
 3D Scene Annotation for Efficient Rendering on Mobile Devices

Siak Chuan Tan, Binh Pham, Jinglan Zhang and On Wong
{A2.tan;b.pham;jinglan.zhang;o.wong}@qut.edu.au

Abstract

This paper presents a new approach for efficient 3D
rendering on mobile devices, where selective rendering
can be achieved with the help of 3D scene annotation.
By taking advantage of first person environments in
most 3D applications, we are able to annotate the
flooring details of the 3D space. This allows 3D
environments to be interfaced using a higher level view
of objects. With the higher level of scene
understanding, it is possible to determine which 3D
objects are not required for loading or rendering
based on the viewer’s location and its surrounding
constraints.

1. Introduction

The capabilities of mobile devices have improved
significantly since there were first introduced. There is
a growing list of devices which supports hardware 3D
acceleration. These devices range from Personal
Digital Assistants (PDAs) to Ultra Mobile PCs
(UMPCs). However, the limitation of resources in
mobile devices has lead to unrelenting research into
more efficient methods to render 3D graphical objects.

There are several 3D representations such as X3D,
U3D and WPF XAMLs. Although some of these
representations are developed with mobile devices in
mind, mobile devices are still not capable of handling
large amount of 3D rendering. In an attempt to solve
this problem, several techniques such as compression
and progressive transmission were developed.

3D applications employed in mobile devices are
usually based on spatial environments. This is
especially true for 3D applications and games such as
Second Life mobile [1] and Doom, where highly
efficient techniques are required to render walls and
objects to reduce the amount of object rendering.

Selective rendering is a common solution for
improving rendering efficiency, but there are two
perspectives in selective rendering. One can selectively
reduce the quality or the quantity of objects to render.
Transcoding [2-4] is a common means of selective
rendering, where the quality is reduced by distillation

or content adaptation to suit the memory limitation of
the destination device, thus improving rendering
efficiency with an acceptable degraded quality. There
are other methods such as progressive transmission and
adaptive refinement [5-8] which will not be mentioned
in this paper.

Another perspective in selective rendering is based
on the quantity of objects to be filtered, where
redundant objects out of the viewer’s frustum are
removed to reduce memory and computation
requirement. There are several mechanisms such as
Binary Space Partitioning (BSP) [9] and portal
rendering [10] which perform such filtering features,
and these mechanisms will be mentioned in later
chapters.

This paper will investigate problems faced in
efficient rendering of first person environments in
mobile devices. Scenes definition is employed so that
objects can be selectively filtered for efficient
rendering. Current techniques which try to improve on
its efficiency will also be analysed. We will then
present an innovative approach which uses rich
annotation of scenes, followed by implementation and
analysis of results. This paper will then conclude with
the results and future direction of this research.

2. Problems

The common dilemma with 3D object rendering is

selectivity, and this paper will address selectivity by
filtering away redundant objects. It is always desirable
to render or load as few objects as possible, but the
process to identify redundant objects is usually very
computationally exhaustive. Alternatively, simple
techniques can be developed for managing large
amounts of data during an interactive walkthrough of
an architectural model [11].

Both approaches have their own strength and
weaknesses. There is a larger computation requirement
to calculate which objects are within the viewer’s
frustum if rendered objects are to be pre-determined,
but the advantage of this method is a lesser strain on
the memory. However, there is a larger memory but
lower computation requirement if all objects are

Digital Image Computing Techniques and Applications

0-7695-3067-2/07 $25.00 © 2007 IEEE
DOI 10.1109/DICTA.2007.85

196

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10880783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rendered regardless of necessity. Thus it is very
difficult to determine which is more efficient. Using a
concept that it might be more efficient to just render a
subset of the objects without complex calculations, this
research takes advantage of the strengths of both
techniques by providing an easy means for filtering
unnecessary 3D objects without the need for complex
computation, thus allowing large scene scenarios to be
implemented on mobile devices.

