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Multi-Objective UAS Flight Management in Time
Constrained Low Altitude Local Environments

Pritesh Narayah Duncan Campbéland Rodney Walkér
Australian Research Centre for Aerospace Automation (ARCAA), Queensland University of Technology (QUT),
Brisbane, Australia

This paper presents a new framework for Multi-Objedive Flight Management of
Unmanned Aerial Systems (UAS), operating in partidy known environments, where
planning time constraints are present. During UASoperations, civiian UAS may have
multiple objectives to meet including: platform saéty; minimizing fuel, time, distance; and
minimizing deviation from the current path. The planning layers within the framework use
multi-objective optimization to converge to a solubn which better reflects overall mission
requirements. The solution must be generated withithe available decision window, else the
UAS must enter a safety state; this potentially lints mission efficiency. Local or short range
planning at low altitudes requires the classificatin of terrain and infrastructure in
proximity as potential obstacles. The potential iorease in the number of obstacles present
further reduces the decision window in comparisond high altitude flight. A novel Flight
Management System (FMS) has been incorporated withithe framework to moderate the
time available to the environment abstraction, pathand trajectory planning layers for more
efficient use of the available decision window. Ebling the FMS during simulation
increased the optimality of the output trajectory ;1 systems with sufficient computational
power to run the algorithm in real time. Conversey, the FMS found sub-optimal solutions
for the system with insufficient computational capaility once the objective utility threshold
was decreased from 0.95 to 0.85. This allowed théAS to continue operations without
having to resort to entering a safe state.

[. Introduction

In recent times, UAS have been employed in an asingly diverse range of applications. NumerousSUA
market forecasts portray a burgeoning future, iiclg predictions of a USD10.6 billion market by 281 Within
the civilian realm, UAS are expected to be usaiupérforming a wide range of airborne missions sagllisaster
monitoring, search and support, and atmospherierebtiorf. However, to realize these civilian applications,
seamless operation of UAS within the NAS will bgquiged; this is a difficult problem.

Most literaturé * indicate that an equivalent level of safety (EL@S}hat of a human pilot will be one of the
requirements for integration of UAS into the NAS he ELOS requirement indicates that the system rhast
capable of replicating some of the capabilitiea dfuman pilot; this leads to the need for a higlegree of onboard
autonomy.

Automation assists in overcoming restrictions comipdound on current Remotely Piloted Aerial Vel
(RPV). For example: Limited RPV range due to sidimaitations; the need to stay within line of stghf remote
pilot; decrease in pilot reaction; and pilot fatgu A higher degree of onboard autonomy includesatility to
respond automatically to hardware failures andaedpo changes in the environment through onbogpéhnning
and execution. These tasks are routinely perforineluman pilots; automating these tasks onboasdlteein a
more robust UAS that is not as susceptible to ortbslures. Such autonomy could potentially l¢ac decrease
in operational costs.
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Low altitude UAS operations present further chajkes not encountered in high altitude flight. Tierrand
urban structures may become hazards to the saffehye dJAS, and must be treated as obstacles. Adlasion of
terrain and urban structures as obstacles potigniralreases the overall obstacle density withigiveen mission
environment; conversely, the distance between olestas decreased. Thus, UAS operating at lovudkis may
have less time available (shorter decision winda@)generate and perform the appropriate manoeufaes
successful obstacle avoidance.

Traditionally, local path planning and trajectorgngration techniques converge to near/optimal isoisitby
minimizing only one cost function (e.g. fuel, tima, distance). However, during each mission; @wllUAS may
have multiple objectives to meet including and Iatted to: safety of vehicle, the immediate enwineent and the
public at all times; successful completion of thession; minimizing fuel, time, and/or distance; améhimizing
deviation from the current path. The use of molitjective optimization allows the generation ofotution which
better reflects the overall requirements of thesmis. For example, multi-objective optimization yralow UAS
operating partially known environments to perforailision avoidance whilst optimizing the solutiom &lso meet
other objectives, such as mission completion; ghatentially increasing mission efficiency. Howevere solution
must still be generated within this limited decisiwindow; otherwise the platform must resort toeeinig a safe
state.

