoid any deadlock during the configuration process. This
is because undesirable circular dependencies are excluded a priori in preQ, and
only those facts valuations that comply with the constraints are represented in
CS .

The theorem is followed by a corollary that shows the application of the
result. Before presenting the theorem, we first introduce a shorthand notation.

Definition 9 (Trace Notation). Let CM = (F, FD, FM , Q, Act , mapQF ,
mapFA, preF , preQ,CS ) be a configuration model, V the set of facts valua-
tions, S the state space of CM and let LTSCM = (Sv, L, T, sinit, SF ) be its
labeled transition system. Given two valid states of LTS s and s′, we write
s σ−→ s′ iff σ ∈ T+ is a trace of LTS such that firsts(σ) = s and lasts(σ) = s′.
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Theorem 1. Let CM = (F, FD, FM , Q,Act ,mapQF ,mapFA, preF , preQ,CS )
be a configuration model, V the set of facts valuations, S the state space of CM
and let LTSCM = (Sv, L, T, sinit, SF ) be its labeled transition system. For any

s ∈ Sv, either s ∈ SF or ∃q∈Q ∃a∈V ∃s′∈Sv s
(s,(a,q),s′)−−−−−−→ s′ [(s, (a, q), s′) ∈ T ].

Proof. See Appendix.

Corollary 1 (Configuration processes always terminate). For any configura-
tion model CM = (F, FD, FM , Q,Act ,mapQF ,mapFA, preF , preQ,CS ) and
its LTSCM = (Sv, L, T, sinit, SF ), and for any state s ∈ Sv \ SF for which
there exists a trace σ ∈ T+ such that sinit

σ−→ s, there exists a τ ∈ T+ and
an s′ ∈ SF such that s τ−→ s′, i.e. each configuration process can reach a final
state.

Although a fact is meaningful at the beginning, once the configuration process
has begun, at a certain state it may turn out from the constraints that such fact can
only take one value of the two. In this case an user does not have the freedom to
choose, as the value to be given is inferred by the constraints. We call this type
of fact forceable.

When this situation occurs for all the facts of a question, the question can
have only one answer. Moreover, since a fact can appear in multiple questions,
it may happen at a certain state that all the facts of a valid question have already
been answered. Again, such a question can take only one possible answer. We
call these questions skippable, as they can be automatically answered and thus
skipped by a supporting implementation (e.g. a questionnaire tool).

Definition 10 (Forceable Fact, Skippable Question). Let CM = (F, FD, FM ,
Q,Act ,mapQF ,mapFA, preF , preQ,CS ) be a configuration model, and let
s ∈ S be a valid state of CM , f ∈ F a fact and q ∈ Q a question:

– forceable(f, s) = f ∈ u(s) ∧ ∀F1,F2∈CS [(t(s) ⊆ F1 ∩ F2 ∧ f(s) ∩
(F1 ∪ F2) = ∅) ⇒ F1(f) = F2(f)], i.e. f assumes the same value in all the
facts valuations still possible,

– skippable(q, s) = valid(q, s) ∧ ∀f∈mapQF (q) [f 6∈ FM ∧ (forceable(f, s) ∨
f 6∈ u(s))], i.e. a question can be skipped iff none of its facts is mandatory,
and all its unset facts can have exactly one value or all its facts have been
previously set.

If a question is skippable the only possible answer is valid, since this valua-
tion always complies with the constraints. In fact the forceability of a fact is
determined by the set CS , whereas if all the facts have been previously set, the
answer is already included in the last state s, which is valid by assumption.
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5 Tool Support

In order to establish the practical feasibility of our approach, we have imple-
mented a tool for the dynamic generation of interactive questionnaires. The fea-
tures of this tool, called Quaestio, are introduced in the first part of this section.8

The second part shows how the tool is used to configure the order fulfillment ex-
ample of Section 2.

5.1 Prototype Implementation

Quaestio is a Java application that guides users through a set of questions given a
configuration model as input. The graphical interface comprises a main window
showing a list of Valid Questions, a list of Answered Questions and a Ques-
tion Inspector. When a question is picked from one of these lists, the Question
Inspector shows the question’s details: the list of facts for the question, the de-
pendencies on other questions, and guidelines in natural language to configure
the question. In a separate window, a Fact Inspector shows detailed informa-
tion for each fact: its default value, whether it is mandatory, the constraints that
bind the fact, the dependencies on other facts, the level of impact on the sys-
tem or model to be configured, and specific guidelines to configure the fact. A
screenshot of the tool with the Fact Inspector is shown in Figure 6.

The input format is described by an XML schema. Figure 7 shows the rep-
resentation of the schema as UML class diagram.9 Here each class maps to a
complex type in the schema, the aggregation relation maps to the composition
of complex types, and the occurrence constraints map to the element cardinality.

