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E¢ cient Bayesian Estimation of Multivariate
State Space Models
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Abstract

A Bayesian Markov chain Monte Carlo methodology is developed
for the estimation of multivariate linear Gaussian state space mod-
els. In particular, an e¢ cient simulation smoothing algorithm is pro-
posed that makes use of the univariate representation of the state
space model. Substantial gains over existing algorithms in computa-
tional e¢ ciency are achieved using the new simulation smoother for
the analysis of high dimensional multivariate time series.
The methodology is used to analyse a multivariate timeseries dataset

of the Normalised Di¤erence Vegetation Index (NDVI), which is a
proxy for the level of live vegetation, for a particular grazing property
located in Queensland, Australia.
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1 Introduction

Structural time series models (STSMs) provide an attractive framework for
the analysis of both univariate and multivariate time series data. The state
space model (SSM) provides a generic representation for STSMs that facili-
tates the development and use of general estimation algorithms. This paper
presents a simple Bayesian Markov chain Monte Carlo (MCMC) framework
for the estimation of multivariate SSMs that delivers substantial gains in com-
putational e¢ ciency over the standard Bayesian approach. A transformation
is used that enables the use of the univariate representation of the SSM. A
simulation smoothing algorithm is presented for this representation, extend-
ing the algorithms of Anderson and Moore (1979), Koopman and Durbin
(2000) and Durbin and Koopman (2002). A comparison is made between
the proposed simulation smoothing algorithm and the standard approach of
Durbin and Koopman (2002). Large gains in computational e¢ ciency are
shown to be produced by the proposed method in high dimensional multi-
variate analysis.
This method is illustrated through an empirical analysis of Normalized

Di¤erence Vegetation Index (NDVI) images collected from the Moderate Res-
olution Imaging Spectroradiometer (MODIS). NDVI is a common vegetation
index providing information on the amount of live green vegetation in an
area. It is commonly used to infer information about properties of vegeta-
tion such as biomass, cover or leaf area index. A STSM is constructed to
characterise the trend and seasonal components that are inherent in the time
series. The trend is modelled as a random walk and a stochastic cycle is used
to characterise the seasonal pattern.
The structure of the paper is as follows. In Section 2 the multivariate

Gaussian SSM is introduced and a possible MCMC sampling scheme is out-
lined in Section 3, with details on how to sample the state vector as well
as a computational comparison between the standard and the proposed ap-
proaches. In Section 4 an empirical study of NDVI for a grazing property
in Queensland, Australia is conducted. For the empirical analysis, the use
of the new algorithm means that the computational burden as measured by
the number of multiplications, for the simulation smoothing aspect of the
MCMC scheme, is approximately 90% lower than if the standard approach
had been used. Some conclusions and extensions are provided in Section 5.
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2 Multivariate Linear Gaussian State Space
Model

The observation equation for the linear Gaussian state space model (SSM)
for the (p� 1) vector of observations yt = (yt;1; yt;2; : : : ; yt;p)0, is given by

yt = Zt�t + "t; "t � N
�
0;H�1� ; (1)

for t = 1; 2; : : : ; n; where the (p�m) matrix Zt is assumed to be known, the
state vector, �t; is an (m� 1) vector of latent variables and "t is a (p� 1)
vector of disturbances that are serially uncorrelated with a mean of 0 and an
unknown (p� p) covariance matrix H�1. The state equation is de�ned as

�t+1 = Tt�t +Gt�t; �t � N
�
0;Q�1� ; (2)

for t = 1; 2; : : : ; n�1, where Tt is a (p� p) transition matrix that is assumed
to contain both known and unknown parameters. The known parameters are
denoted by �. Further, Gt is an (m� r) selection matrix that is assumed to
be known and �t is an (r � 1) vector of normally distributed disturbances
that are serially uncorrelated with a mean of 0 and an unknown covariance
matrix Q�1: Furthermore, the disturbance vectors "t and �t are assumed to
be mutually uncorrelated. For notational convenience de�ne 	 = f�;Qg.
The initial state, �1; is assumed to be normally distributed such that