UAS vehicles can be broadly categorized into twmety rotary and fixed wing. Rotary UAS travelintdawv
velocities have the capability to brake and hoti¢hé planner does not converge to a solution withe available
decision window, thus averting a potential collisioFixed wing and Rotary UAS traveling at highetocities can
offer increased mission efficiency, but an alterreatollision avoidance strategy must be availabke solution is
not available within the decision window. The csihin avoidance strategy can be in the form of diee@é non-
holonomic safety manoeuvre§. A collision avoidance strategy implicitly guatees vehicle safety, however
mission efficiency decreases each time the plagaenot converge to a solution within the decisiondow.
Decreasing the frequency of which safety manoeusresrequired during operations can potentiallyd lé@ an
increase in mission efficiency.

This paper presents a new framework for Multi-Otyec Flight Management of UAS operating in partiall
known environments whilst addressing replanningetioonstraints. An outline of UAS local path plamni
approaches in partially known environments andtedlavork is given in section Il. Section Il prese an
overview of the proposed framework, while simulati@sults in section IV show how the addition of/@S can
increase mission efficiency. Finally, conclusi@ms presented in section V.

[I.  Problem Formulation

A local path planning system is generally descriagd system which generates a smooth trajectory (AS
to follow through a set of mission level waypointét higher altitudes and typically remote opergtincations;
UAS are not constantly required to avoid staticdgnamic obstacles. Therefore a trajectory generasy be all
that is required to generate a smooth trajectaqutih mission level waypoints.

During low altitude local path planning however.e tlienvironment may present several challenges not
encountered in high altitude flight. Terrain andan structures become hazards to the safety A% and must
be treated as obstacles. Due to the limited dissrbetween objects, UAS have a limited decisiomdeiv to
generate and perform the appropriate manoeuvresuocessful obstacle avoidance. Low altitude lquath
planning may require the additional inclusion dbeal waypoint planner to generate a collision fpa¢h between
mission level waypoints first.

If UAS possess the capability to safely navigate ktitude environments, additional civil applicats can
potentially include: traffic surveillance; resporteeemergency situations; assisting search andueesfforts and
aerial mapping.

A. Related work

This section provides an overview of relevant Iqeath planning systems presented in literature.
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1.  Known Environments

SingH presents a 2D local path planning algorithm, whjeherates an optimal trajectory through a preddfin
set of waypoints in an environment knownpriori using Model Predictive Control (MPC) techniques.hisT
algorithm performs the planning component off-littesreby limiting UAS operations to purely statiov@éonments.

Schouwenaaf's® presents a 2D MPC based local path planning ahgorivhich takes into account a static 2D
environment knowm priori. The solution is optimized using Mixed Integenéar Programming (MILP). The safe
state component of the algorithm ensures vehidktysé preserved if solution is not generated inith specified
deadline.

Other research into planning in known environmérats been presented by RathBugenetic algorithms) and
Petterssoret al. from the Wallenberg Information Technology and é¢ndmous Systems (WITAS)(probabilistic
planning).

Navigation in known environments implies the uséigh resolution maps. This may not be feasibtestame
forms of UAS (e.g. mini or micro variants) due tost; computational; or payload limitations. Atkeahative is to
use active or passive onboard sensors to perfolimeomapping; this is generally referred to as plag in partially
known environments.

2. Partially known Environments

Sebastiaret al.'? present a local planning system which construgtgrially known 3D environment online
using LAser Detection And Ranging (LADAR) informari. A Laplacian (a type of potential field implemt&tion),
drives the UAS towards the goal until an obstasléétected by onboard sensors. A reactive calliaimoidance
system, entitled the dodger is activated once atagle is detected. The obstacle avoidance manéilimited to
either moving around, or over an obstacle.