We encoded each of the sets in Definition 1 with a complex type, with the
exception of sets FD and FM – encoded with a boolean element contained in the
fact’s type (FactType) – and set CS . Preconditions for facts and questions are
encoded with complex types (preFElementType and preQElementType)
consisting of a list of references (possibly empty) to facts or questions. Each pre-
condition is an element of the respective set of preconditions (PreFType and
PreQType), which at least contains one precondition. Similarly, questions are
mapped to facts via a complex type (MapQFType). A string element (contained
in the root element’s type CModelType) is used to store constraints expressed
as conjunctions of boolean formulas. Other features of Quaestio not detailed
here include the ability to present questions whose answers may be integers,

8 The tool distribution can be downloaded from http://sky.fit.qut.edu.au/

˜dumas/ConfigurationTool.zip
9 The diagram has been generated with the Eclipse Modeling Framework, http://www.
eclipse.org/modeling/emf
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Fig. 6. A screenshot of Quaestio with the Fact Inspector.

floats or strings, though no checks are performed on such questions and they are
orthogonal to any constraint.

Once a model is loaded, Quaestio shows the set of initial valid questions.
Next, for each answer given, the tool dynamically calculates the next valid state
and updates the lists of valid and answered questions. The configuration process
completes when all the questions have been answered, or at least all the manda-
tory facts have been set and the remaining ones can take their defaults without
violating the constraints. A (partial) configuration can be exported to XML as
a list of facts, keeping track of the values that have been set and whether they
deviate from the defaults.

A separate XML format is used to map, in a language-independent way, an
action to a set of facts and to a set of variation points of the system or model
to be configured. The XML schemas for the input, output and mapping format,
and the files for the application example, are available in the tool distribution.

The formal framework proves that a few syntactic checks on the dependen-
cies between facts and questions are enough to ensure deadlock-free configu-
ration processes (see Corollary 1). This result ultimately enables an efficient
implementation of the tool, which only needs to check that the configuration
model satisfies the well-formedness rules.

For efficiency reasons, we decided not to build the state space of the ques-
tionnaire (as defined in Section 4). Instead, we opted for a dynamic generation
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of the state space. For each answer given, the next state is calculated by scan-
ning only those valid questions that are still unanswered. For each of them, we
check if at least one precondition can be satisfied (we know there will be at least
one). If so, a question is put into the Valid Questions list if it is not skippable,
otherwise it is added straight to the Answered Questions list.

Fig. 7. The UML representation of the XML schema for the input file.

In order to check domain constraints, to detect skippable questions, and to
prune the space of answers, the tool implementation embeds a propositional
logic calculator10 based on Shared Binary Decision Diagrams (SBDDs) [11,
21]. SBDDs are canonical forms of boolean formulas for which there are effi-
cient analysis algorithms. They are based on the classical BDDs with the advan-
tage of being always cheaper in size and time computation.

The calculator builds an SBDD in memory from the conjunction of con-
straints c, and returns a polynomial representation pr(c) in conjunctive normal

10 The calculator can be downloaded from http://www-verimag.imag.fr/

˜raymond/tools/bddc-manual
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form. If the negation of c is a tautology, the “always-false formula” is returned
as output (i.e. pr(c) = false), meaning the constraints are not satisfiable. This
output is interpreted by Quaestio to check for satisfiability of the constraints
before starting the configuration. Similarly, the tool detects if a fact is not mean-
ingful. The output is also used to evaluate the type of questions. For example,
(pr(c) ⇒ xor(mapQF (q)) = true indicates that q is an XOR question.

At configuration time, an SBDD is constructed from the conjunction of
pr(c) and each potential answer given by the user: so long as the conjunction
yields false , the answer is not valid and the Answer button is kept disabled. In
this way the tool prevents users from entering responses which would violate
the constraints. For each valid answer that is fed in Quaestio, a new SBDD is
constructed by updating pr(c) with the values of the facts that have been set.
This avoids to compute the canonical form of the constraints every time from
scratch, improving the overall response-time. After an answer, some facts may
become forceable and thus some questions may be skippable. This condition is
tested against pr(c) in a way similar to the evaluation of the type of questions.
For example, (pr(c) ⇒ ¬f) = true indicates that f is forceable to false .

Performance measurements of the tool’s scalability are provided in Sec-
tion 6.2. The main features of Quaestio are:

– decision support: by means of guidelines, constraints and impact-level;
– dynamic checking of answers: answers can be given only if they comply with

the constraints;
– default answer: default values can be given to all the facts of a question if:
• the value of those facts that have already been set or that are forceable, does

not deviate from the default, and
• the resulting valuation is valid given the current state;

– fact’s value preservation: facts that occur in more than one question are set the
first time and then preserve their value in subsequent questions they appear
in;

– forceable facts: such facts are disabled and show their forced value;
– skippable questions: such questions are automatically answered;
– automatic completion: upon request the system can automatically complete

the configuration process whenever all the mandatory facts have been an-
swered and default values can be used for the remaining ones.

– question rollback: each answered question can be rolled back to the state be-
fore the answer.

The rollback operation was implemented with the purpose of preserving
the answering order. When a question is rolled back, the current state is set to
the one before answering the question, and hence, all the questions that were
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answered thereafter are rolled back too. Moreover, a fact occurring in multiple
questions is kept forced to the value it was set the first time, until all its questions
are rolled back.

It is possible to implement a selective rollback that ignores the answering
order, by suppressing the dependencies of the answered questions. In this way
we could, e.g., roll back q4 without rolling back q5, although the latter has a
dependency on the former. The new state, with q5 in qs but not q4, is still a valid
state, since q5 has no dependencies anymore.

