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Abstract

The main contribution of this paper is to inves-
tigate issues in using Mandatory Access Controls
(MACs), namely those provided by SELinux, to se-
cure application-level data. Particular emphasis is
placed on health-care records located on the grid.
The paper disccuses the importance of a trusted com-
puting base in providing application security. It de-
scribes a secure three-tiered architecture, incorporat-
ing trusted hardware, SELinux, and application se-
curity mechanisms that are appropriate for securing
sensitive application data.

1 Introduction

It is well known that security in the application space
cannot exist without particular security prerequisites
at levels of hardware, operating systems and any mid-
dleware sub-systems (Loscocco, Smalley, Muckelbaur,
Taylor, Turner & Farrell 1998). These prerequisites
include domain separation, which prevents unrelated
system components and applications from interact-
ing; protected input, which stops eavesdroppers from
electrically reading data generated by peripherals or
stored in memory; and the enforcement of least priv-
ilege, in which a user or process holds no more per-
missions than those required at the time.

These prerequisites are usually absent in
commodity-level operating systems, which usu-
ally have only two distinct levels of privilege: the
system administrator (or superuser) and the or-
dinary user level at which most applications run.
The system administrator has control of the system,
including the ability to execute kernel level processes
and restrict the permissions of the ordinary users.
The separation of privilege between administrator
and ordinary user is enforced by Discretionary
Access Control (DAC). In DAC, the security policy
is partially written by the ordinary users, who have
the capability to change the access controls on their
data and program files.

By restricting the privileges of the ordinary user,
the potential damage able to be caused to the overall
system by the ordinary user should also be restricted.
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Malicious or accidental compromise of the ordinary
user’s account should not affect other users or the
operating system itself. That is, the user’s activities
should occur in a sandbox comprised of the objects
and resources available to that user. In a well-secured
sandbox, resources are tightly controlled. A problem
affecting processes within the sandbox cannot spread
beyond the sandbox boundaries. For example, code
executed by a process within the sandbox cannot af-
fect code or data in another sandbox.

Problems with the effectiveness of DAC are well
documented, because it does not properly support
sandboxing. An example is now given in which the or-
dinary user runs an instance of the Apache web server
that serves web-pages to visiting WWW browsers
(Gayal 2003) 1. Tightly configured DACs make sensi-
tive data inaccessible to the browser. When a visitor
requests sensitive data from the browser, the browser
returns a 403 ‘non-accessible’ error. However, in a
successful attack, a malicious party launches a buffer
overflow attack on the Apache process. Through the
use of the process tracing tool ptrace, which con-
trols the execution of other processes, the attacker
injects malicious code into a kernel child process with
system-wide access. The attacker uses the power of
the kernel child process to create a new account with
super-user powers, from which the sensitive data, and
in fact any object located on the DAC system, are ac-
cessible. This attack succeeds even though the attack
point - Apache - has only ordinary-user privileges,
and has no business executing shell code at the ker-
nel level. This attack cannot succeed in a system de-
ploying Mandatory Access Controls (MAC) because
no process in the Apache sandbox has the ability to
execute in the ptrace or kernel sandboxes; the buffer
overflow code injected by the attacker will be refused
permission to execute in the kernel sandbox unless
explicitly configured to do so. And of course, pro-
cesses in the Apache sandbox have no rights to con-
figure anything except for Apache configuration. An
attacker who gains control of the Apache process has
made no leeway in controlling ptrace, and therefore
the ability to gain super-user privileges. This attack
is summarized in Figure 1.

The security problem caused by the combination
of DAC and the two-tiered system of authorization is
that it is difficult to implement the principle of least
privilege, which stops the chaining of attacks just de-
scribed. Discretionary access controls are adequate
for passive management of privacy, but are insufficient
to protect systems from malicious attackers (Wright,
Cowan, Morris, Smalley & Kroah-Hartman 2002). Of
course, when a network is connected to the grid, there
is no shortage of attackers.