Figure 1: Resource extremes of different rendering
methods

In order to achieve quantitative selective rendering,

scenes must be managed so that objects can be
determined if they are to be rendered based on the
scenes. Current scene management approaches such as
BSP and portal rendering are either too
computationally or memory exhaustive, hence such
extremities are not ideal for a mobile environment as
mobile devices have limited resources both in memory
and CPU. This research will address the issue of
resource extremities.

Most methods are also based on static scenes and
the manipulation of scenes in mobile devices is seldom
considered. These scenes will need to be manipulable
especially in collaborative applications. A renovator,
for example, might need to amend some changes to a
house layout remotely due to unforseen circumstances.
Computer games however do not suffer from this issue
as they simply assume that the scenes should not be
changed during playtime. We present a simple
definition mechanism which allows easy manipulation
of scenes for mobile devices, without the need for
exhaustive calculation or computation.

We will now analyse the advantages and
disadvantages of BSP and Portal Rendering in greater
detail.

2.1 BSP

Binary Space Partitioning (BSP) is a very common
approach in 3D scenes management where a space is
subdivided recursively by planes. These planes are
represented by walls in a 3D scene. BSP planes are
rendered from back to front in a similar way to a
typical painter’s algorithm, but do not suffer inter-
overlapping problems the painter’s algorithm faces due
to its subdivided planes. BSP is also used in collision
detection, ray tracing and shadow casting. An example
of how BSP are converted into a BSP tree can be found
in figure 2 [12].

Figure 2: Complexity of BSP trees [12]

BSP’s efficiency is based largely on how well it is

balanced. A poorly balanced tree will have a very poor
order of efficiency, and thus it usually requires a longer
time to produce. BSP trees must also be static, which
means that if the map is changed, the whole tree will
be needed to be recalculated. There are several ways to
address these issues [13] [14], but they tend to be
overly complex and are unsuitable for mobile devices
[15]. Lastly, due to the complexity of the tree, it is
almost impossible for any human intervention via
simple text editing programs.

In rendering terms, BSP renders its walls by
painting through the whole tree from back to front.
This means that there will be many segment of walls
which are redundant but painted nonetheless. More
importantly, the introduction of Z-buffering has solved
a major part of BSP, though at a slighter higher
computation cost.

Lastly, BSP has no ideal way of linking 3D objects
contents to a spatial space. Additional calculations and
rules must be made to determine what 3D objects
content are considered redundant. The Doom game, for

Render
filtered
objects

Render all

Computation
Memory

197

example, needs to maintain a separate list of 3D sprite
objects (called ‘things’) linking to particular sectors,
and these objects are needed to be configured
separately.

2.2 Portal Rendering

Neither BSP trees nor z-buffering, by themselves,
avoid rendering surfaces that are completely hidden by
other surfaces. Portal Rendering and Potentially
Visible Sets (PVS) [10, 16] were first introduced by
Jones in an attempt to solve the ‘hidden line’ problem.
Portal rendering uses the concepts of ‘cells/sector’ and
‘portals’. A cell is a region of space and a portal is a
transparent region which connects cells. Cells also
contain PVS which are essentially arrays of portals of
neighbouring cells. Calculation of rendering objects are
determined if the portal of the cell is ‘stabbing’ the
portal of the neighbouring cell. This is performed
recursively until there are no more potentially visible
cells.

PVS calculations can be a very time consuming
process, but it becomes practically free after
calculations are made. We aim to cater for mobile
applications which should allow scenes to be
manipulable without costing too much resources. As
such, the computational and memory requirements to
regenerate PVS constantly do not suit mobile
environments. There are also several constraints which
might not be feasible in this paper’s targeted mobile
applications, including mandatory concave portals.

Figure 3: Overhead view of a house showing portal
culling frustums.
3. Enclosed Space Definition (ESD)

We now present a simple but innovative approach
to improve rendering efficiency, by using a simplified
but rich definition and concepts of portal rendering.
This can be achieved by creating an annotation
mechanism for better understanding of the 3D scene

and by doing so, filtering off redundant objects. The
decision making process can then be significantly
improved based on new knowledge obtained from the
annotation of 3D scenes. Further filtering techniques
for remaining objects can then be applied or every
object can be rendered without filtering using the z-
buffer techniques.

