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Abstract—In describing image features it is important to
consider the fact that the appearance of a feature depends on the
scale or resolution at which it is observed. Existing robust image
feature detectors address the issue by selecting a characteristic
scale for each detected feature and subsequently describing the
feature as it appears at its characteristic scale. A new method is
presented for the multi-scale analysis of derivative based image
features that represents a 2D image feature by its locus in scale-
space. An algorithm is also presented for efficiently producing the
discrete loci representations of image features through clustering
features detected at multiple scales. This new method provides an
entry point to potential multi-scale descriptions of image features,
as well as new possibilities for feature set reduction and filtering.

I. INTRODUCTION

In attempting to describe 2D image features for the purpose
of analyzing or describing the 3D objects of which the image
is a projection, it is important to account for the scaling and
deformation that result from 3D to 2D projection. Robust
detectors aim to locate features in a repeatable manner despite
changes in lighting, rotation, scale and projective deformation.
Local features and descriptors provide a compact means for
describing complex scenes, while partially avoiding complex
global transformations. These detectors are typically applied to
applications such as wide base-line matching and calibration,
as well as object recognition and classification.

Derivative based feature detectors such as the Difference of
Gaussian detector [1], [2], Determinant of Hessian detector
[3] and Harris detector [4] operate by producing a saliency
map of an image. The saliency map is a function of image
derivative and indicates regions of high information content.
Features are located by detecting local maxima in the saliency
map. This class of detectors is in general sensitive to the scale
or resolution of the image. A multi-scale analysis is required
to achieve robustness to scale change.

A scale-space representation of an image is obtained by
filtering the original image with Gaussian kernels of different
standard deviations. The scale space then has two spatial di-
mensions and a scale dimension corresponding to the standard
deviation of the applied Gaussian kernel. Discrete scale-space
representations are often referred to as scale-space pyramids.
Lindeberg presents an extensive study on scale-space in [5]

and a study specifically on gradient based image features in
[6].

Several attempts have been made to address the problem of
scale sensitivity in image feature detection. There are several
difficulties facing the existing detectors, as will be discussed
in detail in the next section. These include excessive features,
the need to select the good features from amongst the poor
features, and computational cost. This paper explores a new
method for the scale-space analysis of image features that
addresses and improves upon the listed difficulties.

Section II presents existing scale-space feature analysis
techniques. Section III presents the new feature locus represen-
tation of features, as well as an efficient method for producing
this representation for practical features. Analysis of applica-
tions using the locus representation are discussed in Section
IV. Scale selection is demonstrated as a simple application of
the new locus representation in Section IV-A and its benefits
over simple scale-space maxima are demonstrated.

II. SCALE-SPACE ANALYSIS OF FEATURES

The output of various image feature detectors is known to
be sensitive to a change in scale. In order to achieve scale
invariance, features need to be examined over a range of scales
and described using a scale invariant method. One option is
to simply detect features at multiple scales, as in [7]. The
result is a very large and dense set of features, most of which
are not likely to yield appropriate matches when matching
against a set of features from a different viewpoint. It may be
undesirable to have excessively large numbers of features for
short and medium base-line problems. In general large sets
of features that yield few correspondences present a problem
in terms of computational efficiency. Adaptation processes
applied to features in order to achieve robustness to affine
deformations (for example [8]) cause features to converge to
stable points in affine scale-space. Applying such an adaptation
process to an excessively large set of features results in a large
amount of redundant processing, as the features will converge
to a much smaller set of points. A smaller set of stable features
is desired as a starting point for adaptation.

The most common approach to addressing the scale invari-
ance problem is to select a feature at a characteristic scale



and describe the feature as it appears at the selected scale.
A characteristic scale is selected for a feature by selecting a
scale where an interesting and repeatable occurrence is found.

The simplest method of scale selection is to locate scale-
space maxima — points that represent local maxima in the spa-
tial and scale directions. Implementations have been published
describing scale-space maxima detection using the Laplacian
[6], Difference of Gaussians [2] and determinant of Hessian
[9] functions. These methods commonly use a 3 x 3 x 3 non-
maximum suppression window to locate scale space maxima.
One shortcoming of the method is that it does not account
for the fact that 2D maxima generated by the same structure
at multiple scales can be separated by several pixels between
successive scale levels. The result is that multiple features are
detected in some cases where it is not appropriate and hence,
scale selection fails in these cases.