In this paper, we evaluate the suitability of
Mandatory Access Controls (MACs), defined and ex-

1This attack is simplified. In reality, the attacker needs a local
account, but details are generalized to aid clarity.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10880574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: MAC-enforced sandboxes. In the left diagram, the attacker connects to the web server(1). DAC
restrictions prevent access to medical records (2). So the attacker launches serial attacks on the web server
and kernel processes using ptrace (3), gains root access, and has access to any file on the host (4). In the right
diagram, the attacker connects to the sandboxed web-server (1) but is unable to access anything outside of the
sandbox (2)(3). Note that in both cases, the authorized medical application can access the medical records.

plored in Section 2, particularly within the context
of the e-health scenario defined in Section 3. This
scenario is based on the ARC funded research that
looks at the use of grid technology to facilitate access
to large repositories of sensitive data where security
and privacy concerns are of paramount importance.
We describe suitable MAC implementations, includ-
ing the Linux subsystem SELinux, in Section 4, and
use these technologies to construct a three-tiered ar-
chitecture in Section 5. Finally, in Section 6, we indi-
cate future work on this project, and give some con-
cluding remarks for others to consider when utilising
SELinux for building trusted computing frameworks
for use with grid architectures.

2 Mandatory Access Controls

Mandatory access controls provide for a centralized,
enterprise-level security policy that is configured by
a nominated and authorized security administrator.
All users are equally bound by the policy, and there
is no longer the concept of an all-powerful super-user
as exists in DAC systems (for example, the Admin-
istrator group in Microsoft Windows, and the root
user in Unix or Linux). By implementing the princi-
ple of least privilege and enforcing domain separation
through sandboxes, MACs are able to provide a more
robust system against attackers.

2.1 Multi Level Systems

The origin of MAC concepts originated in Multi-
Level Security (MLS) models for information sys-
tems. These systems permit the control of informa-
tion access by labelling subjects (processes) and ob-
jects (files, sockets, etc) with security levels or param-
eters. The label of a subject is assessed against the

label of the object before interaction between the two
is permitted. In inappropriate cases, as defined by
configuration, no access will be allowed. Two famous
examples of MLS models are Bell La-Padula (Bell &
La-Padula 1976) and Biba (Biba 1977).

Bell La-Padula The Bell La-Padula model was de-
veloped by the U.S Department of Defence in 1976 to
enforce confidentiality requirements. The model de-
fines two mandatory access control rules. The first
of these is no read-up: a subject of a given security
level may not read an object with a higher security
level. The second rule is no write-down: a subject of
a given security level may not write to an object of
lower security level.

The model supplements these rules with discre-
tionary access control, but is widely criticized for be-
ing inflexible in non-military domains. In particular,
it ignores intransitivity (if a process at level A can
read at level B, and a process at level B, can read at
level C, does it follow that a process at level A can
read at level C?) and dynamic separation of duty (a
user may be allowed to operate at level A under some
conditions, but only level B under others). Like many
MLS systems, Bell La-Padula cannot deal efficiently
with sanitization, in which the top-secret elements of
classified data are removed, and the remainder pre-
sented to lower levels of security. Bell La-Padula does
not permit flexible policies. For example, in a medi-
cal context, assume that a doctor is accorded a higher
level of security than is a nurse. The Bell La-Padula
model prohibits the doctor from sharing a medical
record encoded at his level of security with the nurse,
even though an urgent need may arise to do so. Even
by verbally communicating such information during
emergency surgery, the doctor is violating the said
security policy. On the other hand, the model does



not prohibit a new intern at the lowest security level
from writing inaccurate, and possibly life-threatening
information upwards to a more classified level.