If a question being selectively rolled back had an interplay with some ques-
tion already answered, its facts might be forced to assume an exact value. For
example, if q5 is answered with at least one of its facts set to true (i.e. by choos-
ing a Manager for Loss or Damage Claim), q4 will be rolled back with f13 forced
to true, as per C6.

5.2 Sample Configuration Process

This section shows a sample configuration process for the order fulfillment pro-
cess model of Figure 4. For convenience, we introduce the notation aqn

m to indi-
cate the valuation that is given by the answer m to the facts of question n (where
the remaining facts that are not set by the answer are left out). Also, the symbols
T and F are shorts for a true, resp. for a false, valuation.

Assume, for example, that we want to configure the model to handle SP
shipments and to support only Loss or Damage Claims managed by the Sup-
plier, and that we are not interested in the Payment phase of the process as it
will be outsourced. These can be common choices among the stakeholders of a
supply-chain management company interested in implementing the VICS EDI
Framework.

Once the corresponding configuration model has been loaded into Quaestio,
the valid questions are shown in the Valid Questions list. These are q1 and q3,
since they have no dependencies (Figure 8). The initial state is s1 where no
answers have been given, i.e. qs(s1) = ∅. We decide, for example, to answer q3

– Which Logistics phases have to be implemented? with its default answer. This
corresponds to giving answer aq3

1 = {(f8, T), (f9, T), (f10, T), (f11, T)}, since
all the facts of q3 are true by default (shown by a green T© next to the fact’s
description).

With a1 we reach state s2 with qs(s2) = {q3}. q2 is added to the valid
questions due to its partial dependency on q1 or q3. Assume we choose q1

from the Valid Questions. From the Question Inspector we can see that f3

has been forced to true and has been grayed out (Figure 9). The system has
reacted to a1 by setting f3 in order to comply with C2. We answer q1 with
aq1

2 = {(f1, T), (f2, T), (f3, T), (f4, F)} so as to exclude Payment.
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Fig. 8. State s1: the only valid questions are q1 and q3.

After a2, we reach s3 with qs(s3) = {q3, q1}. Questions q4, q6 and q7 are
added to the valid ones as they depend on q3. Assume we pick q2 – What is
the expected Carrier’s Usage?. Due to C3 and to the answers given so far, this
question can only be answered if exactly one of its facts is set to true (the answer
button is disabled). Also, this question needs to be explicitly answered as all its
facts are mandatory (indicated by a red M© next to the fact’s description). We
select Single Package and aq2

3 = {(f5, F), (f6, F), (f7, T)} is given.
The next state is s4 with qs(s4) = {q3, q1, q2}. Although no questions de-

pend on q2, after answering a3 both q6 and q7 become skippable, since all their
facts can take only value false due to C9. Thus aq6

4 = {(f16, F), (f17, F)} and
aq7

5 = {(f18, F), (f19, F)} are automatically given by the system, which moves
from s4 to s5 with a5, and from s5 to s6 with a6. q6 and q7 are added to the set
of answered ones (shown in gray in Figure 10) and qs(s6) = {q3, q1, q2, q6, q7}.
Next we answer the only valid question remaining, q4 – Which claims have to
be handled?, with its default answer aq4

6 = {(f12, F), (f13, T)} as it complies
with our requirements.

After a6 we reach s7 with qs(s7) = {q3, q1, q2, q6, q7, q4}. q5 – Which role
has to act as Manager for Loss or Damage Claims? is now valid as it depends
on q4. s7 is a final state as all the mandatory facts have already been set and the



28 M. La Rosa et al.

Fig. 9. State s2: f3 has been forced to true in q1 in order not to violate C2.

Fig. 10. State s6: q6 and q7 have been skipped as their facts can only be negated.
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remaining ones still unset (f14 and f15) can take their defaults without violating
the constraints. q5 can thus be answered automatically with defaults. At this
point users can decide whether to continue or to complete the configuration
automatically. We decide to use the automatic completion and answer aq5

7 =
{(f14, T), (f15, F)} is given.

State s8 is the next state with qs(s8) = {q3, q1, q2, q6, q7, q4, q5}. Assume
that now we want to change q4 in order to support only Return Merchandise
Claims. In this case we can rollback q4 and re-answer it. The system restores
the current state to s6, i.e. the state before answering q4. We then answer aq4

6 =
{(f12, T), (f13, F)} and reach s7 again. This time, though, q5 is skippable since a
Manager can be chosen only for Loss or Damage Claims. The only valid answer
is aq5

7 = {(f14, F), (f15, F)}. With this we reach s8 and complete.
The corresponding configuration trace is σ = {(s1, (a1, q3), s2), (s2, (a2, q1), s3),
(s3, (a3, q2), s4), (s4, (a4, q6), s5), (s5, (a5, q7), s6), (s6, (a6, q4), s7), (s7, (a7, q5), s8)},
and the configuration is cf σ = {(f1, T), (f2, T), (f3, T), (f4, F), (f5, F), (f6, F),
(f7, T), (f8, T), (f9, T), (f10, T), (f11, T), (f12, T), (f13, F), (f14, F), (f15, F), (f16, F),
(f17, F), (f18, F), (f19, F)}.