�1j	 � N (a1;P1) ; (3)

where a1 and P1 are both assumed to be known conditional on 	. Whilst
di¤use initial conditions are not explicitly dealt with in this paper, the rele-
vant extensions can be deduced from the algorithms presented in Koopman
and Durbin (2000) and Durbin and Koopman (2002).
For the proceeding sections, it is convenient to de�ne, for s < t, ys:t =�

y0s;y
0
s+1; : : : ;y

0
t

�0
and y = y1:n. Throughout, this notation extends to any

vector for example �s:t =
�
�0s;�

0
s+1; : : : ;�

0
t

�0
and � = �1:n:

The form of the SSM in (1) and (2) has been used in a wide range of
Bayesian and non Bayesian applications including Fernandez and Harvey
(1990), Koopman and Lucas (2005) and Harvey et al. (2007), amongst others.
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3 Bayesian Estimation

Bayesian inference summarises uncertainty about the unknown parameters
of interest through the joint posterior density function. For the multivariate
SSM in (1), (2) and (3), the joint posterior density is de�ned by

p (�;H;	jy) / p (yj�;H) p (�j	) p (H) p (	) ; (4)

where p (yj�;H) denotes the joint probability density function (pdf) of y
conditional on � and H, p (�j	) is the joint pdf of � conditional on 	 and
p (H) and p (	) are respectively the prior pdfs for H and 	. Throughout,
H and 	 are assumed to be a priori independent. Given the speci�cation of
the measurement equation in (1), it is evident that

p (yj�;H) / exp
(
�1
2

nX
t=1

(yt � Zt�t)0H (yt � Zt�t)
)
: (5)

From the de�nition of the state equation in (2) and the initial state in (3),
it follows that

p (�j	) = p (�1j	)
n�1Y
i=1

p (�t+1j�t;	) ; (6)

where

p (�t+1j�t;	) / exp
�
�1
2
(�t+1 �Tt�t)

0Q (�t+1 �Tt�t)

�
; (7)

for t = 1; 2; : : : ; n� 1.

3.1 A General Gibbs Sampling Scheme

Bayesian estimation of the linear Gaussian SSM is most commonly under-
taken using MCMC methods based on the Gibbs sampler. A general sam-
pling scheme for the estimation of the posterior distribution in (4) is de�ned
at iteration j as follows:

1. Sample Hj from p (Hjy;�j�1;	j�1) :

2. Sample 	j from p (	jy;�j�1;Hj) :

3. Sample �j from p (�jy;Hj;	j) :

4



The conditional posteriors forH and �, including the algorithms required
to draw from each conditional, are speci�ed in Sections 3.1.1 and 3.1.2, re-
spectively. The sampling scheme for 	 is model speci�c and subsequently
de�ned in Section 4 in the context of the empirical study.

3.1.1 Sampling H

Given (4), the full conditional posterior distribution for H is given by

p (Hjy;�;	) / p (yj�;H) p (H) ;

where p (yj�;H) is speci�ed in (5). The conjugacy of the Wishart distribu-
tion makes it a natural speci�cation for the prior on H, such that

p (H) � W
�
V�1
H ; �H

�
; (8)

where the hyperparameters V�1
H and �H are a scale matrix and degrees of

freedom parameter, respectively. Whilst the conjugate form of the Wishart
prior makes it attractive, it has been noted by many in the literature to be too
restrictive and various alternative priors have been pursued; see Koop(2003)
and Gelman et al. (2004) for details. For the purposes of this paper, attention
is restricted to a �at prior over the positive domain of Rp. This corresponds to
settingV�1

H = 0 and �H = � (p+ 1) in (8). This particular prior speci�cation
is employed following the justi�cation given in Harvey et al. (2007).
Given the prior distributional assumption in (8), the full conditional pos-

terior distribution for H has a Wishart form, such that

p (Hjy;�;	) � W
�
V
�1
H ; �H

�
; (9)

where

V
�1
H = VH +

nX
t=1

(yt � Zt�t) (yt � Zt�t)0

and
� = � + T:

Odell and Feiveson (1966) present an e¢ cient algorithm to sample from
the Wishart distribution. This algorithm is concisely summarised in Ever-
son and Morris (2000) and is used here to sample from (9). The algorithm
comprises the following steps:
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1. Using the Cholesky decomposition, calculate an upper triangular ma-
trix C that satis�es V

�1
H = C0C:

2. Construct an upper triangular matrix U, where

U =

26664
p
X1 N1;2 � � � N1;p

0
p
X2

. . .
...