Scale-space pyramids are often sub-sampled as scale in-
creases in order to reduce the number of image pixels as the
information content is reduced. The purpose is purely to re-
duce processing cost. The scale-space maxima method places
constraints on how a scale-space pyramid can be sampled,
since a practical non-maximum suppression algorithm requires
that the pyramid levels be sampled with the same resolution.
The precision of detection is governed by the sampling density
of the pyramid. Three dimensional interpolation can be used to
estimate a more precise position for the detected scale-space
maxima.

The scale space maxima approach was expanded in [8] by
locating points that are local maxima of the Harris function
in the spatial dimensions and maxima of the Laplacian in
the scale dimension. Utilizing different functions for selecting
scale and for locating spatial position makes it possible to
combine the functions that are most stable in each domain.
The Harris measure produces stable maxima in the spatial
domain, but rarely produces stable maxima in scale-space —
a local maximum can be displaced a long distance over a
change in scale (depending on image structure). The Laplacian
contributes the ability to select a stable characteristic scale by
functioning like a correlation detector for structure size.

An iterative method was also presented in [8] that adapts
each of a set of multi-scale points to a characteristic scale.
For every iteration, the algorithm selects scale by searching
vertically in the scale space for a maximum in the Laplacian
function, followed by relocating the maximum of the Harris
function at the chosen scale. This technique is very accurate
in selecting scale and is a lot more effective in dealing with
unstable spatial localization functions; however it is process
intensive due to its iterative nature. The algorithm also results
in multiple features converging. Although this is an indication
of stability, it also implies that some of the processing effort
is made redundant.

III. SCALE-SPACE FEATURE LOCUS ANALYSIS BY MEANS
OF CLUSTERING

A method is sought to analyze and describe an image feature
over a range of scales, instead of only at characteristic scales.

The objective is to properly keep track of a feature as it
changes over scale and build a representation that is suited
to the dynamic nature of scale-space features with minimum
computational cost.

Denote the scale-space representation of an image I (x) as
the convolution of the image with the 2D Gaussian smoothing
function,

L(x,0) =1(x)xg(x,0).

Apply a detection function D (I) to the scale-space image to
produce a scale space saliency map,

D(x,6) = D(L(x,0)).

Select a point in D(x,0) that is a local maximum in the
spatial dimensions at a particular scale (it does not need to
be a maximum in the scale direction). As the scale dimension
is traversed smoothly, the location of this point will vary
smoothly. Define the locus of the maximal point in scale-space
as Xg = f (0). The objective of the new method for scale-space
feature analysis is to extract the locus f (o) for every image
feature using the information available in a set of multi-scale
features.

The method developed below for extracting feature loci
makes use of the typical behavior of features in scale-space to
cluster a set of multi-scale features into graphs that represent
discrete feature loci. Before the algorithm itself is described,
the typical behavior of features in scale-space is presented.

A. Feature Behavior in Scale-Space

The spatial location of image features generally changes as
scale changes. The velocity of features with respect to scale
depends entirely on the arrangement of physical structures in
an image, particularly steep gradients or edges. The behavior
of features in scale-space can be described as follows:

« Features move away from edges as scale increases.

« The distance a feature is displaced over a change in scale
is related to its proximity to edge structures in the image
and the magnitude of scale change.

« In the presence of a single straight edge, the displacement
of a maximum of the Laplacian function is in the direction
perpendicular to the edge and the velocity is linearly
related to the change in standard deviation of the Gaussian
operator. The maxima of other functions behave similarly,
though the velocity relation may not be exactly linear.

o The velocity of the feature in a corner structure depends
on the angle between the two edges forming the corner
junction.

« Features can converge as scale increases.

o A feature cannot diverge into multiple features as scale
increases, due to the characteristics of the Gaussian
function.

« Features related to different structures are by definition
separated by edges, and as such will be located a sig-
nificant distance apart and will propagate in diverging
directions, at least until the separating structure is no



longer dominant (affected by larger distant structures at
higher scale).

« Converging features accelerate as they approach conver-
gence.

B. The Clustering Algorithm

A pseudo code version of the clustering algorithm is in-
cluded in Algorithm 1. In this section the algorithm will be
described and the relevant design decisions discussed.

Algorithm 1: Clustering Algorithm.

Input:

A set of N features with discrete scale levels [0...n].
The search radius multiplier denoted k.

begin

for i=0— N do

(1) Get the next feature f;.