Griffiths et al.™ present another local planning system which géesrn approximate 3D representation of the
environment using low resolution map datAn initial path is constructed using a rapidlypkxing random tree
(RRT) algorithm. Similarly to Sebastignif the UAS encounters an obstacle which has eenkplanned for, an
obstacle avoidance algorithm (using static LADARsSBg data) is activated to perform collision aaside.

Other research into planning in partially known ieonments has been presented by*SHi(MILP optimization
of LADAR sensing data) and NikolBgEvolutionary optimization of simulated sensingaja

Planners onboard UAS operating in partially knowmvionments generally overcome the possibility of
becoming trapped in local minima (it is still pdssi though), by planning in 3D. However, if a sepe collision
avoidance algorithm is activated when an unforesdxstacle is detected; the safety is of UAS usuadigomes the
only priority. This can potentially lead to subtiopal results since the optimal path to the goaly mat be
considered during the obstacle avoidance scenafidditionally, the capability to consider multiplebjectives
could potentially benefit UAS operations in thigsario.

Manoeuvre Generation; developed by FrazZdf refers to the generation of a smooth trajectorgrav set of
waypoints through concatenation of predefined tamd manoeuvre primitives. Various UAS flight modes
including: cruise; coordinated turn; climb or desteand fixed wing safety manoeuvres (e.g. loitgsh be
represented through trim and manoeuvre primitives.

Richard$® presents a local path planning system which api@zzoli’$° manoeuvre generation technique to
low altitude 3D collision avoidance scenarios. Adified A* algorithm is used to generate a set @ypoints.
Sub-optimal trajectories are generated using mameeautomaton which explicitly takes UAS flight exepe and
non-linear motion constraints into account. Sinjia Singtf* and Schouwenadrshave applied manoeuvre
generation to the local path planning problem.
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B. Unresolved Local Path Planning Considerations

There are two research challenges which have ret bgplicitly considered in the local path planngygtems
presented: optimization with respect to multiplgestives; and the more efficient use of the avédatecision
window to generate an optimal solution.

Local planning systems presented in this sectidmipe a solution by minimizing only one cost fuioct (e.g.
fuel, time, or distance). However, during eachsiois; civilian UAS may have multiplebjectives to meet. Multi-
objective optimization allows convergence to a 8otuwhich takes numerous aspects of the missitmancount.
Additionally, each cost function to be met can ldeeg a weighting to provide an indication of thepwntance
placed on each objective. For example, during atfers in collision free environments, greater weigan be
placed on fuel, time and distance objectives, wa@perations in environments with obstacles ptesay require
greater weighting to be placed on safety cost fanst

UAS operating without mapping sensors are resttit¢te operations strictly within known regions aaie
through onboard maps. Mapping sensors allows tpasaoutside known regions and may decrease dveral
payload requirements since onboard maps are optiorwever, planning in partially known environnt&n
requires processing of sensor information and piatign fusion of sensor data with onboard mapavidilable. The
computational complexity of this process is notleigy taken into account by any of the local pailanning
systems presented. It is generally implied thdficsent processing power is available that thi®qess occurs
instantaneously. With limited onboard computatlaeaources; environment abstraction will takendtdi length of
time; thus decreasing the overall time available tfe path planning and trajectory generation atlgors to
converge to a solution within the available degisiandow.

Environment abstraction, path planning and trapgcteneration layers each require a “slice” of dvailable
decision window assuming that sufficient computadiopower is available to converge to a solutiothimi the
planning time available. To the author's knowledgethe available computational power is insufiei, no
research in literature explicitly attempts to maderthe time available to each layer to genergiartal solution. If
the flight management can provide a partial or sptimal solution within the decision window, thioavs the
UAS to continue operations without having to resoréntering a safe state.