...
. . . . . . Np�1;p

0 � � � 0
p
Xp

37775 ;
with

Nij � i:i:d:N (0; 1) ; i = 1; 2; : : : ; p; j = 1; 2; : : : ; p; i < j

and
Xi � �2 (� � i+ 1) ; i = 1; 2; : : : ; p:

3. Calculate the upper triangular matrix R; where

R = CU: (10)

4. Take Hj as R0R � W
�
V
�1
H ; �H

�
:

3.1.2 Sampling �

The standard approach for sampling the state vector, �, from its full con-
ditional posterior distribution for a linear Gaussian state space model is to
use a simulation smoothing algorithm. Früwirth-Schnatter(1994), Carter and
Kohn (1994), de Jong and Shephard (1995) and Durbin and Koopman (2002)
provide alternative simulation smoothing algorithms. Of the aforementioned
algorithms, the method of Durbin and Koopman is the simplest and in gen-
eral the most computationally e¢ cient; see Durbin and Koopman for further
details.
This section describes a method that achieves substantial gains in compu-

tational e¢ ciency over the standard implementation of simulation smoothing
that was presented in Durbin and Koopman (2002). In particular, the simu-
lation smoothing algorithm of Durbin and Koopman is modi�ed by using the
univariate �ltering algorithms in Anderson and Moore (1979) and Koopman
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and Durbin (2000) to calculate the necessary moments, instead of using the
standard Kalman �lter and smoothing algorithms.
The proposed approach makes use of the univariate representation of the

SSM. The univariate representation requires the error term in the measure-
ment equation to be contemporaneously uncorrelated, motivating the follow-
ing transformation that makes use of the upper triangular matrix R in (10),
such that

y�t = Z
�
t�t + "

�
t ; "�t � N (0; I) ; (11)

where y�t = Ryt; Z
�
t = RZt and "

�
t = R"t. The transformed measurement

equation in (11) has the following univariate representation.

y�t;i = z
�0
t;i�t + "�t;i; t = 1; 2; : : : ; n; i = 1; 2; : : : p; (12)

where y�t;i is the i
th element of y�t , z

�0
t;i is the i

th row of Z�t and "
�
t;i is the

ith element in "�t . Note that the formulation of the state equation remains
unchanged from (2).
Given the univariate representation of the multivariate SSM in (11), (2)

and the initial state in (3), the �ltering equations are initialised by setting
a11 = a1 and P1;1 = P1 then for i = 1; 2; : : : ; p and for t = 1; 2; : : : ; n are
de�ned by

�t;i = y�t;i � z�0t;iat;i
mt;i = Pt;iz

�
t;i

ft;i = z�0t;imt;i + 1

kt;i = mt;i=ft;i

at;i+1 = at;i + kt;i�t;i (13)

Pt;i+1 = Pt;i � kt;im0
t;i;

where �t;i is a scalar,mt;i is an (m� 1) vector; ft;i is a scalar, kt;i is an (m� 1)
vector; at;i is an (m� 1) vector and Pt;i is an (m�m)matrix. Further, at;i =
E (�tjy1:t�1; yt;1; yt;2; : : : ; yt;i�1) andPt;i = V ar (�tjy1:t�1; yt;1; yt;2; : : : ; yt;i�1) :
To obtain at+1;1 = E (�t+1jy1:t) andPt+1;1 = V ar (�t+1jy1:t) for t = 1; 2; : : : ; n
calculate

at+1;1 = Ttat;p+1

Pt+1;1 = TtPt;p+1T
0
t +GtQ

�1G0
t: (14)

The corresponding smoothing equations require �t;i, ft;i; kt;i; at;1 and Pt;1

to be stored during the �ltering pass. For the multivariate SSM in (12),
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(2) and (3), the smoothing equations are de�ned for i = p; p � 1; : : : ; 1 and
t = n; n� 1; : : : ; 1 as

Lt;i = Im � kt;iz�0t;i
rt;i = zt;i=ft;i�t;i + L

0
t;irt;i; (15)

where Lt;i is an (m�m) matrix and rt;i is an (m� 1) vector. The transition
through time is given by

bat = at;1 +Pt;1rt;0

rt�1;p = T0t�1rt;0; (16)

where bat = E (�tjy�) for t = n; n � 1; : : : ; 1. The smoothing equations are
initialised with rn;p = 0. For more details on the univariate representation,
including how to modify the equations for di¤use or partially di¤use initial
conditions, refer to Koopman and Durbin (2000) and Durbin and Koopman
(2001). Given the �ltering and smoothing equations in (13), (14), (15) and
(16), the simulation smoothing algorithm of Durbin and Koopman (2002)
can be modi�ed to draw � from its conditional distribution at iteration j of
the Gibbs scheme in Section 3.1 as follows:

1. Sample "�+t from p ("�t jHj) and sample �+t from p (�tjQj) for t =
1; 2; : : : ; n:

2. Draw �+1 from p (�1j	j) and then generate �+2:n and y
�+, using (11)

and the state equation in (2).

3. Calculate ey = y�� � y+:
4. Use the �lter and smoother in (13),(14), (15) and (16) substituting eyt;i
for y��t;i to calculate b�1:n = E (�jey) :

5. Take �j = b�+�+ as a draw from p (�jy;Hj;	j) :

Computational Comparison This section contains a comparison of the
computational e¢ ciency of the standard simulation smoothing algorithm of
Durbin and Koopman (2002) and the univariate �ltering and simulation
smoothing approach presented in Section 3.1.2. In the comparison the initial
cost of transforming the model for the univariate approach and the cost of
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inverting H�1 for the standard approach is ignored.1 For the comparison the
standard Kalman �lter is formulated in an e¢ cient fashion comparable to
that of the univariate �ltering algorithm in (13) and (14). For the standard
simulation smoothing approach it is further assumed that F�1t is stored for
the smoothing algorithm, rather than storing Ft. It is also assumed that
all inversions are calculated using the Cholesky decomposition. Following
Koopman and Durbin (2000) calculations involving Tt are not considered
as the transition matrix typically has a sparse structure with most elements
equal to ones and zeros. Furthermore, calculations involving Gt are also not
included as it typically has a sparse structure made up of ones and zeros and
is often simply the identity matrix.2

Table 1: presents the percentage savings associated with the univariate �l-
tering and simulation smoothing approach over that of the standard Kalman
�ltering and simulation smoothing approach. The top row reports the num-
ber of timeseries, p, and the �rst column presents the dimension of the state,
m. The centre of the table contains the percentage savings in multiplications
associated with the univariate approach.

Percentage Savings for the Univariate Filtering and Simulation Smoothing

p = 1 p = 2 p = 5 p = 10 p = 15 p = 20 p = 25

m = 1 15 52 83 94 97 98 99
m = 2 5 29 75 86 93 95 97
m = 5 1 5 31 61 76 84 88
m = 10 0 -4 8 33 51 63 72
m = 15 0 -7 -2 17 34 47 56
m = 20 0 -8 -7 7 22 34 44
m = 25 0 -9 -10 1 13 25 34

In Table 1 the percentage savings of the univariate approach to �ltering

1It is worth noting that in general the initial transform for the univariate approach is
far cheaper than the inverse for the standard Kalman �ltering approach.

2Note that in cases that Tt or Gt contains elements that aren�t ones or zeros then the
same number of additional multiplications are required by both �lters.
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and simulation smoothing presented in Section 3.1.2 over that of the stan-
dard simulation smoother approach are presented. It is interesting that a
small gain in computational e¢ ciency is made when p = 1. Examination
of both approaches reveals that the gain is made in the simulation smooth-
ing algorithm in sampling "+t as the transformed model, for p = 1, requires
one less multiplication at each time period, t. Given that the �ltering and
smoothing algorithms are so cheap when p = 1, and in particular when m is
also equal to one, even this small saving is apparent. It is also evident that
when m is much larger than p the standard approach is slightly more compu-
tationally e¢ cient. The small reduction in computational e¢ ciency arrises
as the smoothing recursions that are required to calculate the moments of
interest are more expensive that the standard equations when m is much
greater than p. Importantly, for the majority of cases, the univariate simu-
lation smoothing approach is substantially more e¢ cient that the standard
approach. In particular, when p is larger than m the gains in computational
e¢ ciency are substantial. This is arguably an important case in practice as
the underlying dynamics are often governed by one or a few common un-
derlying components. Further, it is particularly promising that the gains of
the new approach are most substantial when p is large and that is when the
computationally costs are particularly great and e¢ ciency is most important.