Enclosed Spaced Definition (ESD) improve
rendering by means of a higher level of 3D annotation.
Instead of partitioning space in a 3D scene by walls,
we introduce rooms over walls. By using a room-based
approach, we are able to determine redundant objects
immediately by filtration. Instead of calculating the
user’s viewable frustum every time on every object to
determine if they should be rendered or loaded, we can
just check for the rooms and determine by enclosed
room based logic.

The goal of ESD is to be slim but enable rich
annotation of the scenes, and it targets mobile devices
which have higher constraints in computing and
memory resources. It is important that there is no
complex pre-computation or calculation of metadata
every time the structure is changed, but the information
stored is yet rich enough to provide useful information
for efficient rendering.

Figure 4: Enclosed Room Concept, 3D objects in
grey regions are filtered.

This mechanism immediately reduces the resource
requirement for loading or rendering a large number of
objects. Only objects which are in the same room as
the user are needed to perform more CPU intensive
operations.

3.1 3D Annotation

198

ESD is annotated into an xml format. The tags and
content of the annotation should be human-readable
and easily understood. This ensures that ESD can be
easily manipulated on different devices using simple
notepad editors even when there are no specialised
applications to edit it.

Although ESD probably has a larger memory
requirement in best case scenarios, it has a constant
performance in its annotation size and searching
efficiency in any conditions. Consistency is a better
trait when different devices with different
computational constraints are involved.

Table 1: Efficiency of ESD vs. BSP
Definition size Best Worst
BSP N N2
ESD N + N/M N + N/M

Searching efficiency Best Worst
BSP N N2
ESD N/M N/M
*N = no of walls M = average no walls per rooms
 N/M = no of rooms

There are 2 types of annotation in ESD. The first

type consists of informative and redundant information
for easy computation, and it is used mainly during the
editing phrases of the ESD. Upon completion of
editing, this annotation can be compacted into the
second type in the form of a slim version for reduced
memory upkeep. The two versions of annotation are
inter-convertible. These two versions will be
mentioned in the next sections.

3.2 Manipulation

Because ESD is compiled to ensure human

readability, it is possible to edit ESD information with
any text editors or software can be written to interface
with the ESD files. Due to the way ESD is formatted,
manipulation can be done with simple 2D oriented
actions.

The editing versions consist of the following
information in XML format:

• Nodes : The points which form the walls
• Walls: Connecting 2 nodes together to

form a wall.
• Doors: Connecting 2 nodes together to

create a door.
• Rooms: Consisting of Walls and Doors

There is redundant information retained with
regards to the walls and doors which allows better

control over how rooms are created. This additional
information can also be used by other additional
techniques if developed in future. For example,
metadata may be created to pre-calculate rendering
procedures before being compiled for deployment.

As ESD is based on nodes and complete walls, it is
possible to determine rooms automatically based on the
user’s input. Thus there is no need for human
intervention with regards to setting of room
information. Instead of flooding, ESD uses a faster and
innovative way of room detection. Wall tracing is
employed in determination of rooms.

A random node is selected, and it is assumed that
there are x rooms where x is number of links the node
have. The first neighbour of the node is then selected,
and rooms are created recursively. If 2 rooms happen
to meet, the information on these rooms is combined
and fused into a single room. Figure 5 illustrates the
first two steps of the room detection algorithm. It will
keep looping through all its nodes till every room is
formed.

Figure 5: Step 1 and 2 of room detection technique.

3.3 Selective Rendering

ESD is intended to be deployed in multiple types of

devices including mobile ones, and thus the definition
for deployed files are intended to be streamlined and
enhanced for rendering. Redundant information is
removed or fused into the room tags. Rendering objects
can then be filtered based on which rooms the user is
in. No recalculation is needed every time the user
moves as the ESD definition is rich enough to know
where the user is and which rooms are they moving to
every time they pass a door. (It is necessary to
transverse along the tree every time for BSP).