This concludes the overview of related work in fledd of low altitude local path planning. The posed
solution presented in the next section incorporateki-objective optimization into the local patlapning process.
Additionally the proposed solution identifies thengputational complexity of environment abstraction planning
and attempts to generate a partial solution ifehegrinsufficient time for the planning algorithimsconverge to an
optimal solution.

lll. Proposed UAS Framework

In general, the local path planning process caddseribed as an iterative procedure (Figure 1) revoarrent
sensor data is fused with onboard mapping infolona(if available) to form an abstraction of the korment. The
environment abstraction is used by an intermedptth planner to generate a set of collision fregpomts
between two mission level waypoints. Finally, eosith trajectory is generated through the interntedigaypoint
set by a trajectory generation algorithm.

This entire process must be completed to ensurtetliealocal path planning system converges to atisol
within the finite decision window (Figure 1). litiations where the planner cannot converge toliisn within
the time available; a partial solution should beitable so the UAS can continue with the missiothait having to
resort to entering a safe statePotential benefits from more efficient use oé tvailable decision window are
increased mission efficiency and reduced operaticrsts.
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Figure 1. Finite Decision Window during Local PathPlanning

A. Proposed Architecture

The architecturd (Figure 2) presented in this section is suited &S operations in partially known
environments, and potentially offers greater mis®#ficiency and mission completion opportunitiescomparison
to the current approaches presented in Secti@ubsection A.

The inclusion of an FMS can provide greater mis@éitiency through more resourceful use of theilaisée

decision window. The FMS dynamically allocatesnitd “slice” to the environment abstraction, patid trajectory
generation layers, with the length of time depehdsn available onboard computational resources @retall

decision window length.
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Figure 2. Proposed Architecture for Local Path Planing Concept Presented
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1. Flight management layer

The FMS is an expert system which manages and sldsethe execution parameters of the environment
abstraction, path planning and trajectory genemd#agers. In scenarios with approaching real titeadlines, there
is a limited amount of time available to the UASctinverge to a new feasible solution before a gafetnoeuvre
must be executed ensuring the safety of the vehicle

The environment abstraction layer requires a fil#gagth of time to generate a representation of the
environment. The time remaining is then allocai®dhe path planning and manoeuvre generation dayém a
worst case scenario, the path planning algorithnstnine terminated while enough time remains to geaea
manoeuvre between two waypoints. To ensure tleaFMMS can moderate the length of time allocatezhtth layer,
certain limitations must be emplaced on the: emvitent abstraction, path planning and trajectoneggion layers.
These limitations are discussed in the followingtisas.

2. Environment abstraction layer

The environment abstraction layer uses availablsee map and other onboard data to create a efsg®nN
of the immediate environment. Environment absivacinust be performed first since trajectory anthgdanning
layers must have knowledge of possible hazardsiwiphoximity before a suitable navigation stratetpn be
devised. Additionally, if the environment abstiantlayer does not output a situational represemtawithin the
time allocated by the FMS, its operations are deteiso the planning layers can attempt to genexdesasible
solution within the time remaining.

3. Trajectory generation layer

The trajectory generation layer creates a feadialectory through a set of mission level waypointsilst
meeting dynamic and kinematic constraints of theSUatform. This is sufficient for operations ibstacle free
environments however, in the presence of obstatilespath planning layer must be initialized to eyate a set of
intermediate waypoints representing a collisiore frgath between mission level waypoints. Additibnathe
trajectory generation algorithm should possess#pability to output a solution which is either tigr sub-optimal
or both.

4. Path planning layer

During operations with obstacles in proximity, tpath planning layer is initialized to generate & sk
waypoints which represent a safe feasible path fiteencurrent position to the next mission level p@ipt. The
planner must take platform kinematic and dynaminst@ints into account to ensure that waypointsegead
within the platform performance envelope.

For the path planning algorithm to output a solutigithin a predefined set of time, it is desirafie it to
display anytime qualities, where either a partiati/ar sub-optimal solution can be output wheneesuired.
Additionally, the path planner can operate in datab the environment abstraction trajectory gatien layers, but
must generate the forthcoming intermediate wayplo@iore the trajectory generator is initializedheTtrajectory
generator requires this information to calculate ¢xit attitude of the UAS when generating a triajgcbetween
two waypoints.