Biba The Biba Model describes a type of system
that ensures data integrity. Processes and objects
within the Biba model are given integrity labels. Low-
integrity processes cannot write to high-integrity ob-
jects. High-integrity processes cannot read objects of
lower integrity. In a variation known as low water-
marking, which increases the flexibility of the Biba
model, a high integrity process can read lower in-
tegrity objects, but is demoted to the security level of
that object until manual reconfiguration. In a further
modification, some processes are classified as trusted
in which case they can read objects on a lower level
without any penalty.

The Biba model addresses the problem of integrity
described above, in that the nurse is prohibited from
writing inaccurate information upwards. However,
the model still presents a severe degree of inflexibility
in that the doctor cannot access the notes made by
the nurse!

2.2 Role Based Access Controls

Role-Based Access Control (RBAC) is one way of al-
leviating configuration difficulties and complexities in
the practical use of MACs, which arise from their flex-
ibility and fine-grained level of control.

Multi-level systems directly associate users with
object permissions; for example, the policy configura-
tion may consist of statements of the form “[User] acts
upon [Object]”. At its simplest, RBAC (Ferraiolo &
Kuhn 1992) intersperses this structure with a mid-
dle layer, that of the “role”. A role allows collective
rather than individual association of users and per-
missions of the form “[Role] acts upon [Object] where
[User] is a member of [Role]”. Advantages over tra-
ditional MAC technologies include: a reduced num-
ber of associations, easing configuration; a lower rate
of change between roles and permissions, relative to
users and permissions, making revocation of multiple
permissions trivial; and increased flexibility relative
to standard MLS policies - arbitrary groups of users
can be assembled into roles, in which case the doctor
communicating with the nurse problem is solved.

There are four basic forms of RBAC (National In-
stitute of Standards and Technology 2003). RBAC0
is the simple form outlined above.

RBAC1 allows inheritance of permissions within a
role hierarchy. For example, if a clinician is assigned
permissions to a patient’s case, then the permission
is implicitly transferred to the nurse role and doctor
role when they are considered to be subsets of the
clinician role. Alternatively, a permission given to
the doctor role is not explicilty awarded to the nurse
role since they are disjunct. The implicit assignment
of permissions within the hierarchy has the potential
to greatly simplify policy configuration. Where there
are u users, r roles, and p permissions, then RBAC1
simplifies (in the worst case) a configuration complex-
ity of u × p to r × (u + p) where r ≪ u and r ≪ p.

RBAC2 does not support inheritance, but imple-
ments static constraints, which can be imposed to pre-
vent users from joining roles for which they are not
qualified, or for which there is a conflict with other
roles of which they are also members. It also allows
dynamic constraints, which permit users to belong to
multiple roles, but specify that only a subset of those
roles may be active at one time. More complicated
dynamic constraints may also be considered at run-
time.

RBAC3 represents the union of RBAC1 and
RBAC2. The use of inheritance in RBAC1 and
RBAC3 is one of the most useful features of RBAC,
but unfortunately is infrequently implemented.

3 An E-health scenario

Within our research, we consider a scenario in e-
health for securing application data. Many of the
mechanisms used to secure health data can be gen-
eralized to the context of any sensitive data. Never-
theless, securing health data has its own set of prior-
ities. Unauthorized disclosure of health information
can have serious consequences including, aside from
personal embarrassment, refusal of prospective em-
ployment, difficulties in obtaining or continuing insur-
ance contracts and loans, and ostracisation from fam-
ily and community groups (Rindflesich 1997). Once
information has been disclosed, the damage cannot
be undone.

In our scenario, we consider the ability of the sci-
entific community to perform research on large repos-
itories of sensitive data, which may be maintained in a
logically and geographically distributed fashion. For
example, these repositories may be accessible over a
data grid . The access to these sets of data is sub-
ject to varying degrees of legal, social and ethical
constraints. Individual personal health records of-
fer significant value for medical research but the in-
formation cannot be readily accessed because of pri-
vacy legislation, lack of confidence in the security of
electronic records, and the requirement to maintain
end-users trust in the overall healthcare information
system (Croll & Croll 2004).It is permitted in Aus-
tralia to use health data for the secondary purposes
described above provided that it suitably deperson-
alized. This generates the requirement to supply de-
personalized data directly from the identifiable data
source without compromising the original database.