There are a few different strategies which can be
employed to improve efficiency in 3D objects in the
same room. Rays can be shot to determine if objects
are in the viewer’s frustum for example. Determination
of these viewable 3D objects sometimes requires too
much computation, and is often ignored.

Room is fused

Room is fused
1 2

199

3D objects in adjacent rooms which are exposed by
open doors can be tackled with two strategies. As 3D
objects in adjacent rooms are not important to the
user’s view, they can either be rendered with poorer
quality or a 2D image of the adjacent room can be pre-
generated and textured over the door space. Some
applications assume a closed door concept where the
doors are assumed to be closed at all times.

Figure 6 illustrates a simple example of how 3D
objects can be rendered in pseudo-code form. It is a
very simple and clean process as the information of
rooms is being retained in ESD.

Determine the room user is in
FOREACH 3D objects in rooms
 Render 3D object*
FOREACH room in room collection

If room is joined to user’s room
 IF user’s view includes door
 Render adjacent 3D objects**

* Different strategies can be employed to filter
 desired object 3D objects if desired
** Different strategies for rendering of adjacent
 rooms can be employed if desired.

Figure 6: Pseudo code for rendering.

Because the integrity of spatial information is

maintained, it is possible to reverse the compacted
definition back to the manipulation stage.

4. Implementation and Analysis

An implementation of ESD has been made both on
desktops and mobile devices to show the practicability
and efficiency of room identification and rendering
with ESD. ESD is firstly created with simple mouse
actions to form a room structure (Figure 7) before
being parsed and allocated rooms automatically
(Figure 8). Doors can be set up at this step as well. A
XML definition is then compiled which is loadable in
both mobile and desktop applications.

Figure 7: ESD being created with a desktop App.

Figure 8: Rooms are automatically generated.

Figure 9: ESD saved in XML format

<ESD>
 <Nodes>
 <Node NodeID="..." Location="..." />
 </Nodes>
 <Walls>
 <Wall WallID="..." NodeID="..." ConnectedNodeID="..."
ConnectsToRoomID="..." />
 </Walls>
 <Doors>
 <Door doorID="..." FirstNodeID="..." WallID="..." />
 </Doors>
 <Rooms>
 <Room roomID="...">
 <Nodes>
 <Node NodeID="..." />
 </Nodes>
 <Doors>
 <Door DoorID="..." />
 </Doors>
 </Room>
 </Rooms>
</ESD>

200

Figure 10: Mobile version of ESD which is capable
of the same features of desktops due to its sleekness.

Using the samples in Figure 7-10 for analysis, a
similar scene structure is obtained using BSP. BSP
requires creating 22 Nodes, excluding door
information. ESD on the other hand, requires 44 nodes
with door information. A quick test is made to
determine different requirements of BSP and ESD,
worst case scenario implies ‘unlucky’ situations when
searching have to be done through every nodes or node
levels. From the figures in Table 2, one can say that
ESD requires more memory in its definitions. In
rendering efficiency, however, the ESD is able to filter
numerous redundant rendering. Assuming that that
there is an average of 5 objects in each of the 5 rooms,
ESD is able to filter out the redundant objects due to
the ability to tag objects to rooms in the definition.

Table 2: Analysis Comparison
 BSP ESD
Nodes
Required

22 44

Node
Searching
(Worst case)

8 levels 6 levels

Average
Rendered
Nodes

22 4

Rendered
Objects*
(Worst case)

20 5

*See assumption above

5. Conclusion and Future Work

This paper has shown the usefulness of annotation
for 3D scenes and how it can help in rendering
efficiency. Using enclosed spaces as a quick guide for
determination of rendering relevance, redundant 3D
objects are filtered away very cheaply. Further filtering

if desired can then be performed more efficiently as the
test set becomes much smaller.