This concludes the overview of the proposed plaprframework for UAS operations in partially known
environments. The following section provides ampliementation overview and subsequent results toodstrate
the feasibility of the framework presented in .

IV. Demonstration of Framework Feasibility

The framework was implemented using MATLAB to dersipate its potential to improve overall mission
efficiency during operations in partially known émmnments. The following section provides an ovemw of the
implementation regarding the: FMS; environment rasion; path planning and trajectory generatigmeia.
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A. Framework Implementation Details

A 2D environment representation was setup to sitewda urban scenario (Figure 3) where the UAS assigt
included safe and efficient navigation through & afepredefined mission level waypoints. The #nidecision
window is calculated as the time taken to compthee current stage, where each waypoint pair isrdeghas a
single stage. Additionally a fixed wing platform used during simulation due to their incapacityotake and
hover. If no solution is available once the desiswindow comes to an end, the UAS permanentlyreraesafe
state using a loiter manoeuvre.

Waypoint 3 X
m B W
7 m m m Obstacles
£ Present
m . W
200 Waypoint 2 x
Stage
1
100 Waypoint 1
UAS‘ Starting ]ocation\

L L L L L
-200 -100 0 100 200 300 400
X (metres)

Figure 3. Environment Setup for Simulation

The path planning algorithm (Figure 4) implemeriteased on Smith’s fuzzy logic path planning ailtyon®®.
The iterative nature of Smith’s algorithm makegyifite suitable for local path planning as a parsalution is
available if the algorithm is terminated by the FM&ore completion; it also performs planning widispect to
multiple mission objectives.

Iteration 1 Safe state (fixed >
wing loiter . .
manoeuvre) ! W s !

Inserted Waypoint ‘7; Stage

£ Waypoint 2 2
Iteration 2
H:E N
Stage
E RN 3
Iteration 3 [ ] i m W
Stage
Eim N 4
E EE

Figure 4. Path Planning Algorithm
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The trajectory generation algorithm (Figure 5) mséd on Frazzol® manoeuvre generation framework.
Frazzolf® states that pre-defined discrete classes of mamegwcan be concatenated together to create smooth
trajectories through a set of waypoints. Reprasgraircraft motion as classes of manoeuvres hegiqusly been
demonstrated i ** 2> 2% Frazzoli’'s manoeuvre generation research ansesutent work has been limited to rotary
UAS only; thus new trim and transition manoeuvres $er fixed wing UAS operating in cruise and cdaeded turn
flight modes were created for simulation.

00—

400 -

Transition manoeuvre
Manoeuvre (primitive)

¥ (metres)
w
=1
=]
T

Coordinated turn
(Trim primitive)

Least cost trajectory

200 —

00—

! ! ! ! ! ! !
a
-200 -100 1} 100 200 300 400
¥ (metres)

Figure 5. Trajectory Generation Algorithm (six predefined coordinated turn trim primitives)

Multi-objective optimization is applied to both pgtlanning and trajectory generation algorithmszZy multi-
objective optimization is already a component ofitSi® path planning algorithfii however a simpler aggregation
of the utility of multiple objectives (a utility adne denotes a cost of zero) has been appliec tvajectory solution
for computational efficiency.

The FMS initializes the environment abstractiorelap generate a representation of the environmihin the
current stage. If obstacles are detected, thepatimer is initialized to generate a set of wagpivithin the stage
to reach the next mission level waypoint. The tiramaining is allocated to trajectory generatioyetawhich
iteratively finds a more optimal solution until tieeis insufficient time left. If excess time remsiafter the
trajectory generator outputs a solution, this tileeallocated the environment abstraction; path mgtem and
trajectory generation layers to generate solutfonguture stages. Conversely, if no solution vsitable then the
UAS resorts to entering a safe state indefinitely.

B. Simulation Setup

The Aerosonde UAS has been used as the vehiclenphafor the simulation results presented in thiéofeing
section. During the simulation the platform opesaht a constant velocity of 15 m/s in either @uis coordinated
turn flight modes. The maximum roll angle is se#6 degrees; this has been verified using thegegeof freedom
Aerosonde UAS model available with the Aerosim Bkrt for MATLAB. The objectives chosen for simiidet
include: distance minimization, meeting yaw angguirement (generated by path planner) at goatitmtand
distance of candidate solution from the goal largtall objectives have equal weighting.

