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Abstract 

This paper presents interpretations for association 
rules. It first introduces Pawlak’s method, and the 
corresponding algorithm of finding decision rules (a kind 
of association rules). It then uses extended random sets to 
present a new algorithm of finding interesting rules. It 
proves that the new algorithm is faster than Pawlak’s 
algorithm. The extended random sets are easily to include 
more than one criterion for determining interesting rules. 
They also provide two measures for dealing with 
uncertainties in association rules. 

1. Introduction 

Mining association rules has received much attention 
currently [7]. The frequency of occurrence is a well-
accepted criterion for mining association rules. Apart from 
the frequency, the rules should reflect real world patterns 
[1] [4]. It is desirable to use some mathematical models to 
interpret association rules in order to obtain real world 
patterns. 

The patterns hidden in data can be characterized by 
rough set theory [6], in which the premises of association 
rules (or called decision rules in [6]) are interpreted as 
condition granules, and the post-conditions are interpreted 
as decision granules. The measure of uncertainties for 
decision rules is based on well-established statistical 
models. This only reveals the objective aspect of decision 
rules. However, knowledge in some applications is based 
on “subjective” judgments.    

In this paper, we use granular computing to interpret 
association rules. We first introduce Pawlak’s method [6] 
and formally describe the corresponding algorithm for 
determining strengths and certainty factors of decision 
rules. We then present a new interpretation of association 
rules using extended random sets [3]. An effective 
algorithm of finding interesting rules is proposed using the 
new interpretation. We also show that an extended 

random set can be interpreted as a probability function 
(which can provide an “objective” interpretation) or a 
belief function (which can provide a “subjective” 
interpretation).  

2. Databases to Decision Tables 

Let U be a non-empty finite set of objects (a set of 
records), and A be a set of attributes (or fields). We call a 
pair S = (U, A) an information table if there is a function 
for every attribute a∈A such that a: U → Va, where Va is 
the set of all values of a. We call Va the domain of a.

Let B be a subset of A. B determines a binary relation 
I(B) on U such that (x, y) ∈ I(B) if and only if a(x) = a(y)
for every a∈B, where a(x) denotes the value of attribute a
for element x∈U. it is easy to prove that I(B) is an 
equivalence relation, and the family of all equivalence 
classes of I(B), that is a partition determined by B, is 
denoted by U/I(B) or simply by U/B. The classes in U/B
are referred to B-granules or B-elementary sets. The class 
which contains x is called B-granule induced by x, and is 
denoted by B(x).  

A user may use some attributes of a database. We can 
divide the user used attributes into two groups: condition 
attributes and decision attributes, respectively. We call the 
tripe (U, C, D) a decision table of (U, A) if C∩D=∅ and
C∪D⊆A, where (U, C, D) is a set of classes and each 
class is the representative of a group of records.  

For example, we assume that there is an information 
table (relation) that includes 1000 records of vehicle 
accidents, where the set of attributes is A = {driver,
vehicle type, weather, road, time, accident}. If the user 
only uses 4 attributes and let C = {weather, road}, and D
= {time, accident}. C∪D determines a binary relation 
I(C∪D) on U, and U is classified into 7 equivalence 
classes, as shown in Table 1 (i.e. a decision table), where 
N is the number of records in the corresponding class.  

Using Table 1, we also can get the set of condition 
granules, U/C = {{1,7}, {2,5}, {3,6}, {4}},  and decision 
granules, U/D = {{1}, {2,3,7}, {4}, {5,6}}, respectively. 
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In the following we let U/C = {c1, c2, c3, c4} and U/D = 
{d1, d2, d3, d4}.     