(ii) if feature has already been clustered then
| go to next feature.

(iii) Create a new cluster C with f; as first feature.
(iv) Set 0 = scale(f;) the scale of the feature.

(v) repeat

(a) Calculate the search radius r = ko;.

(b) Search for the closest feature at scale
level 6+ 1 that is within radius » of the last
feature. Denote this feature fiey.

(c) if feature found within search radius then

if fe has already been clustered then
Detected a convergence.

(1) Duplicate part of the cluster that
Jnew belongs to, starting from fiew
upwards in scale and append the
duplicate section to the current cluster
C.

(2) Continue at (vi).

else

(1) Add fpew to C.

(2) Set 6 = scale (fnew)-

end
else
| Cluster complete. Continue at (vi).
end
until 6 = 6,4,
(vi) Add the completed new cluster to the set of
clusters.

end

end

Output:

A set of clusters. Each cluster lists a set of features in
order, representing the feature locus.

The first step is to detect features using a 2D detector
at multiple discrete scales. The type of detector used is
not important for the overall structure of the algorithm, as
long as a set of features detected at multiple discrete scale
levels is produced. Clustering begins by selecting any one
of the lowest scale features. Next, the area in the spatial

vicinity of the previously selected feature, but one scale level
higher, is searched for features. The choice of search radius
is discussed later. If a feature is found, it is added to the
cluster and the search continues by searching in the vicinity
of the new feature, one scale level higher. If no features are
found in the designated search area or the highest scale level
is reached, then the cluster is considered complete. The next
cluster is constructed in the same way by selecting one of the
lowest scale features and following the same procedure. This
continues until all features have been clustered.

It is possible that multiple features can be found in the
search area of one feature near a point in scale-space where
multiple features converge. In this case the closest feature is
selected to form the next feature in the cluster. There are
different possibilities for dealing with converging features.
One method is to duplicate the shared part of a cluster where
two or more features converge so that there exists a cluster
for each of the original features. This approach to dealing
with convergence has been chosen and implemented for its
simplicity and because it is suitable for the scale selection
method described in Section IV-A. Alternatively, it is also
possible to use a tree structure to represent clusters that include
converging features.

The clusters produced by this algorithm have the following
properties:

o The cluster is in the form of a simple graph with each
element (feature) relating to no more than two other
elements.

o The features in the cluster are ordered according to scale,
and are contiguous in discrete scale.

o All the features in the cluster relate to the same image
structure.

Figure 1 shows the output of the clustering algorithm.
The algorithm was applied to a set of determinant of Hes-
sian features detected in the first image of the “Corridor”
image sequence (the full sequence is available online at
http://www.robots.ox.ac.uk/~vgg/data/ ).

C. Choice of Search Radius

The size of the area searched for new features to add to
a cluster must be chosen large enough to include all features
from the same structure as the current cluster. At the same time
features from other structures should be avoided. The choice
of search radius depends on the behavior of the particular type
of features being clustered; however some basic principles are
generally applicable to most detectors. The given clustering
algorithm does not attempt to analyze image structures in order
to select the feature search area, but depends on knowledge
of feature behavior only. The major factors that need to be
considered are:

1) The expected feature drift velocity in terms of the
number of pixels of displacement vs. the change in scale;

2) How close together features of different structures can
be located;

3) How densely the scale-space is sampled.



Fig. 1. Sub-regions of the first Image of the “Corridor” sequence, with
Clustered Features. Blue circles indicate features and red lines joining circle
centers indicate clusters.

Refer to Section III-A for a discussion on general feature
behavior. The velocity of features located near corners depends
on the angle of the corner, and can be very large where edges
are near parallel. Furthermore, converging features accelerate
as they approach convergence. Based on these observations,
it is desirable to maximize the search radius to improve
the likelihood of locating features that belong to the same
structure.

The dominant limiting factor in choosing a search radius is
the minimum distance that features from different structures
can be located from each other. The determinant of Hessian
detector is considered as an example; This detector produces
maxima at a distance of one standard deviation from an edge.

Therefore, features from opposite sides of an edge can be
located no less than two standard deviations from each other
at any particular scale. The search radius limit for clustering
determinant of Hessian features is chosen as 1.16;, where ©; is
the standard deviation of the last feature added to the cluster,
to compromise between the search area for a given feature and
the search area of a potential neighboring feature at the same
scale.

