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Abstract

When modelling and simulating networked control systems (NCSs) over TCP/IP
network protocols, we obtained network traffic data sets with irregular behaviour.
Analysing the data sets revealed multifractal network traffic. Typical data sets are
given in this paper together with our preliminary analysis. The network architecture
and traffic specifications that generated the multifractal traffic are also described in
detail.

1 Introduction

Modern large-scale manufacturing and process control systems demand in-
creasing integration of information, communication, and control. As a result,
real-time control in these systems is implemented over communication net-
works, which are used to transmit measurement, control, and management
signals [1–6]. This requires highly reliable, flexible, simple, and cost-effective
network technologies to replace traditional peer-to-peer interconnection tech-
niques.

Two challenging problems in analysis and design of networked control systems
(NCSs) are network induced delays and packet dropouts [5,6]. Both problems
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can significantly degrade the NCS’s performance. It has long been realised that
network induced communication delay is time-varying and non-deterministic,
suggesting that the delay behaviour is unpredictable. Packet dropout occurs
when communication networks are unreliable or the communication latency is
so big that the packet has to be purposely dropped.

The stochastic behaviour of network induced time delay in NCSs has been
modelled and analysed using various techniques. However, direct evidence has
not been presented in the open literature to support the fundamental as-
sumption of the randomness of the behaviour of network induced time delay
in NCSs. We recently proposed a new real-time communication protocol for
NCSs and studied the statistical properties of network induced communica-
tion delays [5,6]. Our results have shown that network induced delay exhibits
complicated behaviour with significant jitter, which must be compensated for
in NCS control design for real-time applications. Our analysis in this paper
reveals the multifractal nature of NCS network traffic under certain conditions.

On dynamics of network traffic, early work by Leland et al. investigated the
self-similarity nature of Ethernet traffic [7]. Since then, self-similarity behav-
iour, i.e. long-term memory, has also been observed in several other types of
network traffic in general network systems. However, this phenomenon has not
been reported for networked control systems in which real-time requirements
are essential, and will be addressed in this work for NCSs that employ our
recently developed real-time communication protocol [5,6].

When modelling and simulating an NCS over a TCP/IP based communica-
tion network, we observed various network traffic. A typical data set is shown
in Fig. 1, which depicts network induced communication delay over a certain
period of time from sensors to the central control computer and then to actu-
ators. The objective of this paper is to analyse the behaviour of the network
induced delay as shown in Fig. 1.

In order to analyse the dynamics of the network traffic shown in Fig. 1, we treat
the data set in Fig 1 as a time series. To study time series, Hurst [8] invented
a new statistical method — the rescaled range analysis (R/S analysis); then
Mandelbrot [9] and Feder [10] introduced R/S analysis of fractal records in
time into fractal theory. R/S analysis has been applied to many areas in science
and engineering. For example, Yu and Chen used R/S analysis to distinguish
different DNA functional regions [11].

Multifractal analysis is a useful way to characterise the spatial inhomogene-
ity of both theoretical and experimental fractal patterns [12]. It was initially
proposed to treat turbulence data, and has recently been applied successfully
in many different fields including time series analysis [13,14], financial mod-
elling [15], and biological problems [16–22]. Some sets of physical interest have
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Fig. 1. Irregular Traffic of a TCP/IP based NCS.

a non-analytic dependence of the dimension spectrum Dq on the q-moments of
the partition sum of the sequences. Moreover, multifractality has a direct anal-
ogy to the phenomenon of phase transition in condensed-matter physics [23].
The existence and type of phase transitions might turn out to be a worthwhile
characterisation of universality classes for the structures [24]. The concept of
phase transitions in multifractal spectra was introduced in the study of logistic
maps, Julia sets, and other simple systems. Evidence of phase transition was
found in the multifractal spectrum of diffusion-limited aggregation [25].

In the following, we will first discuss the theoretical background on R/S analy-
sis and multifractal analysis in Section 2. Then, Section 3 will describe the
NCS architecture and traffic specifications that generate complicated network
traffic. In Section 4, we will focus on the analysis of the inherent complex
dynamics of the network traffic shown in Fig. 1. Finally, Section 5 concludes
the paper.