    Table 1. A decision table 

Class Weather Road Time Accident N 

1 Misty Icy Day Yes 80 

2 Foggy Icy Night Yes 140 

3 Misty Not icy Night Yes 40 

4 Sunny Icy Day No 500 

5 Foggy Icy Night No 20 

6 Misty Not icy Night No 200 

7 Misty Icy Night Yes 20 

3. Pawlak’s Method 

Every class in a decision table can be mapped into an 
association rule (or called decision rule in [6]), e.g., class 
2 in Table 1 can be read as “if the weather is foggy and
road is icy then the accident occurred at night” in 140 
cases. 

For our convenience, we assume A = {a1,…, ak, ak+1,
…, am}, C = {a1, …,  ak}, and D = {ak+1, …, am},  where 
k>0, and m>k. Every class f determines a sequence a1(f), 
…,  ak(f), ak+1(f), …, am(f). The sequence can determine a 
decision rule: 

a1(f), …,  ak(f) → ak+1(f), …, am(f)
or in short f(C )→ f(D). 

The strength of the decision rule f(C ) → f(D) is 
defined as |C(f)∩D(f)| /  |U|; and the certainty factor of the 
decision rule is defined as  |C(f)∩D(f)| /  |C(f)|.  

According to the above definitions, we can use the 
following algorithm to calculate strengths and certainty 
factors for all decision rules, where we assume Ni denotes 
the number of records in class i, and UN denotes the total 
number of records in U.

Algorithm 1.
1. let UN = 0; 
2. for (i = 1 to n )  // n is the number of classes 

   UN = UN + Ni;
3. for (i = 1 to n)

   {strength(i) = Ni/UN; CN = Ni;
     for (j = 1 to n)

if ((j≠i) and (fj(C) == fi(C)))
     CN = CN + Nj;

     certainty_factor(i) = Ni/CN; }. 

If we assume the basic operation is the comparison 
between two classes (i.e., fj(C) == fi(C)), then the time 
complexity is (n-1) × n = O(n2), where n is the number of 

classes in the decision table. It also needs a similar 
algorithm to determine interesting rules for Pawlak’s 
method. 

4. Extended Random Sets 

Let U/C be the set of condition granules and U/D be 
the set of decision granules. To describe the relationship 
between condition granules and decision granules, we can 
rewrite the decision rules in Table 1 as follows:  

c1 → { (d1, 80/100),  (d2, 20/100) } 
c2 → { (d2, 140/160), (d4, 20/160) } 
c3 → { (d2 , 40/240)  (d4, 200/240) }  
c4 → { (d3, 500/500) }. 

These determine a mapping Γ from U/C to ]1,0[)/(2 ×DU ,
such that   

1
)(),(

=
Γ∈

snd
icsndfst

 for all ci∈U/C

where Γ(ci) is a set of decision-granule numeral pairs.   
Now we consider the support degree for each 

condition granule. The obvious way is to use the 
frequency in the decision table, that is,  

∈
=
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for every condition granule ci, where Nx is the number of 
records in class x. By normalizing, we can get a 
probability function P on U/C such that  
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for all ci∈U/C.
Based on the above analysis, we can use a pair (Γ, P)

to represent what we can obtain from an information table. 
We call the pair (Γ, P) an extended random set.

According to the definitions in the previous section, 
we can obtain the following decision rules: 

and,...,, |)(|,2,1, iciiiiii fstcfstcfstc Γ→→→    

for a given condition granule ci, where 
)}(,),,{()( |)(|,|)(|,1,1, ii ciciiii snd,fst...sndfstc ΓΓ=Γ      (2) 

We call snd)cP ,...,sndcP
iciiii |)(|,1, ()( Γ×× the 

strengths of these decision rules, respectively; and 
,..., )|(|,1, icii sndsnd Γ the certainty factors, respectively. 

From the above definitions, we have 

||

|| ,
,

i

jii
ji c

fstc
snd

∩
= .

The above definitions about strengths and certainty factors 
are the same as Pawlak’s definitions.  