The basic architecture for a secure mandatory ac-
cess control system that provides access to a dis-
tributed system such as a data grid is shown in Figure
2. The goals of this system are: a) to provide autho-
rized access to secure data within the grid nodes and;
b) to allow dispersal across the grid nodes of deper-
sonalized data, in which the identifying aspects of the
data (such as a patients name and address) have been
removed. This system is based on a Trusted Comput-
ing Base (TCB) in which MACs regulate data access
through policies initiated by the organizations secu-
rity architecture. This architecture is in turn derived
from high level formulations based on the legislation
and regulations that apply to the organization. The
enhanced security of this system comes from the fact
that systems managers or maintenance staff cannot
change the access rights on-the-fly or, because of strict
auditing, cover their tracks if they make such changes.

The protected data can be accessed via encrypted
channels connecting the trusted computing nodes.
The set of data that is available depends upon the ac-
cess policies determined by MAC through the Policy
Enforcement Server. For example, permitted deper-
sonalized data could be decrypted by shared applica-
tions on the open access grid while highly classified
data would only be available for access and processing
on other trusted computing nodes.

An override function has to be accommodated
whereby a clinician can get access to personal data
in extraordinary circumstances, provided it is for the
well being of the patient. There are times in cases
of national emergency or if an identifiable patient ar-
rives unconscious in an emergency unit that this over-
ride would be appropriate without first having to gain
consent from the individual. In both situations, there



Figure 2: A Trusted Computing Base for Protecting
Grid Data

would not be time to rewrite the security policies but
the ability to switch to another policy set to suit the
scenario would be highly beneficial. This is facili-
tated by the Risk Assessment Unit shown in Figure
2. Irrespective of the level of security, all underlying
activities are audited.

Consequently, the requirements of this scenario
with regard to MACs are: 1a) high-grained level of
control; 1b) ability to securely access depersonalized
data (ie. to change the security level of blocks of
data); and 1c) ability to change policies in abnormal
circumstances. Software systems and applications to
date were not developed with such requirements in
mind, but have evolved more from a corporate own-
ership model, where high level officials can access all
the data owned by an organization. These require-
ments will be examined again in Section 5, in terms
of the architectural solution that realizes them.

4 State of the Art in Mandatory Access Con-
trols

The security of application data does not just depend
upon the software measures taken at user level. The
use of MACs to secure data involves a multilayered
approach. This Section describes a selection of con-
temporary technologies employed at each of the levels:
efforts at the hardware layer are described in Section
4.1; at the operating system kernel in Section 4.2; and
at the application layer in Section 4.3

4.1 Hardware Support

Irrespective of the measures taken by a computer’s
operating system or application software, the secu-
rity of the platform fundamentally depends upon the
trustworthiness of the hardware. Off-theshelf general
purpose computers, implemented using Intel x86 pro-
cessors have had extensive hardware support for se-
curity for over twenty five years. These features in-
clude memory address segmentation for prevention of
illicit memory access between applications, and ap-
plications and system software components; strong
memory typing including separation of data, code and
stack memory; and protection rings that limit CPU
facilities. Recently, however, some new additional
hardware components, such as the Trusted Comput-
ing Group (TCG)s Trusted Platform Module (TPM),
have been created that offer protected cryptographic

functions in support of overall system security. Addi-
tionally some suggested basic changes to CPU struc-
ture by Intel Corporation and others also support
operating system security functionality and enforce-
ment.