3.2 Integration Sampler

The likelihood for the state space model in (1), (2) and (3) is de�ned using

p (yjH;	) =
Z
p (yj�;H) p (�j	) d�; (17)

where p (yj�;H) is de�ned in (5) and p (�j	) is de�ned by (6) and (7).
Koopman and Durbin (2000) show that the likelihood can be calculated
analytically, using (13) and (14), as

p (yjH;	) / �0:5
 

nX
t=1

pX
i=1

lnFt;i + �2t;iF
�1
t;i

!
: (18)

Using (18), the posterior for any or all of the parameters of interest can be
expressed up until an integrating constant marginally of the state vector �.
For example,

p (H;	jy) / p (yjH;	) p (H) p (	) : (19)
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However, it is typically di¢ cult to sample H and 	 directly from (19),
whereas conditional on the state vector the posterior densities for the pa-
rameters of interest often have a closed form. This issue is discussed in Pitt
and Shephard (1999) and it provides motivation to use Gibbs based sam-
pling schemes like the one described in Section 3.1. However, as part of
a Gibbs scheme, an analytical form for the likelihood may still be useful.
In particular, even when conditioning on � certain parameters may not be
easy to sample from, in which case an algorithm such as the random walk
Metropolis Hastings (RWMH) is often used; for details on the RWMH and
other more advanced algorithms suitable for such problems see Robert and
Cassella (1999) and Lui (2001). As (18) allows us to de�ne the posterior for
any parameter marginally of the state vector, we can always use the RWMH
to sample indirectly from the resultant density. If there is a high degree of
correlation in the Gibbs scheme between this particular parameter and the
state then this approach will lead to gains in the simulation e¢ ciency of the
MCMC sampling scheme. If the correlation in the Gibbs scheme is particu-
larly high between certain parameters and the state vector, sampling these
parameters of interest marginally of the state vector may be the preferred
approach using a RWMH type algorithm, even if a closed form is available
when conditioning on the state. This was in fact the case for Kim, Shephard
and Chib (1998) who use this idea for their stochastic volatility algorithm.
They, however, calculate the likelihood using the augmented Kalman �lter of
de Jong (1991). The algorithm of de Jong is more complicated and is com-
putationally expensive in comparison to the proposed algorithm, however it
can provide an exact solution in the case when di¤use initial conditions are
speci�ed. Given the focus on Bayesian methods in this paper, this is arguably
not that important as it is usually possible in practice to specify a sensible
informative prior, which can be vague or strict depending on the available
information. If it is necessary to produce an exact solution for di¤use initial
conditions then the �ltering algorithms in this paper can be extended using
the exact initial �ltering approach, as described by Koopman and Durbin
(2000).
In Table 2 the percentage savings in multiplications made using the uni-

variate �lter in (13) and (14) to calculate the likelihood over that of the
Kalman �lter are reported. As in Table 1, it is assumed that all inversions
are calculated using the Cholesky decomposition and the calculations involv-
ing Tt and Gt are not considered, because both matrices typically have a
sparse structure with most elements equal to ones and zeros. It is evident
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Table 2: presents the percentage savings that are made when using the uni-
variate �lter to calculate the likelihood instead of the Kalman �lter. The top
row reports the number of timeseries, p, and the �rst column presents the
dimension of the state, m. The centre of the table contains the percentage
savings in multiplications associated with the univariate approach.

Percentage Savings for Likelihood Calculation Using the Univariate Filter

p = 1 p = 2 p = 5 p = 10 p = 15 p = 20 p = 25

m = 1 0 59 88 96 98 99 99
m = 2 0 40 76 91 95 97 98
m = 5 0 19 51 76 86 91 93
m = 10 0 10 32 56 70 78 84
m = 15 0 7 23 44 58 67 74
m = 20 0 5 18 36 49 59 66
m = 25 0 4 15 30 42 52 59

that a large reduction in the computational burden in calculating (18) is
made when p is greater than one.
Denote 	i as the parameters of 	 that are to be sampled marginally of

�, and denote 	ni to be the remaining parameters in 	, then an alterna-
tive Gibbs based sampling scheme, to the one presented in Section 3.1, for
iteration j is de�ned as follows:

1. Sample Hj from p (Hjy;�j�1;	j�1) :

2. Sample 	j
ni from p

�
	nijy;Hj;	j�1

i ;�j�1
�
:

3. Sample 	j
i and �

j jointly from p
�
	i;�jy;Hj;	j

ni

�
:

As in the Gibbs scheme described in Section 3.1, the sampling of H is
described in Section 3.1.1. Sampling 	j

ni is model speci�c and is de�ned in

the empirical study in Section 4. Sampling 	j
i and �

j is completed in two
steps. The �rst step is to sample 	j

i from

p
�
	ijy;Hj;	j�1

ni

�
;
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where
p
�
	ijy;H;	ni

�
/ p (yjH;	) p (	)

and p (yjH;	) is calculated using (18). One possibility is to use the RWMH.
The second step is to sample �j from p (�jy;Hj;	j) as described in Section
3.1.2.

4 Empirical Illustration

4.1 Data Description

The Bayesian methodology for estimating multivariate state space models is
used to analyse MODIS satellite image data. In particular, a multivariate
time series dataset, of NDVI from the 250m pixel MOD13Q1 product, is con-
structed from the image data. The NDVI provides a measure of the amount
of live vegetation, whereby a higher reading signi�es a higher level of live veg-
etation.3 The region of interest is a grazing property located in Queensland,
Australia. The dataset is comprised of 25 timeseries, with 171 observations
that occur every 16 days extending from February, 2000 to August, 2007.
Each time series maps a pixel of the image through time.

4.2 Structural Time Series Model

For the analysis, a STSM is constructed that incorporates both a trend and
a seasonal component. The STSM provides a mapping between the dynamic
components and the (p� 1) vector of observations, yt, through the following
equation

yt = �t+ t+"t; "t � N
�
0;H�1� ; (20)

for t = 1; 2; : : : ; n, �t is a (p� 1) vector of trends,  t is a (p� 1) vector
of stochastic cycles and "t is a (p� 1) vector of disturbances that is serially
uncorrelated and has a mean of 0 and a covariance matrix H�1. Given
that the timeseries are constructed using pixels from a localised region with
similar soil types, the same land management and common weather patterns,
it is assumed that the dynamics of the model are governed by a common
underlying process. Consequently, it is assumed that �t;1 = �t;2 = � � � = �t;p,

3Note that the MODIS scaled NDVI ranges from 0-10000. For the analysis it is scaled
down by a factor of 1000.
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and  t;1 =  t;2 = � � � =  t;p where �t;i is the i
th trend component at time t

and  t;i represents the i
th stochastic cycle.

The trend component is assumed to evolve according to

�t+1 = �t + �t; (21)

where the (p� 1) vector of disturbances �t is de�ned such that

�t = i
 �t;

where i is a (p� 1) vector of ones, 
 denotes the Kronecker product and
�t � N

�
0; �2�

�
. The stochastic cycle is assumed to evolve according to�

 t+1

 �t+1

�
= �

�
 t

 �t

�
+
t; (22)

where  �t+1 is a (p� 1) vector of auxiliary variables, 
t = i 
 �t, with
�t � N (0; �2�I2) and � = Ip 
 � , with

� = �

�
cos� sin�
� sin� cos�

�
;

where Is generically denotes the identity matrix of order s. It is assumed that
the cycle is stationary implying that j�j < 1 and � denotes the frequency of
the cycle in radians.
The STSM in (20), (21) and (22) can be compactly expressed using the

state space form in (1) and (2), with

Zt = i

�
1 1 0

�
; �t =

�
�t  t  �t

�0
;

Tt =

�
1 00

0 � 

�
; Gt = I3; (23)

Q�1 =

24 �2� 0 0
0 �2� 0
0 0 �2�

35 :
The SSM is completed using prior expectations about the state space process
that are speci�ed through (3). The trend is initialised with a mean of �ve,
which centres it on the range of the NDVI. The variance is set equal to nine
to ensure positive prior probability over the range of the data. To complete
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the speci�cation of the initial state the marginal distribution of the stochastic
cycle is used, such that

a1 =
�
5 0 0

�0
and P1 =

"
9 00

0
�2k
1��2 I2

#
:

For the empirical analysis a �at prior is speci�ed over the (�1; 1) interval
for �. For the parameter � a �at prior is speci�ed over the

�
�
18
; 3�
18

�
interval.