5. Determining Interesting Rules 

Given an extended random set (Γ, P), it can provide a new 
representation for decision rules. Figure 1 shows a such 
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example for representing the extended random set that is 
obtained from Table 2, where U/C is the set of condition 
granules, and Γ(ci) is the set of conclusions of premise ci

(i = 1, …, |U/C|). Algorithm 2 shows the process of 
creating extended random sets, and the process of 
calculating of strengths and certainty factors of the 
decision rules. 

U/C Γ(ci)

c1 → (d1, 0.8) (d2, 0.2) 

c2 → (d2, 0.875) (d4, 0.125) 

c3 → (d2, 1/6) (d4, 5/6) 

c4 → (d3, 1.0)  

Figure 1. An extended random set 

Algorithm 2. 
1. let UN  = 0, U/C = ∅;   
2. for (i = 1 to n)

   UN = UN + Ni;
3. for (i = 1 to n do ) // create the data structure 

   if (fi(C)∈ U/C)   
    insert((fi(D), Ni)) to Γ(fi(C)); 
 else  
    add(fi(C)) into U/C, and set Γ(fi(C))=∅;

4. for (i = 1 to |U/C|)  

    P(ci) = (1/UN ) × ( snd
icsndfst Γ∈ )(),(

);  

5. for (i = 1 to |U/C|)  // normalization 
   { temp = 0; 

  for (j = 1 to |Γ(ci)|) 
       temp = temp + sndi,j;
  for (j = 1 to |Γ(ci)|) 
       sndi,j = sndi,j/temp; } 

6. for (i = 1 to |U/C|) // calculate rule strengths    
   for (j = 1 to |Γ(ci)|) 
    { strength(ci→fsti,j) = P(ci) × sndi,j;
         certainty_factor(ci→fsti,j) = sndi,j; }. 

        
Because steps 4, 5, and 6 all traverse pairs in Γ(ci) (i = 1, 
…, |U/C|), and the number of pairs in all Γ(ci) (i = 1, …, 
|U/C|) is just n (the number of classes in the decision 
table), the time complexity of this algorithm is determined 
by step 3. In step 3, checking fi(C)∈ U/C takes O(|U/C|), 
so the time complexity of the algorithm is O(n×|U/C|), 
where the basic operation is still the comparison between 
classes. Since |U/C| n, Algorithm 2 is better than 
Algorithm 1 for the time complexity. 

A decision rule jii fstc ,→  is an interesting rule if 

)()|( ,, jiiji fstprcfstpr −  is greater than a suitable constant.  

From the definition of mapping Γ, we have 

jiiji sndcfstpr ,, )|( = . To decide the probability on the set 

of decision granules, we present the following function:   

]1,0[)/(: →DUpr   such that 

Γ∈∈
×=

)(),(),/(
)()(

ii csnddCUc i sndcPdpr    (3) 

We can prove that pr is a probability function on (U/D). 
The algorithm of determining pr is only to traverse the 
data structure as showed in Figure 1. 

Table 2. Probability function on decision granules  
Decision  
Granule Description pr 

d1 Accident occurred at night 0.08 

d2 Accident occurred in daytime 0.20 

d3 Accident not occurred in daytime 0.50 

d4 Accident not occurred at night 0.22 

Table 2 shows the probability function on the set of 
decision granules. From Figure 1 and Table 2 we can 
obtain the probability of pr(fsti,j|ci) for every decision rule 
ci → fsti,j, where fsti,j ∈{d1, d2, d3, d4}. We can get 4 
interesting rules (seeTable 3) if we assume that a decision 
rule jii fstc ,→  is an interesting rule iff 

)()|( ,, jiiji fstprcfstpr −  > 0.  