The Trusted Computing Group (TCG)’s vision of
a trusted computing base is shaped by its Trusted
Platform Module (TPM) (Trusted Computing Group
2006), a tamper-evident (but not tamper-resistant)
chip that is added to the motherboard of secured
systems. The TPMs ability to support MACs de-
rives from its ability to store an embedded endorse-
ment RSA key pair signed by the manufacturer. The
private RSA key is never transmitted outside of the
TPM, and the assurance of the trusted platform is
guaranteed while the TPMs private RSA key remains
undisclosed. During the boot process, the TPM gen-
erates cumulative hashes of BIOS, low level drivers
and the kernel. The final hash is matched against a
pre-calculated value stored elsewhere in the TPM. If
the values match, the TPM releases a key that is used
to decrypt crucial parts of the operating system, en-
abling the booting process to complete. If the hash
does not match the PCR value, perhaps because the
kernel code has been illicitly changed, then booting
cannot continue, and the system is inaccessible; there-
fore the sensitive data stored on the system cannot be
corrupted or distributed.

This process can be generalized to remote attesta-
tion, in which a third-party queries the software state
of the machine before releasing a decryption key to
protected applications. For example, we can verify in
advance the identity of recipients to whom we send
sanitized data or identify the secure state of the ma-
chine and its medical applications before we distribute
medical records.

While the TCGs vision for a trusted-computing
base is realized through the architecture-independent
TPM, Intel Corporation’s LaGrande CPU program
is reported to involve modification to specific In-
tel processors and chipsets, and incorporation of
TCG’s TPM (version 1.2) (Intel 2003). LaGrande’s
most prominent security feature is domain separa-
tion through virtualization, which allows multiple
operating systems and applications to run indepen-
dently and without awareness of each other. The
TPM provides remote attestation. In conjunction
with operating- system support from such systems as
Microsofts suggested Next Generation Secure Com-
puting Base (NGSCB), LaGrande provides coarse-
grained mandatory access controls. Under LaGrande,
protected and unprotected software can be run si-
multaenously on te same trusted computing platform
without interference.

4.2 Operating System Support

MACs implemented in application space can easily
be bypassed without underlying support in the priv-
ileged kernel level. Consequently there are many im-
plementations of MACs embedded within operating
system kernels. Many of these implementations are
purely research-based, or targeted at niche operat-
ing systems. One of the more prominent is SELinux
(National Security Agency 2000), which was devel-
oped by USAs National Security Agency (NSA) and
released to the public in 2000 as open source on the
Linux platform.

SELinux is based upon type enforcement, which
views the system as two sets of entities: one active,
termed either subjects or domains; and one passive,
termed objects or types. The domains and types are
associated with a permission set defined within a do-
main definition table (DDT). The entries within the



DDT specify which processes can read, write or ex-
ecute objects listed within the DDT. A separate ta-
ble, termed the Domain Interaction Table (DIT), in-
dicates transitions between domains. In a health-care
context, the domain may be a medical application.
The objects are network sockets that allow communi-
cation outside of the trusted computing base. As with
most of the MAC systems at the operating-system
level, the level of granularity does not extend further
than the level of the file, necessitating further control
mechanisms at the application layer.

SELinux enforces a separation between policy logic
and security enforcement, which improves expres-
siveness. SELinux uses a policy-enforcement server
(PES) that interprets the advice given by the secu-
rity server (SS). The PES mandates the interaction
between domains and objects such as files, directories,
other processes, descriptors, sockets, etc. The separa-
tion of policy-enforcing and policy-configuration com-
ponents localizes the decision point for changing poli-
cies when the circumstances that dictate those poli-
cies change, as required by the risk assessment unit
of our scenario.

To determine whether a particular action is al-
lowed between a domain and object, the PES retrieves
their contexts from the context database and passes
them to the SS, which returns a set of access vectors.
An allow vector determines the type of operations
that can be performed by the process on the object.
An allowaudit vector indicates the type of auditing
that should occur. Each vector contains a bitmask
denoting the permissible actions. These are commen-
surate with standard Linux permissions, including ap-
pend, create, execute, get attribute, io control, link,
lock, read, rename, ulink and write, etc. The PES re-
lays these vectors for interpretation by the Linux Op-
erating System, which either permits the requested
action or denied it. Without an appropriate allow
vector, the action will automatically be denied.