The simulation has been performed using three ctempuwvith varying processing capabilities (Tabletd)
simulate the how an FMS can potentially increasssion efficiency of the same UAS with different quutational
capabilities.
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Computer Processor Memory MATLAB Operating
(RAM) Version System
A Core 2 Duo @ 3.2 GHz 2 GB 7 Windows XP
B Core 2 Duo @ 2.13 GHz 2 GB 7 Windows XH
C Centrino Duo @ 2 GHz 2GB 7 Windows Vista

Table 1. Available Computing Power of Candidate Camputers

C. Simulated Results — Section 1: FMS Not Enabled

The first set of results show the algorithms pemfance without the FMS enabled for each computirigpse
The algorithm finds a feasible path using a comtimmaof: cruise; six coordinated turn trims; anat tresulting
transitions between candidate trim manoeuvres.

400 (—

300 -

¥ (metres)

200 (—

100 —

o | L L 1 L L L
200 100 [ 100 200 30 400
X (metres)

Figure 6. Least Cost Trajectory Solution generatedising Cruise and six Coordinate Turn Trims

The mean results for a Monte Carlo setup (100 d#hyur iterations) are presented (Table 2). Theltota
simulation run time is given in conjunction witheamge run times for each layer. The decision windepresents
the time available all layers for planning (Figie If the decision window remaining at the endtaf simulation is
positive, then a potentially more optimal trajegt@ould have been generated through more effiaiset of the
decision window. Conversely if the remaining dexiswindow is negative, insufficient time (or presang power)
was available to generate the solution in real tinlbowever, it may still be possible to find a leggtimal path
within the given decision window.

Algorithm Run Time [mean (std dev)] (seconds) Decisi Utility
- ecision Threshold
Computer | gy Apstraction| Path Planning gggf;%gn Total Run RWmdpyv (Upper
Layer Layer Layer Time emaining Bound)
A 0.706 (0.234) 1.345 (0.048) 7.899 (0.102 9.93Q0) 15.136 (0.227) 0.95
B 1.318 (0.346) 2.013 (0.053) 12.066 (0.0QT) 15.30829) | 9.790 (0.274)| 0.95
C 4.893 (0.797) 3.624 (0.883) 25.356 (2.76T) 33.8r285) | -8.095 (3.719) 0.95

Table 2. Algorithm Run Time for Cruise and six Coadinated Turn Trim Manoeuvres (FMS not enabled)
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Figure 7. Available Decision Window during Simulaion (Computer A - left) (Computer C — Right)

Table 3 presents the optimality of the solutionrfdun terms of its utility rather than cost. Whe optimal
solution in terms of least cost solution approacter®, the normalized utility of the solution apgpcbes one. To
generate solutions more efficiently, an upper boah@.95 has been set. Once a feasible solutidouisd which
exceeds this value, the trajectory generator dtmgdeng for other possible solutions for the cutrstage and moves
to the next stage. This prevents the trajectonyegmor continuously searching for other solutievisen an
acceptable solution has been previously discoverElais can be seen in Figure 7 where the trajech@rnerator
finds a solution with a utility above 0.95 relafiydast for stage 4 and immediately proceeds td finfeasible
trajectory solution for stage 5.

Computer Utility Value of Output Trajectory (max value = 1) Utility Threshold
P Stage 1| Stage2 Stage|3 Stage4 Stage5 Averagdpper Bound)
A,Band C| 0.872 0.863 0.933 0.977 0.891 0.907 0.95

Table 3. Utility V alue of Output Trajectory (FMS not enabled

D. Simulated Results — Section 2: FMS Enabled
The second set of results present an overvieweoalgorithms performance once the FMS has beereshab

Computers A and B have sufficient processing paweeagenerate a solution for the given scenario ai tiene.
Since the time required finding a feasible solutieas less than the UAS flight time, this resultadai positive
decision window remaining at the end of the non Féh&bled simulation (Table 2). Enabling the FMS&ules in
more efficient use of the decision window (Figu® and subsequently, a more optimal solution iséb(Figure 8)
(Table 4).