   Table 3. Interesting rules  
Rule  
Description 

pr(fsti,j|ci) pr(fsti,j)
Interesting  
rule 

c1 → d1 0.8 0.08 Yes
c2 → d2 0.875 0.20 Yes
c3 → d2 0.167 0.20 No
c4 → d3 1 0.5 Yes
c2 → d4 0.125 0.22 No
c3 → d4 0.833 0.22 Yes
c1 → d2 0.20 0.20 No

6. Discussions 

In this section, we discuss other advantages of our 
approach except the time complexity.  We first discuss the 
weight functions for condition granules. We also 
introduce another uncertain measure on decision granules. 
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6.1 Weight Functions for Condition Granules 

The extended random sets are easily to include other 
criteria apart from the well-accepted criterion 
“frequencies” when determining association rules. 

Although the frequency is a well-accepted criterion for 
data mining, it is not the only criterion for support degree 
because some condition granules with high frequencies 
may be meaningless. For example, when we use keywords 
to represent the meaning of documents, we usually 
consider both keywords frequency and inverse document 
frequency (e.g., the popular technique tf*idf in 
information retrieval) because some words (like 
“information”) may have high frequencies in a document 
but they may appear in most documents in a collection 
(e.g., “information” may appears in most documents in the 
information table collection).  

In order to use the above idea, we assume there is a 
collection which contains many databases. Given a 
decision table (U, C, D) of a database, we can define a 
new weight function w on U/C to instead of the weight 
function in Eq. (1), which satisfies  

w(ci)  = (
∈ icx xN ) × log(M/ni)

for every ci ∈(U/C), where M is the total number of 
databases, and ni is the number of databases which contain 
the given condition granule ci. It is easy to do so because 
this definition does not affect the rest calculation of 
decision rules. 

6.2 Uncertain Measures on Decision Granules  

The obvious way to measure the uncertainty of a set of 
decision granules is using a probability function. For a 
given set of decision granules X = {d1, … , ds}, we may 
use

∈Xx
xpr )(  to represent the probability of (d1 or … or 

ds). However, this measure is very sensitive to the 
frequencies of records.  

To consider a relative stable measure, we consider a 
random set (ξ, P) (see [2] [5]) which is derived from the 
extended random set (Γ, P): 

DUCU /2/: →ξ  such that  

})(),({)( ii csndfstfstc Γ∈=ξ  for every ci ∈(U/C). 

The random set (ξ, P) determines a Dempster-Shafer 
mass function (see [2]) mP on U/D such that   

)})(),/(({)( XcCUccPXm iiiP =ξ∈=   (4) 

for every X ⊆U/D.   
This mass function can decide a belief function and 

plausibility function (see [2]) as well. They are defined as 
follows: 

]1,0[2: / →DU
mbel , ]1,0[2: / →DU

mpl  and 

⊆
=

XY Pm YmXbel )()( ,
∅≠∩

=
XY Pm YmXpl )()(     (5)  

for every X ⊆ U/D.         
We can prove that  

belm(X) ≤
∈Xx

xpr )( ≤ plm(X) for every X ⊆ U/D.

Domain experts can use the interval [belm, plm] to 
check if their “subjective” judgments for some 
descriptions are correct.  Table 4 shows the uncertainty 
measures for some descriptions.  

Table 4. Uncertain measures  

Description  Subset  Pr mP [belm, plm]

“d1 or d2” {d1, d2} 0.28 0.1 [0.1, 0.5] 

“d3 or d4” {d3, d4} 0.72 0.0 [0.5, 0.9] 

“d2 or d3” {d2, d3} 0.70 0.0 [0.5, 1.0] 

“d1 or d4” {d1, d4} 0.30 0.0 [0.0, 0.5] 

7. Conclusions

This paper uses granular computing to interpret 
association rules. The main contribution of this paper is 
that the concept of extended random sets is used to 
describe the relationships between condition granules and 
decision granules. It presents a new efficient algorithm to 
find interesting rules in databases. Apart from the 
“frequencies”, the extended random sets are easily to 
include other criteria when determining association rules. 
The extended random sets also provide more than one 
measure for dealing with uncertainties in the association 
rules significantly.  
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