SELinux uses a variant of RBAC2 to associate in-
dividual users with specific types, and to disassoci-
ate individuals operating in different roles. The stan-
dard form of the domain and object contexts are [User
with Role owning Type]. This allows the system to
differentiate between Doctor W accessing the inter-
net using a web-browser, and the same Doctor W
using a medical application. In the former case, sen-
sitive medical records pertaining to Doctor Ws pa-
tients should be inaccessible. So although the same
user is involved, the combination of user and roles, in
which he or she is involved, is not. Role hierarchies
have been previously proven useful in flexibly defin-
ing record access in medical scenarios (Reid, Cheong,
Henricksen & Smith 2003) but are unsupported in
SELinux.

The SELinux configuration contains four default
roles and three default users. The roles include
’sysadm r’ (system administrator), ’staff r’ (potential
system administrator), ’system r’ (system process),
and ’user r’ (non-privileged user). SELinux maintains
a separate user system to the Linux account system.
The default users mirror the hierarchy in standard
DAC systems, and include ’root u’, ’system u’, and
’user u’. Additional users can be defined, but this re-
quires the policy to be recompiled, a lengthy and in-
convenient process that reflects the role of the module
in protecting slow-changing kernel data rather than
dynamic application data. In distributed, large- scale
systems, the need to recompile with the introduction
of new roles and users is a serious impediment to the
success of the system in protecting application data.

The flexibility provided by SELinux, at the fine-
grained level of files, sockets, etc, means that config-
uration is a tedious task even for the hardening of
the Linux kernel. The average configuration file is

50,000 lines long, although NAI Labs provides an ex-
ample configuration file for standard kernels, which
can be modified on a component-by-component ba-
sis. Nevertheless SELinux’s high-grained flexibility
and architectural modularity proves promising for se-
curing application data.

4.3 Application-level Support

One of the more recent proposals for application-
level MACs comes from the Self-Defending Objects
(SDO) proposal of Holford et. al (Holford, Caelli &
Rhodes 2003). In that paper, SDOs are portrayed
somewhat optimistically as an extension to object-
oriented programming (OOP). In reality, the descrip-
tive phrase ‘design pattern’ is more apt.

In OOP programming styles, security checks are
scattered throughout the source code in a pragmatic,
possibly adhoc style, which Holford et. al claims leads
to unchecked and potentially critical programming er-
rors. For example, the authors claim that the follow-
ing code snippet is insufficient.

if (SecurityClass::check_access(
obj, credentials) == OK) {

/** entry into this block only
when the correct credentials
are supplied */

obj->accessor();
}

The criticism is that the compiler and object library
do nothing to prevent the coder, in a fit of absent-
mindedness, from calling the accessor without the en-
closing security check.

Vasanta et. al (Vasanta, Holford, Caelli & Looi
2004) propose that one SDO be responsible for each
security-sensitive device. Security checks protect the
sensitive data encapsulated by the SDO. More specifi-
cally, the data is marked as private within the object-
oriented language. The data is accessible through ac-
cessors or mutators that contain the security checks
in the form of a preamble, as described in the pseu-
docode below.

class Obj {
final T accessor(credentials) {

/* security pre-amble */
if (SecurityClass::check_access(

credentials) !=OK) {
throw access_exception;

}
/* standard accessor code */
return sensitive_value;

}
}

obj->accessor(credentials);

Successful authentication of the preamble sees the
body of the accessor or mutator carried out; failure
generates an exception, or in extreme cases calls the
object destructor, which deletes the sensitive data
from memory. There is no magic here.

Mandatory access occurs through the policy de-
fined by the authenticator rather than the caller, un-
der the assumption that the protected code is pre-
sented as a library, rather than as open source. In
the latter case, then of course the code can be recom-
piled without the security checks.