The above configuration leads to the configured order fulfillment process
model pictured in Figure 11. This model is the result of performing certain ac-
tions on the initial model to remove the irrelevant process fragments, i.e. those
process fragments whose facts have been set to false.

6 Evaluation

This section describes a case study in which we applied the framework to cap-
ture variability in process models for the film industry. It also describes a set of
performance measurements to assess the scalability of the tool.

6.1 Film Industry Case Study

This case study was conducted with domain experts from the Australian Film
Television & Radio School (AFTRS).11 This school has engaged, with other
stakeholders, in an initiative to capture business process models in the film in-
dustry. However, it was quickly noted that process models in this industry have
a high degree of variability. Basically, each production project works different
from the others.

In this case study, we focused specifically on process models for the post-
production phase. Post-production starts after the shooting phase and deals with
the design and edit of the picture, music and soundtrack of a screen project.
11 The school’s web site can be accessed at http://aftrs.edu.au
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Fig. 11. The configured order fulfillment process model.

Creativity is a distinguishing feature of this domain: indeed, a single decision
made by the director, such as that of not having any music, can radically change
the whole post-production. This necessarily leads to a great deal of variability:
for this reason, the domain in question was deemed suitable to evaluate our
framework.

Typical choices in post-production relate to the edit equipment, the format
of the release, the addition of visual/audio effects, the presence of artificially
or recorded music, etc. All these choices depend on the type of project (movie,
documentary, etc.), the distribution channel (cinema, TV, home, etc.), and above
all the available budget.

A number of configurable process models were defined to describe the post-
production phase and its variations. In this phase, we received input from a pro-
ducer and a sound editor. To model these processes, we chose the Configurable
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Event-driven Process Chain (C-EPC) notation [28], as it allows one to capture
both variability and commonality in a process model. C-EPC is an extension of
a popular modeling notation, namely EPC, that includes constructs for defining
variation points (more details on C-EPC are provided in Section 7.

The complete C-EPC process model for film post-production consists of 568
process elements (spread across different diagrams), of which 98 are variation
points, each allowing a number of process variants for a total of around 230,000
valid process configurations.

Having defined the C-EPC model for film post-production, we identified a
set of facts to capture the variability of the reference model, and we grouped
them into suitable questions. In this phase, a screen composer and a picture ed-
itor were also involved. Firstly, we defined one fact for each factor that yields
a high number of process variations. Such factors, like the budget level, corre-
spond to domain decisions which are usually not captured in the process model.
Secondly, we encoded each fine-grained decision with one fact. Such decisions
have little or no impact on the rest of the system. For example, the type of edit-
ing suite only affects the medium format, while both the type of suite and the
format are determined by the available budget. Thirdly, we defined a system of
constraints to encode the interplay among these facts, and we used the SBDD
calculator to check for satisfiability. With the help of the calculator, we also re-
alized that some fine-grained facts were redundant, as the variants they captured
could be determined by the configuration of other facts. For example, a Telecine
suite is a piece of equipment that is only required in particular situations, such
as when the shooting is on film and the release is on tape. Thus, it was sufficient
to encode all the shooting and release formats, to indirectly capture the Telecine
options.

Order dependencies were set in a way to pose the most discriminating ques-
tions first, and then fine-tuned according to the indications of the domain ex-
perts, to better respond to their needs. Sample questions were: “What is the ex-
pected budget for the project” (high impact) and “Are any color adjustments to
be performed during tape finishing?” (low impact). We added contextual infor-
mation to the majority of questions and facts, in the form of textual guidelines,
as an aid during the configuration process. These guidelines were derived from
the constraints and enriched by information taken from the literature.

The complete configuration model consists of three sub-questionnaires (Pic-
ture edit, Sound edit and Screen composition), and an introductory question-
naire which links them together, for a total of 46 questions and 148 facts. An
excerpt of this configuration model can be found in the tool distribution. The
mapping between configuration models and C-EPCs has been reported in sepa-
rate work [19].
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This experience has shown that the framework is able to cope with practical
variability scenarios involving numerous facts, dependencies and constraints,
and that, at least in some domains, the restriction to boolean variables is not a
major impediment. In this scenario, it was not necessary to introduce questions
with non-enumerated domains.

At the time of writing, the configuration model is being used by the AF-
TRS staff to generate configured process models. The questionnaires and the
generated process models are expected to be used for teaching purposes in post-
production subjects, and for communicating requirements and decisions in stu-
dent projects. It is also expected that in future, these models will be used in
production projects outside the school.

6.2 Performance Experiments

To demonstrate the scalability of our tool, we measured the time (t0) taken by
the embedded SBDD calculator to transform the boolean function correspond-
ing to the conjunction of all the domain constraints, into a canonical form that is
then used for subsequent steps. This was found to be the critical factor to ensure
scalability of the tool when the number of facts and constraints increases.

The complexity of a boolean function can be determined by the number of
nodes of the corresponding SBDD constructed in memory. As the SBDD size
increases, the complexity of the function increases. This in turn entails that the
calculator will take more time to reduce and manipulate the function.