Figure 2 demonstrates the effectiveness of this method
for search radius selection. Each image shows a case where
a Determinant of Hessian detector is applied to a pyramid
with different scale sampling density. The clustering algorithm
produces consistent results in all cases.

(©) (d)

Fig. 2. An Image with Clustered Determinant of Hessian Features produced
from pyramids with different scale sampling densities: (a) 8, (b) 4, (¢) 2, (d)
1 level(s) per octave of G.

IV. APPLICATIONS OF FEATURE CLUSTERS
A. Scale Selection using Clustered Features

A characteristic scale selection method using clusters is
presented as a demonstration of the utility of the cluster rep-
resentation. Scale selection is made very simple by clustering
features. The cluster represents the feature locus x = f (o).
Denote the scale response function for the image scale-space
(e.g. the scale normalized Laplacian) as S(x,5). For each
cluster, simply evaluate a scale response function at each node
in the cluster. This produces a 1D scale response function
Sy(c) = S(f(0),0). Selecting a characteristic scale for the
image structure described by the cluster is then simply a matter
of analyzing Sy (o). Points chosen on Sy (o) directly translate
to selected features in the cluster. Figure 3 shows an example
of the scale response function of cluster of Determinant of



Hessian features. Characteristic scale selection simply consists
of selecting the features at the local maxima in the function.
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Fig. 3. Laplacian Response of a Feature Locus
Using clusters for scale selection has several advantages
over other methods, including:

« Interpolation can be performed by interpolating the 1D
feature scale response function (for example, using a
parabolic fit) and separately interpolating the x and y
positions of the feature as 1D functions of scale. This
is somewhat simpler than interpolating a position in 3D
scale-space.

« If a very high degree of accuracy is desired, an iterative
technique could make use of the cluster information to
select a good starting position and to guide sampling of
the scale space.

« The clustering algorithm only needs to operate on features
and not necessarily on the scale-space pyramid directly.
The scale-space pyramid may therefore be sampled in any
fashion without causing practical difficulties in the scale
selection process. This has very significant implications
for accelerating both pyramid construction and multi-
scale peak detection.

B. Detector Processing Cost Comparison

Three Determinant of Hessian based detectors were im-
plemented and their processing time compared to test the
performance of cluster analysis:

1) A simple scale-space maxima method using 3D non-

maximum suppression, similar to .

2) A cluster based method using 2D non-maximum sup-
pression in the spatial dimensions, the described cluster-
ing technique and scale selection by selecting maxima
in the scale response functions derived from clusters.

3) A cluster based method using a pyramid that utilizes
progressive sub-sampling of pyramid levels to increase
efficiency.

Note that in this case the Determinant of Hessian function is

used for both spatial and scale localization, in order to simplify

the scale-space maxima method and to have consistency in
the scale selection method used for all three detectors. The
cluster based detectors could easily use a different function for
scale localization in combination with using the Determinant
of Hessian function for spatial localization. All that is required
is that the scale function be evaluated at each feature location.

Similar efficient non-maximum suppression techniques were
used for 2D and 3D maximum detection. The 3D version
of the technique requires only a fraction more computation
time to scan a scale-space pyramid than the 2D version.
All implementations involved double precision floating point
arithmetic. Detectors were applied to the “graffiti” sequence
found at http://www.robots.ox.ac.uk/~vgg/data/ and detector
times and feature counts were averaged across the sequence.

Detector Time (ms) Features

Scale-space Maxima 1451.33 3006.83

Clustered 1581.75 2781.17

Clustered (sub-sampled) 536.98 2178.83
TABLE I

AVERAGED DETECTION TIMES AND FEATURE COUNTS FOR DETECTORS
APPLIED TO THE “GRAFFITI” SEQUENCE.

Average processing times and output feature counts are
presented in Table L. It can be seen that the clustered approach
requires a relatively small amount of extra processing time
and the total time is comparable to scale-space maxima when
applied to the same image pyramid. The clustered approach
also produces approximately 10% less features than the scale-
space maxima method — this is explained in the discussion
of Figure 4 in the following paragraph. The detector using
clustering as well as progressive sub-sampling of the image
pyramid completes in a much shorter time than the other
detectors. This shows that large performance gains can be
achieved by progressively sub-sampling the levels of the
pyramid without any modification to the 2D maxima detector
or the clustering algorithm. The lower number of features
detected when the pyramid is sub-sampled is a result of the
loss of information and aliasing due to sub-sampling.