Computer C has insufficient processing power abgldao generate a solution in real time; thus #maining
decision window is negative (Table 2). The FM&mipts to find a sub-optimal solution, however nasfele
solution can be found within the given decision daw of stage 2 (Table 4) (Figure 11); the UAS ntheh resort
to entering a safe state (Figure 9). A feasiblatam was discovered by the FMS by decreasinguthity threshold
to 0.85 (Table 5). The resulting solution was legdimal in comparison, but allowed the UAS to done
operations without having to initiate a safe statmoeuvre (Figure 10).
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Figure 8. Trajectory Solution Generated (No FMS left) (Computer B with FMS enabled — right)

Figure 9.
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Trajectory Solution Generated (FMS Enabéd) (Computer C: utility threshold 0.95 - left)

Computer Algorithm Run Time [mean (std dev)] (seconds) Decision Utility
Env Abstraction| Path Planning Trajectory Total Run Window Threshold

Layer Layer Generation Layer Time Remaining (Upper

Bound)
A 1.194 (0.349) 1.531 (0.05)| 23.236 (0.2889 25.96047) | 0.344 (0.017) 0.95
B 1.394 (0.353) 2.107 (0.067) 22.322 (0.306) 25.8237) | 0.071(0.011) 0.95
C 2.105 (0.46) 2.211 (0.121) 9.452 (0.635) 13.7770.6 | 0.033 (0.046) 0.95
C 4.114 (1.0) 3.276 (0.264) 16.071 (0.742) 23.4631)1| 1.897 (1.008) 0.85

Table 4. Algorithm Run Time for Cruise and Coordinated Turn Trim Manoeuvres (FMS Enabled)
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Figure 11. Available Decision Window during Simuléion (Computer C: FMS not enabled - left)
(Computer C: utility threshold 0.85 - right)

Table 5 presents an overview of the utility valdiehe output trajectory after the FMS has been khblt can
be seen that candidate systems possessing stufffmiecessing power to compute a solution in reaktibenefit
from an increase in the average utility value of tutput trajectory once the FMS is enabled. Aoldétly
computer C is able to find a feasible solutionealrtime once the utility threshold is reduced 850 The utility
threshold is currently set manually. Implement@ngariable utility threshold has the potentialualier increase the
effectiveness of the FMS.

Computer Utility Value of Output Trajectory (max value = 1) Utility Threshold
Stage 1| Stage2 Stage|3  Stage 4 Stage 5 Average (Upper Bound)
A 0.972 0.958 0.952 0.965 0.932 0.956 0.95
B 0.972 0.958 0.936 0.924 | 0.867 0.931 0.95
C 0.8715 | O 0 0 0 0 0.95
C 0.8715 | 0.8625 | 0.8845| 0.9063 | 0.8759 | 0.8801 0.85

Table 5. Utility value of Output Trajectory (FMS Enabled)
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V. Conclusions

This paper has presented a new framework for robigctive flight management in time constrained low
altitude local environments. A finite length ofm defined as the limited decision window was dyicatly
distributed among the: environment abstractionh gd&nning; and manoeuvre generation layers byF1&. In a
particular scenario where the UAS does not posseBiient processing capabilities to generate la dolution
within the time available, a partial and/or subhmatl solution was found in several scenarios. Hiimwvs the UAS
to continue the mission without having to resortetatering a safe state; thus potentially increasimgsion
efficiency.

It is expected that in future, the overall capdieti of the framework implementation will be exteddn several
areas. 3D planning and trajectory generation carefaployed through the implementation of additioftight
modes, for example climb and descend. Additionalhe implementation of a variable utility thresthahay
increase the effectiveness of the FMS further.
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