The boolean function from the above case study, which ranges over 148
facts, was transformed to an SBDD of 2048 nodes with a response time of 28.3
ms (on average). This is the time needed by the calculator to check the satisfia-
bility of the function, and it represents the upper bound time of any (subsequent)
evaluation of the same function. In fact, as users enter answers to the tool, the
configuration space is pruned and thus the complexity of the boolean function
decreases, lowering down the response time. In other words, an user has to wait
at most a time equal to t0 to see if an answer is correct. Therefore, t0 is an
important yardstick of the efficiency of a pruning technique.

To simulate complex functions, we measured t0 as we doubled the number
of facts starting from 25, and randomly replicated the constraints over the new
facts, yielding a proportional increase of the SBDD size. The experiments were
conducted on an Intel Pentium M processor (2.0 GHz, 533 MHz FSB, 2 MB
L2 cache), 1GB RAM (DDR2 533), 100GB HDD Serial ATA; the results are
shown in Table 1.

Although t0 increases exponentially, we can observe that the SBDD size
must be over 21,000 nodes for performance to start degrading significantly (t0
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Facts 25 50 100 200 400 800 1600 3200
SBDD Nodes 338 679 1361 2725 5453 10909 21821 43645

t0 (ms) 3.2 12.3 22 67.2 457.8 3040.6 23859.4 164400

Table 1. Performance measurements.

is around 24 s). This size corresponds to 1600 facts, which represents a config-
uration space of considerable size [5].

In the above experiments, pseudo-constraints were generated with an inter-
play granularity of 25–50 facts. Although this can seen as a limitation, it reflects
the fact that in practical scenarios, most configurable variables interact with a
limited number of other variables. This allowed us to increase the size of the
SBDD proportionally to the increase of the number of facts, and to draw con-
clusions based of the latter.

7 Related Work

7.1 Software Product Line Engineering

Variability modeling has been widely studied in the field of Software Product
Line Engineering (SPLE) [22, 12]. Among others, two research streams have
emerged in SPLE, namely Software Configuration Management (SCM) [24]
and Feature Diagrams (FDs) [30].

Work on SCM has led to models and languages to capture how a set of
available options impact upon the way a software system is built from a set of
components. For example, the Adele Configuration Manager [16] supports the
definition of constraints among artifacts composing a software family (e.g. “only
one realization of an interface should be included in any instance of the family”).
Such constraints are expressed as first-order logic expressions over attributes
defined on objects that represent software artifacts. Building a configuration in
Adele involves selecting a collection of objects that satisfy all constraints.

Similarly, in the Proteus Configuration Language (PCL) [32], software enti-
ties are annotated with information attributes and variability control attributes.
The former provide stable information about an entity, i.e. commonalities, while
the latter capture variability in the structure and in the process of building the
entities. Variability attributes determine which actions are performed to build
a variant of an entity. For example, one can capture that a sub-system maps to
different sets of program files depending on the value of a variability attribute.
However, only simple rules of the form “if-then-else” can be specified.
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Another example is the Options Configuration Modeling Language (OCML)
of the CoSMIC configurable middleware [33]. OCML allows developers to cap-
ture hierarchical options that affect the way middleware services are configured.
Options are similar to variability attributes in PCL, but OCML goes beyond PCL
by allowing constraints to be defined over individual options or groups thereof.
OCML expressions are fed to an interpreter that prompts users to enter values
for each option and raises error messages when the entered values violate a con-
straint. But unlike our proposal, the OCML interpreter does not preemptively
prevent the user from entering inconsistent values, nor is it able to skip options
that are no longer relevant.

More generally, none of these approaches provides fine-grained control over
the order in which choices are presented to users at configuration time. More-
over, constraints are usually expressed in first-order logic, making their analysis
computationally impractical (e.g. in Adele and OCML). This contrasts with our
approach based on propositional logic, for which we can apply efficient anal-
ysis techniques to preemptively discard invalid answers to questions based on
answers to previous questions.

FDs are a family of techniques for describing software product lines in terms
of their features [7, 14, 20, 15]. A number of feature modeling languages have
been proposed since FDs were first introduced as part of the FODA (Feature
Oriented Domain Analysis) method [18]. In general, feature models are repre-
sented as tree-structures, called feature diagrams, with high-level features being
decomposed into sub-features. A feature represents a system property that is rel-
evant to a stakeholder and it is used to capture commonalities or to discriminate
among systems in a family [14]. Constraints can be expressed as plain text [7]
or as formulas over features [20, 5], specified by means of a proper grammar
(e.g. a limit in the number of sub-features a feature can have).

Feature modeling languages provide rich mechanisms for capturing advanced
variability patterns, such as for example “iterator variability”, whereby an a pri-
ori unknown number of instances of an asset need to be configured and each of
these instances requires a separate configuration. Such variability patterns are
useful for example when configuring component-based software product lines,
which are beyond the scope of our proposal.

Feature modeling languages have been embodied in a number of tools. Some
of them rely on a boolean encoding of features. This is the case of the Guidsl
module in AHEAD [6] and of Pure::Variants [25]. Other tools can check con-
straints over non-boolean variables but validate a configuration only a posteri-
ori [3, 9, 10].