This implies a prior mean of 2�
18
, which corresponds to a period of approx-

imately one year. For both �� and �� a �at prior with positive support is
speci�ed following the rationale in Harvey et al. (2007).

4.3 Estimation

Whilst the sampling schemes for H and � are described in Sections 3.1.1
and 3.1.2 respectively, the sampling scheme for 	 still needs to be de�ned.
For the model speci�ed in Section 4.2 sampling from 	 equates to sampling
the parameters of the trend and stochastic cycle. That is sampling �; �; ��
and ��: One possible approach is to follow Harvey et al : (2007), in which
	 is sampled conditional on �. An alternative approach is proposed here,
which �ts into the Gibbs scheme presented in Section 3.2. Both methods are
described below and a comparison is given in the analysis in Section 4.4.

4.3.1 Sampling �; � �� and ��

Harvey et al : (2007) sample �; �, �� and �� from

p (�; �; �� ; ��jy;�;H) / p (�j�; �; �� ; ��) p (�) p (�) p (��) p (��) ;

where p (�j�; �; �� ; ��) � p (�j	) is de�ned in (6) and the pdfs p (�), p (�) ; p (��)
and p (��) were informally de�ned in Section 4.2. Harvey et al. suggest a
Gibbs scheme that is de�ned at iteration j as follows:

1. Sample �j from p
�
�jy;Hj;�j�1; �j�1; �j�1� ; �j�1�

�
:

2. Sample �j from p
�
�jy;Hj;�j�1; �j; �j�1� ; �j�1�

�
:

3. Sample �j� from p
�
�� jy;Hj;�j�1; �j�1; �j�1; �j�1�

�
:

4. Sample �j� from p
�
��jy;Hj;�j�1; �j; �j; �j�

�
.
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Harvey et al. suggest sampling both � and � separately using the RWMH
algorithm. They suggest sampling both �� and �� separately directly from
the inverted gamma distribution.
An alternative sampling scheme, along the lines of the generic Gibbs

sampling scheme in Section 3.2, is to sample �� , �� and � jointly from

p (�� ; ��;�jy;H; �; �) / p (yj�;H) p (�j�; �; �� ; ��) p (��) p (��) ; (24)

where p (yj�;H) is de�ned in (5). A modi�ed Gibbs sampling scheme where
�� , �� and � are sampled jointly from (24) is de�ned at iteration j as follows:

1. Sample �j from p
�
�jy;Hj;�j�1; �j�1; �j�1� ; �j�1�

�
:

2. Sample �j from p
�
�jy;Hj;�j�1; �j; �j�1� ; �j�1�

�
:

3. Sample �j� and �
j
� jointly from p

�
�� ; ��jy;Hj; �j; �j

�
:

4. Sample �j from p
�
�jy;Hj; �j; �j; �j� ; �

j
�

�
:

The parameters � and � are sampled separately, as before, using the
RWMH. To sample �� and �� jointly from p (�� ; ��jy;�; �) the RWMH algo-
rithm is again implemented. To evaluate the RWMH acceptance ratio, given
the relevant argument, it is noted that

p (�� ; ��jy;H; �; �) _ p (yjH,�; �; �� ; ��) p (��) p (��) ;

where p (yjH; �; �; �� ; ��) � p (yjH;	) is evaluated using (18).

4.4 Analysis

In Table 3 estimation output for the MODIS data set using the MCMC
sampling scheme is reported, whereby the parameters of the trend and sto-
chastic cycle are estimated following Harvey et al. (2007) and the proposed
sampling scheme described in Section 4.3.1. For both estimation schemes
100000 iterations of the MCMC sampler are produced and the �rst 10000
iterations are discarded. The table shows the marginal posterior mean, the
marginal posterior standard deviation, the ine¢ ciency factor (IF) calculated
based on the sampling scheme described in Harvey et al. (IF1), and the
IF for the sampling scheme for the stochastic cycle proposed in this paper
(IF2), respectively. The IF is used as a measure of the simulation e¢ ciency
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Table 3: Estimation results for the MODIS data set. From the MCMC
sampling scheme 100000 iterations are obtained, of which the �rst 10000
are discarded. Column 1 contains the parameters to which the statistics
(reported in the subsequent columns) refer, Column 2 reports the MCMC
estimates of the marginal posterior mean, Column 3 reports the marginal
posterior standard deviation, Column 4 reports the ine¢ ciency factors (IF)s
for the estimates obtained using the sampling scheme Harvey et al. and
Column 5 contains IFs from estimates using the sampling scheme proposed
in this paper. The bottom row of the table reports the average time taken in
seconds for 1000 iterations of the MCMC sampler on a Pentium Core 2 Duo
with a 2.4 GHz processor and 1 GB of RAM.