C. Visual Comparison of Detectors

Figure 4 shows sections of the output of the scale-space
maxima detector and the clustering based method from Section
IV-B applied to various images. Notice that in some circum-
stances the scale-space maxima detector produces multiple
features for a structure where the feature translates a large
distance over a change in scale. The cluster based method does
not suffer the same problem, as it is able to track the feature
over scale and select only features that produce a maximum
scale response. The result is that fewer low quality features are
produced. The last row of images in Figure 4 show the output
of an image section with a large amount of detail. Notice
that in this case, the scale-space maxima detector does not
produce as many unwanted features, and the two detectors
produce similar output. Also notice that the clustering method
recovers more unique features in a few high detail areas, such
as the areas marked by red circles in the last line of images.



Fig. 4. Column (a): Features produced by scale-space maxima detection.
Column (b): Features produced by clustered scale selection.

D. Repeatability Tests

The repeatability test described in [10] was used to compare
the repeatability performance of the cluster based Hessian
detector, the scale-space maxima detector and the Hessian
Laplace detector [10] (an iterative technique using the Hessian
for spatial localization and the Laplacian for scale localiza-
tion). The repeatability test projects features detected in a
test image to a base image using a ground truth homography.
The amount of overlap between each base image feature and
each projected feature is then measured and correspondences
determined according to a minimum overlap threshold. The
repeatability rate is calculated as the number of correspon-
dences as a percentage of the minimum of the number of
features in each image. The repeatability test software, test
data and Hessian Laplace detector software were acquired
from http://www.robots.ox.ac.uk/~vgg. The “bark™ and “boat”
sequences were used for this test, as they involve scale change.

The results of the repeatability tests are presented in Figures
5 and 6. It can be seen that the clustering based method
consistently achieves higher repeatability than the the scale-
space maxima method, while producing only a fraction fewer
correspondences. The more process intensive Hessian Laplace
detector still outperforms the other detectors on average in
terms of repeatability and produces more correspondences.
It is worth noting that the Hessian Laplace detector makes
no effort to eliminate duplicate features arising from the
convergence of multiple features, which may be contributing
to both repeatability and the number of correspondences. The
fact that the clustered approach achieves higher repeatability
than Hessian Laplace in certain cases indicates that it may
provide a better initial starting point for the Hessian Laplace’s
iterative method.

E. Other Potential Applications

A major potential use of clustered features representation is
in reducing excessively large feature sets to a smaller set of
features that are more stable. Image features are often used
to form a compact description of the contents of an image.
If, however, a multi-scale analysis of the scene results in a
very dense set of features, the feature based representation
loses its efficiency. Even after scale selection a feature set
may still be too dense. Changing detection thresholds gives a
coarse method to control feature density; however, selecting a
threshold automatically is not always effective. Feature locus
clusters afford more powerful and relevant options in selecting
features.

The clustered feature representation’s utility for feature
selection lies in that it establishes a meaningful structure based
relation between multi-scale features. It is possible to reduce a
cluster of features to a smaller representation, for example by
performing characteristic scale selection as in Section IV-A
or by treating the entire cluster as a single feature. Other
possibilities include selecting only features based on scale
criteria, such selecting features that are stable over a minimum
number of scale levels, or that exist over a specific range of
scales.
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Fig. 5. Repeatability Test using “bark” sequence and 30% overlap error. (a)
Repeatability Measure. (b) Number of Correspondences.

V. CONCLUSION

A scale-space analysis method has been presented that
can describe the loci of image features in scale-space in the
form of discrete multi-scale feature graphs or clusters. The
method is successful in producing the clusters in an efficient
manner from a set of multi-scale features, without the need
to interrogate the image data directly. Locus based feature
clusters provide a powerful means of feature description, anal-
ysis and selection in that they represent meaningful structure
based relationships between multi-scale features. Tasks such
as characteristic scale selection and filtering features according
to specific scale requirements are made simple.

The example application of feature clusters in automatic
scale selection demonstrates the use of clusters to improve on
simple scale selection methods. The cluster based approach
demonstrates a more refined capability to select features from
a set of multi-scale features, without the need for an expensive
iterative method and without restrictions on the construction
of a scale-space representation of the image.
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