In contrast to our proposal, none of these approaches provides fine-grained
control over the order in which choices are presented to users at configura-
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tion time. In particular, FeaturePlugin [3] provides a wizard to traverse a fea-
ture model in a predetermined order (depth-first), but does not support other
orderings. Also, the above tools are not able to incrementally prune the con-
figuration space, so that users are preemptively stopped from entering config-
uration values that would lead to inconsistent configurations (viz. the domain
model). Pure:variants comes close to providing such support. It includes an
auto-resolving feature that, given a constraint “A requires B”, if feature A is se-
lected then feature B becomes automatically selected. However, Pure::variants
does not support arbitrary constraints between features (i.e. “facts” in our frame-
work). The possibility of using satisfiability solvers to incrementally prune the
configuration space has been raised by Batory [5] but to the best of our knowl-
edge, Quaestio provides the first concrete realization of this idea.

Another approach related to FDs is presented in [17]. Here, the authors in-
troduce the concept of feature variability patterns as collections of roles and as-
sociations that need to be bound to artifacts (e.g. component implementations)
to produce a configured system. Constraints are defined over feature variation
patterns using a scripting language. A configuration tool guides the developer
through a number of tasks corresponding to the binding of a role to an artifact.
Still, the tool does not support the definition of order dependencies between
tasks. Moreover, constraints are only evaluated after a task is completed, and if
the constraint is violated the developer is left with the burden of repairing it. In
contrast, our tool preemptively avoids constraint violations.

A major difference between our approach and the above body of research
lies in the representation of domain variability. SCM and FD approaches capture
variability and commonality in the same model, i.e. there is no clear separation
between what can vary and what is always stable. For example, in a feature di-
agram, features can be mandatory – if they must be included in the system or
model, or optional – if they can be excluded. Although the latter always repre-
sents a variability, the former does not always represent a commonality. In fact,
if a mandatory feature, or any of its parents, has, e.g., an XOR relation with other
features, it can still be excluded from the system depending on the configuration
of the other features. Another situation is when a mandatory feature is child of
an optional feature, and as such can be excluded if its parent is excluded. This
lack of separation between stable and variable aspects, can increase the model
complexity and hinder the communication of variability to stakeholders [23].

In our proposal, variability and commonality are captured separately: our
configuration models focus on resolving variability, while the commonalities
are captured in a generic model (e.g. a C-EPC). In this respect, our approach is
closer to the principles of Orthogonal Variability Models (OVMs) [22, 23]. An
OVM documents the variability of a product line in a dedicated tree-structure
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diagram, by means of so-called variation points. The variants for each variation
point are linked to a separate conceptual model, representing the product line
to be configured, where both variability and commonalities are modeled. In our
approach we explicitly model this relation by means of actions, that are used
to reflect the effects of a questionnaire-driven configuration on the system or
model to be configured. Our facts can be compared to variants, and questions to
variation points, i.e. answering a question would allow one to determine which
variants are chosen for a given variation point. Having said that, a configura-
tion model offers more flexibility than a tree-like structure, as we can express
non-hierarchical dependencies among features, and questions can refer to mul-
tiple variation points/features. Moreover, our approach documents the process
through which a system or model is to be configured. For this reason, it can be
used to complement an FD or OVM. To the best of our knowledge, this is novel
in SPLE.

The relations among our approach, SCM, FD and OVM are depicted in Fig-
ure 12.

commonality
model

variability
model

decision
model

SCM, FD OVM CM

Fig. 12. Comparison among SCM, FD, OVM and CM.

Bayer et al. [8] propose a consolidated meta-model for variability model-
ing in SPLE. This proposal also follows the principle of separating variability
from commonality. In addition, it makes a distinction between variability itself
and its resolution. The meta-model classifies variability constraints into three
categories: “requires constraints” (if a model element is selected other model
elements must be selected too), “excludes constraints (the opposite), and gen-
eral constraints. Our proposal covers general constraints so long as these can be
expressed in propositional logic. The meta-model of Bayer et al. also includes
a classification of variability specifications (called transformers). Examples of
transformers include property transformers, whereby a decision needs to be
made regarding the value of a property, and alternative transformers, whereby
a value needs to be selected among a set of alternatives. Our framework can
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capture the transformers outlined by Bayer et al., with the restriction that con-
straints can not be defined over non-discretized space of possible answers. Also,
our framework does not address the specification of resolution mechanisms (i.e.
actions) which Bayer et al. address in details.

7.2 Decision Models and Questionnaire Systems

Configuration models can also be seen as decision models [2], since order de-
pendencies are exploited to offer decision support through an interactive con-
figuration process. Moreover, the questionnaire tool allows users to evaluate
and compare alternative answers by means of guidelines, constraints, and by
providing information on the impact of facts on the system or model to be
configured. In this respect, our proposal shares commonalities with the CML2
language which was designed to capture configuration processes for the Linux
kernel [26]. Like Quaestio, CML2 supports the definition of validity constraints
based on propositional formulas over so-called symbols (which may be three-
valued in CML2). A configuration model in CML2 is composed of questions
which lead to a given symbol being given a value. Questions can be grouped
into menus which are arranged in a hierarchy. In CML2, questions within a
menu are arranged sequentially while menus are visited from top to bottom.
This is in contrast with our approach where questions (and facts) can be ar-
ranged in any partial order. Also, questions in CML2 only lead to one symbol
being set, while our questions can be used to set multiple inter-related facts at
once.