By localizing the security checks and the associ-
ated data, Holford et. al hope for a reduction in the
number security-related bugs, by virtue of the en-
hanced clarity of code. Thus SDOs do not provide
additional security except through enhanced assur-
ance. However, this approach leads to code tangling



whereby the purity of code, according to the princi-
ples of OOP, is lost. An object that is representing
a factory is independent of an object that represents
the security guard safekeeping it. Yet SDOs do not
recognize this separation of duty. Furthermore, SDOs
may more seriously violate the spirit of OOP, in that
sensitive accessors and mutators need to be marked
‘final’ to avoid derived classes overriding the security
checks. This at best has the potential to destroy or
at least convolute the polymorphism of the respective
classes, and at worst leads the security of SDOs to rest
upon manual flagging of the relevant accessors and
mutators. This represents only a partial solution to
the problem that SDOs address: removing the error-
prone component in calling security checks, wherease
the ‘final’ qualifier necessary in SDOs is equally prone
to neglect.

A single line accessor in standard OOP has the
potential to become very complicated in an SDO.
This problem may be solved using aspect-oriented
programming paradigm (Filman 2004), but has not
yet been successfully examined in this context. SDOs
have the potential to become very inefficient, particu-
larly when accessors and mutators reference multiple
items of data, in which case multiple and possibly re-
dundant checks are carried out. For example, an ac-
cessor ‘C’ that derives data from calling accesors ‘A’
and ‘B’ must undergo the same security check three
times, despite the fact that the security context and
credentials have not changed.

Furthermore, SDOs can not contain all malicious
attempts by programmers to avoid security checks at
the application level; for example, it is not difficult to
modify the virtual function table of an SDO to by-
pass the check altogether. SELinux can reduce this
problem by ensuring that the process that runs the
application does not have write permission to the ap-
plication; however, any data written by the applica-
tion must in that case belong to a different sandbox.

The basic problem that SDOs address is laziness
or carelessness of the programmer in calling security
checks immediately prior to accessing a sensitive ob-
ject. However this is fundamentally a compile-time
problem that can be solved either by thorough code
reviews, or by static analysis, for example by a secu-
rity analog to the C ‘lint’ tool, or by a combination
of both. Using static analysis at compile time means
that sensitive accessors and mutators do not need to
be declared ‘final’, removing the error-prone compo-
nent of SDOs. Additionally, the static analysis tool
adds complexity at compile-time but has no footprint
at run-time, meaning that the inefficiencies of SDOs
are no longer present. However, static analysis does
not competely address the advantages of SDOs in a
distributed environment, to which our grid-based sce-
narios belong. For example, the code and data may
be migrated to a hostile environment in which static
analysis has not been conducted. In such an envi-
ronment, hardware and operating system support for
SDOs must be present, even if application-level sup-
port is not. The realism of this kind of environment
needs to be investigated. In any case, development of
a static analysis tool to replace SDOs is left as future
work. Consequently, for our grid-based prototype, we
view SDOs as an interesting mechanism for localiz-
ing enforcing MACs at application level, particularly
as a complementary mechanism to operating-system
MACs.

5 Protecting Application Data using a
Three-Tiered Architecture

In Section 3, we defined a scenario in which the secur-
ing of application data was deemed important. This

involved a trusted computing base that had the dual
purpose of maintaining sensitive data and releasing
sanitized data onto the grid. The requirements of this
scenario are MACs that possess a fine-grained level of
control so as to implement the principle of least priv-
ilege. The MACs must be flexible enough to allow
the export of sanitized data outside the trusted com-
puting base. Furthermore, the policy must be able to
be quickly altered under changed circumstances, such
as a hacking attack upon the base, which requires the
policy to be tightened, or in a pandemic, in which case
the policy must become more flexible to allow appro-
priate medical treatment (for example, allowing the
use of sanitized data in observing trends of a quickly
spreading disease).

Our solution in providing a trusted computing
base to protect data in this scenario spans three tiers:
hardware; operating system; and application space.
This architecture provides the appropriate level of se-
curity for both scenarios simultaneously, and is shown
in Figure 3.