2 Theoretical Background on Time Series Analysis

2.1 R/S Analysis

Denote the dynamics of the network traffic shown in Fig. 1 as x = {xk}N
k=1,

where N is the length of the sequence. This sequence can be treated as frac-
tal records in time. Hurst invented the R/S analysis method to study such
sequences [8]. Later, Mandelbrot [9] and Feder [10] further developed this
method in fractal theory.
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For any fractal records in time x = {xk}N
k=1 and any 2 ≤ n ≤ N , define

< x >n=
1

n

n∑

i=1

xi (1)

X(i, n) =
i∑

u=1

[xu− < x >n] (2)

R(n) = max
1≤i≤n

X(i, n)− min
1≤i≤n

X(i, n) (3)

S(n) = [
1

n

n∑

i=1

(xi− < x >n)2]1/2 (4)

Hurst found that

R(n)/S(n) ∼ (
n

2
)H (5)

where H is called the Hurst exponent.

As n changes from m to N , we obtain N−m+1 points in ln(n) v.s. ln(R(n)/S(n))
plane. Then, we can calculate the Hurst exponent for the time series using the
least-square linear fit.

The Hurst exponent is usually used as a measure of complexity. The trajectory
of the record is a curve with a fractal dimension D = 2 − H [10, p. 149].
Hence a smaller H means a more complex system. When applied to fractional
Brownian motion, if H > 1/2, the system is said to be persistent, which
means that if for a given time period t the motion is along one direction, then
in the time succeeding t it is more likely that the motion will follow the same
direction. For a system with H < 1/2, the opposite holds, that is, the system
is antipersistent. But when H = 1/2 the system produces Brownian motion,
which is random.

2.2 Multifractal Analysis

First we define a measure from a positive time series as is done for the length
sequence of a genome [26]. Let Tt, t = 1, 2, · · · , N, be the time series. We
define

Ft = Tt/(
N∑

j=1

Tj) (6)
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to be the frequency of Tt. It follows that
∑

t Ft = 1. Now we can define a
measure µ on interval [0, 1] by dµ(x) = Y (x)dx, where

Y (x) = N × Ft, when x ∈ [
t− 1

N
,

t

N
]. (7)

It is easy to see that
∫ 1
0 dµ(x) = 1 and µ([(t− 1)/N, t/N ]) = Ft.

The most common numerical implementations of multifractal analysis are the
so-called fixed-size box-counting algorithms [27]. In the one-dimensional case,
for a given measure µ with support E ⊂ R, we consider the partition sum

Zε(q) =
∑

µ(B)6=0

[µ(B)]q, (8)

q ∈ R, where the sum runs over all different nonempty boxes B of a given
side ε in a grid covering of the support E, that is,

B = [kε, (k + 1)ε]. (9)

The scaling exponent τ(q) is defined by

τ(q) = lim
ε→0

log Zε(q)

log ε
(10)

and the generalized fractal dimensions of the measure are defined as

Dq = τ(q)/(q − 1), for q 6= 1, (11)

and

Dq = lim
ε→0

Z1,ε

log ε
, for q = 1, (12)

where Z1,ε =
∑

µ(B) 6=0 µ(B) log µ(B). The generalized fractal dimensions are
numerically estimated through a linear regression of

1

q − 1
log Zε(q)

against log ε for q 6= 1, and similarly through a linear regression of Z1,ε against
log ε for q = 1. D1 is called the information dimension and D2 the correlation
dimension. The Dq of the positive values of q gives relevance to the regions
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where the measure is large. The Dq of the negative values of q deals with the
structure and the properties of the most rarefied regions of the measure.

By following the thermodynamic formulation of multifractal measures, Canessa [14]
derived an expression for the “analogous” specific heat as

Cq ≡ −∂2τ(q)

∂q2
≈ 2τ(q)− τ(q + 1)− τ(q − 1). (13)

He showed that the form of Cq resembles a classical phase transition at a
critical point for financial time series. Later, we discuss the property of Cq for
the time series of network induced delay in real-time NCSs.