The KobrA method [4] also relies on decision models to capture configura-
tion choices in SPLE. In KobrA, decision models (called decision libraries) are
composed of decisions. A decision is associated to an enumerated set of possi-
ble resolutions, and each of these resolutions is linked to one or many variation
points. For example, in [4] the authors describe an application of the KobrA
method in which variation points are defined in an activity diagram (e.g. to in-
dicate that a certain sub-process is optional). These variation points are then
mapped to decisions. For example, a decision could be the “type of payment”,
and depending on the type of payment chosen, certain activities in the diagram
are dropped. Unlike our proposal, the decision models in KobrA do not include
dependencies and constraints.

Our tool is also related to questionnaire systems. A range of commercial
products, such as Vanguard Software’s Vista [34], support the definition of on-
line questionnaires and the collection and analysis of responses. Such systems
rely on the notion of question flows, wherein questions are related by a fixed
precedence order, while branching operators are used to capture conditional
questions. This paradigm is procedural: the developer of the questionnaire needs
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to determine in advance the points at which branching occurs. Additionally,
constraints are expressed at the granularity of questions and only used to skip
questions. This makes it difficult to capture scenarios where questions can be
(partially) answered on the basis of previous answers (e.g. f3 in q1 that has been
forced to true by answering q3).

7.3 Configurable Process Models

The idea of capturing variability in process models by annotating model frag-
ments with boolean conditions and removing fragments whose conditions eval-
uate to false, has been explored in previous work [29, 13]. In [29] the authors
extend UML Activity Diagrams (ADs) and BPMN diagrams with stereotypes
to accommodate variability points. A variability point is linked to a feature and
is evaluated with respect to a feature configuration (e.g. to activate/deactivate
model elements). The approach, however, lacks a formalization, leaving room
for ambiguities. In [13] UML ADs are annotated using presence conditions
(PCs) and meta-expressions (MEs), that are then linked to elements of a fea-
ture diagram. PCs indicate if the model element they refer to should be present
in the model. MEs are used to compute attributes of model elements (e.g. name,
return type). However, the approach only supports simple mapping of features
to standard variability mechanisms provided by UML (e.g. decision nodes).

Another approach to capture variability in process models is represented by
C-EPCs [28]. C-EPCs extend the EPC notation by identifying a set of config-
urable nodes in the model, to which alternatives are assigned to restrict their
behavior. A configurable node can be any process function (activity) or connec-
tor, depicted with a thicker border in the model. For example, a configurable
function can be set to the alternative ‘OFF’ to be disabled, and a configurable
OR-split can be set to the alternative ‘XOR-split’, to restrict the outgoing flow to
a single branch. Constraints over alternatives, called requirements, can be cap-
tured via boolean expressions. Once all the configurable nodes are assigned an
alternative that complies with the requirements, the C-EPC is transformed into
a syntactically-correct EPC.

In [19], we discuss the issue of configuring process models by domain ex-
perts, who usually lack a specialized modeling background, and propose the
questionnaire-based approach as a solution. For illustration, we also show how
the approach can be applied to C-EPC. The idea is that each configurable node
of a C-EPC and its alternatives, can be associated with boolean expressions over
the facts of a configuration model. Such expressions embody the requirements
of the configurable process and the constraints of the domain. Thus, an alter-
native is selected whenever the corresponding boolean expression evaluates to
true, triggering the execution of an action to configure the node. As a result of
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filling out the questionnaire, an EPC is produced by means of a tool that inter-
faces with Quaestio.

8 Conclusion

This paper presented a formal framework for representing system variability.
The framework relies on configuration models composed of questions and (boolean)
facts, which encode possible answers to questions. These answers determine
which actions should be performed on a generic model or system in order to de-
rive an individualized version of it. These questionnaire-based models support
the definition of dependencies, both at the level of questions and at the level
of facts, as well as domain constraints expressed in propositional logic. Simple
well-formedness criteria ensure that no circular dependencies may occur, while
satisfiability solving techniques are used to ensure the consistency of domain
constraints and to incrementally prune the space of allowed answers at configu-
ration time. The framework is independent of the notation(s) used to represent
the system itself. While the development of the framework was motivated by
the need to support the configuration of business process models, it may be ap-
plied to support the configuration of other types of models (e.g. data models) or
software artifacts in general, so long as appropriate types of actions are defined
to match the notation(s) used.

An embodiment of the framework was presented in the form of a configura-
tion tool that guides users through a set of questions in an order consistent with
the dependencies between questions and facts, and in such a way that violations
of domain constraints are preemptively avoided. Also, the tool is able to auto-
matically skip questions whose answers are fully determined by previous ones
and it allows users to rollback previous answers.

The framework was illustrated using a standard reference model for col-
laborative B2B processes. It has also been applied to capture reference process
models in the field of film post-production. In this application domain, processes
are not fixed, but instead they vary from one project to another depending on a
range of factors. By capturing this variability using the proposed framework,
stakeholders can then individualize a generic process model and obtain a tailor-
made process model for a given production project.