Parameter Mean SD IF1 IF2

�� 1:2� 10�1 4� 10�2 134 52
� 8:9� 10�1 4� 10�2 35 24
� 2:9� 10�1 4� 10�2 16 17
�� 2:1� 10�1 3� 10�2 99 43

Time 3 5

of MCMC samplers and it has a prominent role in the literature. See for
example Chib and Greenberg (1996), Shephard and Pitt (1997), Bos and
Shephard (2006) and Strickland, Martin and Forbes (2007), amongst many
others. The IF is calculated as

IF = 1 + 2
B

B � 1

BX
i=1

KQS

�
i

B

�b�i;
where b�i is the estimate of the correlation at lag i of the MCMC iterates,
KQS is the Quadratic Spectral (QS) kernel de�ned as

KQS(x) =
25

12�2x2

�
sin(6�x=5)

6�x=5
� cos(6�x=5)

�
and B is the bandwidth, which is selected automatically following Andrews
(1991). Further details on the implementation of this procedure can be found
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in Strickland, Forbes and Martin (2006). The IF can be interpreted as the ra-
tio of the simulation variance of the marginal posterior mean from an MCMC
sampler to the simulation variance to that of a hypothetical sampler that has
M independent draws. The average time taken for 1000 iterations of both
MCMC sampling schemes is reported at the bottom of the table.
The marginal posterior mean estimates indicate that there is a large

amount of persistence in the stochastic cycle and that the period of the
cycle is approximately one year, which is sensible given that the cycle is used
to model seasonality.
Examination of the largest IF, where the largest is compared as it pro-

vides a minimum level of accuracy, shows that the sampling scheme for the
stochastic cycle in Section 4.3.1 is nearly three times more simulation e¢ -
cient than the benchmark sampling scheme of Harvey et al., despite being
less than two times more computationally expensive. For both schemes, the
savings in the computational cost of the simulation smoothing algorithm is
approximately 90%. For the second sampling scheme, the use of the uni-
variate representation also leads to a reduction in the computational cost of
around 90% in the calculation of the likelihood.
Figure 1 contains plots the marginal posterior mean estimates of both the

trend and the stochastic cycle. The upper plot superimposes the estimated
trend over the observed data, whilst the lower plot contains the estimated
stochastic cycle.

5 Conclusion

In this paper, a Bayesian estimation methodology for multivariate SSMs is
introduced. In particular, the simulation smoothing algorithm of Durbin and
Koopman (2002) is modi�ed using the �ltering and smoothing algorithms
of the univariate representation of the SSM that is facilitated through a
transformation of the SSM. The new algorithm provides substantial gains in
computational e¢ ciency over the standard simulation smoothing algorithm
of Durbin and Koopman.
An illustrative empirical analysis of MODIS data is used to demonstrate

the Bayesian methodology. In particular, a SSM is constructed to charac-
terise the seasonal and trend components present in the NDVI dataset for
a particular property that is located in Queensland, Australia. The SSM is
speci�ed such that the trend component is modelled as a random walk and a
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This �gure contains plots of the estimated marginal posterior mean for both the trend
and stochastic cycle. In the upper plot the estimated trend is superimposed over the

data, whilst the lower plot contains the estimated stochastic cycle.
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Figure 1:

stochastic cycle is incorporated to capture the dynamic seasonal component
that is present in the timeseries. For the analysis, the computational burden
of the proposed method is approximately 90% less than that of the standard
simulation smoothing approach of Durbin and Koopman (2002). Further, a
new sampling scheme is presented for the trend and stochastic cycle that is
simulation e¢ cient relative to the existing approach of Harvey et al. The
analysis reveals that there is strong evidence that the level of NDVI is slowly
decreasing through time.
An important extension to the methodology is to utilise more parsimo-

nious methods for the covariance matrix estimation. Such an extension would
allow for the analysis of higher dimensional multivariate time series and hence
the importance of the computational gains presented in this paper would be
even greater.
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