ESD can also be scaled to a larger perspective, as it
can be used in a wider spatial scenario instead of just
room-based scenes. Although some refinements on the
annotation techniques must be made to allow multiple
enclosed spaces in a larger scene, it is possible to allow
map-like annotations using multiple definitions or even
a database.

The preliminary results on this approach for
selective rendering in mobile devices are promising,
and further work can be done to introduce a ‘fuzzy’
visible set with improved definitions. Corresponding
mechanisms can also be discovered for ray tracing and
collision detection using the ESD approach.

Figure 11: ESD can recognise and generate
annotation with hand drawn maps by dots.

Considerations are also being made for
manipulation efficiency. For example, hand drawn
walls and doors can be recognised and automatically
converted to ESD annotation (Figure 10). As ESD
annotation consist of nodes and walls, it is possible to
recognise large dots as nodes, link them up and convert
such information into ESD. In addition, because ESD
provides the framework for automatic room
identification, the whole process from scanning to
creation of ESD can also be automated.

7. References

1. White, D., Second Life Spills Over into

Mobile World, in Mobile Magazine. 2007.
2. Fox, A., et al. Adapting to Network and Client

Variability via On-Demand Dynamic
Distillation. in Seventh International
Conference on Arch. Support for Programing
Language and Operating System (ASPLOS-
VII). 1996. Cambridge, MA.

3. Martin, I.M. Hybrid Transcoding for Adaptive
Transmission of 3D Content. in IEEE

201

International Conference on Multimedia and
Expo (ICME). 2002. Lausanne, Switzerland.

4. D’Amora, B. and F. Bernardini, Pervasive 3D
viewing for product data management.
Computer Graphics and Applications, IEEE,
2003. 23(2): p. 14-19.

5. Dürst, M.J. and T.L. Kunii. Progressive
transmission increasing both spatial and gray
scale resolution. in International Conference
on Multimedia Information Systems '91. 1991.
Singapore: MacGraw-Hill.

6. Chande, V. and N. Farvardin, Progressive
transmission of images over memoryless noisy
channels. Selected Areas in Communications,
2000. 18(6): p. 850-860.

7. Stollnitz, E.J., T.D. DeRose, and D.H.
Salesin, Wavelets for computer graphics: A
primer, part 2. IEEE Computer Graphics and
Applications, 1995. 15(4): p. 75-85.

8. To, D., An Adaptive Multiresolution Method
for Progressive Model Transmission.
Presence, 2001. 10(1): p. 62-74.

9. Fuchs, H., Z.M. Kedem, and B.F. Naylor, On
Visible Surface Generation by A Priori Tree
Structures. ACM Computer Graphics, 1980.
14(3): p. 124-133.

10. Jones, C.B., A new approach to the ‘hidden
line’ problem The Computer Journal 1970.
14(3): p. 232-237.

11. Funkhouser, T.A., C.H. S´equin, and S.J.
Teller., Management of large amounts of data
in interactive building walkthroughs. 1992
Symposium on Interactive 3D Graphics, 1992.
25(2): p. 11 - 20.

12. Lewis., P.J. BSP Trees: An interactive
demonstration of Binary Space Partitioning
Trees. [World Wide Web] 2007 [cited 2007
23 July]; Available from:
http://www.symbolcraft.com/graphics/bsp/ind
ex.php.

13. Chrysanthou, Y., Shadows for 3D Interaction
and Animation, in Computer Graphics. 1996,
University of London. p. 125.

14. Torres, E. Optimization of the binary space
partition algorithm (BSP) for visualization of
dynamic scenes. in EuroGraphics 1990. 1990.
Montreaux, Switzerland.

15. Naylor, B.F. Interactive solid geometry via
partioning trees. in Graphics Interface'92.
1992. Vancouver, Canada.

16. Luebke, D.P. and C. Georges. Portals and
Mirrors: Simple, Fast Evaluation of
Potentially Visible Sets. in 1995 Symposium
on Interactive 3D Graphics. 1995. Monterey,
CA: ACM Press.

202