The current version of the configuration tool only supports the configuration
phase, i.e. guiding a user through the process of making configuration choices
and applying the resulting configuration on a generic model to obtain an indi-
vidualized one. In future work, we plan to extend the tool to support a wider
spectrum of the system configuration lifecycle. In particular, we intend to im-
plement an editor of configuration models supporting the definition of different
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types of questions. For example, a user should be able to define the range of an-
swers to a question to be an enumerated type, and the tool should then generate
a boolean encoding of this domain and hide the details of this encoding in the
domain constraints. We also foresee that the configuration model editor will be
able to suggest an “optimized” ordering of questions, such that more discrimi-
nating questions are given precedence over less discriminating ones, while still
allowing the modeler to override the suggested ordering. The tool should also
support the maintenance of configuration models, such as estimating the impact
of removing a fact from an existing configuration model.
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Appendix

Proof of Theorem 1 from Section 4:
We prove the theorem in two steps: i) we show that for all valid non-final states
there always exists at least one valid question; ii) we show that for all valid
questions in a valid state there always exists at least one valid answer.

Valid question [∀s∈Sv\SF
∃q∈Q valid(q, s)]. Let s = (vs, qs) ∈ Sv \ SF . Let

G = Q\ qs , then G 6= ∅ as s 6∈ SF . According to the 2nd well-formedness rule
on preQ, there is a q ∈ G and a Q′ ∈ preQ(q) such that G ∩Q′ = ∅.

◦ [q 6∈ qs]. True by definition of G and preQ.
◦ [Q′ ⊆ qs]. G ∩Q′ = ∅, that is (Q \ qs) ∩Q′ = ∅, thus (Q ∩Q′) \ qs = ∅,

(Q′ ⊆ Q) Q′ \ qs = ∅, hence Q′ ⊆ qs .

Hence valid(q, s).

Valid answer [∀s∈Sv\SF
∀q∈Q,valid(q,s) ∃a∈V valid(a, q, s)]. Let s = (vs, qs) ∈

Sv \ SF . Since s ∈ Sv, we can find F ′ ∈ CS such that t(s) ⊆ F ′ and
f(s) ∩ F ′ = ∅. Let q ∈ Q such that valid(q, s). We define ts(q) = {f ∈
mapQF (q) | vs(f) = true}, fs(q) = {f ∈ mapQF (q) | vs(f) = false},
tu(q) = (F ′ ∩mapQF (q)) \ ts(q) and fu(q) = mapQF (q) \ (F ′ ∪ ts(q)). We
choose a = {(f, true) | f ∈ ts(q)∪tu(q)} ∪ {(f, false) | f ∈ fs(q)∪fu(q)} ∪
{(f, unset) | f ∈ F \mapQF (q)}, then a ∈ V .

◦ [valid(q, s)]. True by assumption.
◦ [t(a) ∪ f(a) = mapQF (q)]. t(a) ∪ f(a) = ts(q) ∪ tu(q) ∪ fs(q) ∪ fu(q).
− [⊆] Let f ∈ mapQF (q),

1) if vs(f) = true, then f ∈ ts(q),
2) if vs(f) = false , then f ∈ fs(q),
3) if vs(f) = unset ,
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a) if f ∈ F ′, then f ∈ tu(q) as f 6∈ ts(q),
b) if f 6∈ F ′, then f ∈ fu(q) as f 6∈ ts(q),

hence f ∈ ts(q) ∪ tu(q) ∪ fs(q) ∪ fu(q).
− [⊇] Follows from the definitions of ts(q), tu(q), fs(q) and fu(q).
◦ [∀f∈mapQF (q)\u(s) a(f) = vs(f)]. Let f ∈ mapQF (q) and f 6∈ u(s), then

f ∈ ts(q) or f ∈ fs(q), hence (definition of a) a(f) = true and f ∈ ts(q)
or a(f) = false and f ∈ fs(q), hence (definitions of ts(q) and fs(q)) a(f) =
true and vs(f) = true or a(f) = false and vs(f) = false , hence a(f) =
vs(f).

◦ [valid(outcome(a, q, s))]. Let s′ = outcome(a, q, s) = (vs ⊕ a, qs ∪ {q}).
− [t(s′) ⊆ F ′]. t(s′) = {f ∈ F | a(f) = true ∨ (vs(f) = true ∧ a(f) =

unset)} (definition of x⊕ y(f)). Let f ∈ t(s′),
1) if a(f) = true, then f ∈ ts(q) ∪ tu(q), hence f ∈ F ′ given that ts(q) ⊆

F ′ and tu(q) ⊆ F ′.
2) if vs(f) = true and a(f) = unset , then f ∈ t(s) and f ∈ F \

mapQF (q), hence f ∈ F ′ as t(s) ⊆ F ′.
− [f(s′) ∩ F ′ = ∅]. f(s′) = {f ∈ F | a(f) = false ∨ (vs(f) = false ∧

a(f) = unset)} (definition of x⊕ y(f)). Let f ∈ f(s′),
1) if a(f) = false , then f ∈ fs(q) ∪ fu(q), hence f 6∈ F ′ = ∅ given that

fs(q) ∩ F ′ = ∅ and fu(q) ∩ F ′ = ∅.
2) if vs(f) = false and a(f) = unset , then f ∈ f(s) and f ∈ F \

mapQF (q), hence f 6∈ F ′ as f(s) ∩ F ′ = ∅.

Hence valid(outcome(a, q, s)).

Hence valid(a, q, s).