3 Network Architecture and Traffic Specifications

Now let us describe the architecture of the networked control system that
we modelled and simulated [5]. A multilevel hierarchy was adopted in the
NCS; from top to bottom are management computers, control computers,
smart sensors and actuators, and the plant to be controlled. There are 30
smart sensors and 20 actuators, respectively, in the NCS. We used this setting
to model a middle-scale industrial process or multiple small-scale industrial
processes.

The interconnection of all devices of the NCS using Ethernet-based TCP/IP
protocols is shown in Fig. 2. In this logical diagram, notations S1, S2, · · ·, and
Sn represent n smart sensors, n = 30; and A1, A2, · · ·, and Am are smart
actuators, m = 20. All smart sensors and smart actuators are connected to a
switch. All hosts in the control computer area and the management computer
area are connected to another switch. The two switches are interconnected
to one another. Moreover, one control computer was used as the central con-
troller, and other control computers are used for information processing or
display. Our real-time communication protocol for NCSs [5] is embedded into
this network architecture.

Control tasks are periodic with the control period being 200ms. We use C1
through C5 to represent 5 control computers; and assign C1 to be the cen-
tral controller and C5 to be the control server, respectively. Furthermore, we
use M1 through M5 to denote 5 management computers in the NCS. Traffic
specifications of the NCS are summarised below in Table 1 [5].
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Fig. 2. Network architecture for the TCP/IP based NCS.

Table 1
Traffic flow specifications of the NCS.

No. Traffic Flow Flow Rate

TCP1. 0–50ms: each S1 ∼ Sn ⇒ C1 200 bytes → 8kbps

TCP2. 0–50ms: each S1 ∼ Sn ⇒ C5 200 bytes → 8kbps

TCP3. 100–200ms: C1 ⇒ each A1∼Am 200 bytes → 8kbps

TCP4. 100–200ms: C1 ⇒ C5 1k bytes → 40kbps

TCP5. 0–200ms: C5 ⇒ each C2∼C4 2k bytes → 80kbps

TCP6. 0–5s: each C2∼C4 ⇒ C5 1k bytes → 1.6kbps

TCP7. 0–5s: C5 ⇒ each C2∼C4 10k bytes → 16kbps

TCP8. 0–10min: each M1∼M5 ⇒ C5 60k bytes → 800bps

TCP9. 0–10min: C5 ⇒ each M1∼M5 600k bytes → 8kbps

Packet Size (bytes) - TCP1,2,3,6: 200; TCP4,5,7,9: 1k; TCP8: 100

4 Traffic Data Sets Analysis

We used the open source package ns2 under Unix [28] to simulate the NCS.
All traffic flows over the network were monitored and recorded in a trace file,
and network performance was then analysed by extracting information from
the trace file.

Fig. 1 shows a plot of typical network induced communication delay, which
was extracted from the trace file of our ns simulation. For the time series in
this figure, we calculated the Hurst exponent. The graph of the R/S analysis
of the delay time series is shown in Fig. 3.

Then, the generalized dimensions of the delay time series were computed.
The Dq vs q curve is shown in Fig. 4. It is seen from this figure that the Dq
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Fig. 3. R/S analysis of the data. m = 40, N = 680.

spectra is multifractal-like and sufficiently smooth for the Cq vs q curve to be
meaningful. Depicted in Fig. 5 is the Cq vs q curve corresponding to Dq in
Fig. 4. It can be seen from Fig. 5 that it resembles a classical phase transition
at a critical point.

From the values of the Hurst exponent, Dq spectra and related Cq curve, it
can be concluded that the network induced delay has multifractal nature and
exhibits long-range correlation.
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Fig. 4. Generalized dimensions of the data.

5 Conclusion

Network traffic observed from our modelling and simulations of real-time NCSs
have been analysed using the techniques of R/S analysis and multifractal
analysis. Our analysis results have shown that network induced communica-
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tion delay in the NCSs has multifractal nature. This implies that the commu-
nication delay is long-range correlated, and further suggests that the traffic
irregularity we observed does not represent short-term randomness in the net-
worked induced communication delay.
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