Hardware Layer The TPM proposed by the TCG
forms one support for the hardware layer of the
trusted computing base. It stores multiple decryp-
tion keys that are required to decrypt, respectively,
the SELinux kernel, medical applications that access
sensitive data, and the sanitizing software, which is
responsible for allowing low-security forms of the data
to be exported from the trusted computing base.

The decryption keys are released only when the
trusted boot and remote attestation features deem
that the security of the platform is maintained. For
example, in the case that a virus undermines the
security mechanisms of the operating system, it is
still unable to access, manipulate or disseminate from
the trusted computing base, the sensitive application
data stored on the system.

We do not plan to fully implement the attestation
logic within our prototype, but rather aim to use it
as a proof-of-concept. Furthermore, when it comes to
fruition, the Intel LaGrande CPU technology should
form a part of this model through its implementation
of hardware virtualization. This will increase the sup-
port given to domain separation of sandboxes in the
application layer.

Operating System Layer The MACs in the op-
erating systems layer are provided by SELinux in
conjunction with the LSM framework on which is is
based.

In our model, SELinux enforces domain separation
at the application layer by creating sandboxes for the
medical applications, including sanitization software,
and their databases. The most basic sandbox in this
architecture is that for the role of clinician. The secu-
rity administrator can configure other sandboxes with
more restricted memberships, based upon the privi-
lege level of individual databases, or their data files.
The medical application runs in the sandbox with the
highest level of privilege accorded to its user.

SELinux’s configuration process is not trivial, and
across large systems, this can be a tiresome and error-
prone administration task. In our architecture, we
propose to implement extensions to the RBAC model
of SELinux, to at least the level of RBAC2 so that
the policy of role inheritance within hierachies. This
will allow our architecture to better handle the large
numbers of related users within a typical health-care
system.

SELinux is designed to secure operating systems
which are initially configured on installation, and
then only sporadically and infrequently when new
key components are added to the operating system.



Figure 3: Protecting Application Data using Trusted Hardware in conjunction with SELinux

Adding new users or new applications requires that
the SELinux policy be modified. When the pol-
icy is complete, it needs to be manually recompiled.
Our scenario involves medical application data, which
changes on a frequent basis. Consequently, in our ar-
chitecture, the security server is modified to accept
dynamic changes to policies with the minimum of dis-
ruption.

The architecture places the risk assessment unit
that implements requirement 1c of Section 3 within
the operating system layer. It contains sensors and
logic that detect changes in environment (for exam-
ple, an attempt at hacking the trusted computing
base). The unit can be configured so that upon
detecting these changes, it automatically forces the
SELinux Security Server to change policies, or to re-
quest manual intervention from the security adminis-
trator. This reactive element of the trusted comput-
ing base enables the security policy of the sensitive
data to be sensibly shaped to the environment. It is
feasible because unlike many of the other technolo-
gies surveyed here, SELinux separates the logic that
enforces the policy from the logic that controls its
configuration.

Application Layer The application layer is di-
vided into sandboxes by the SELinux security mech-
anism in the underlying operating system layer. Un-
privileged applications, such as web- browsers and
other software that access the internet, are not per-
mitted to interact with the sandboxes that protect
private medical information. Likewise, applications
administered under the role of clinician are not able to
access more specialized or sensitive databases. How-
ever, the level of granularity of SELinux is the file,
whereas medical databases support records with vary-
ing privileges, which have a much finer level of gran-
ularity. Consequently, it is the responsibility of the

medical application to ensure that its records are not
accessed by clinicians with inappropriate levels of au-
thority. Again, RBAC is an appropriate mechanism
with which to secure this kind of data.

To ensure an equal level of security control be-
tween applications, we introduce Self- Defending Ob-
jects into the application layer. The SDOs defend all
accesses to databases, based upon a common authen-
tication object that recognizes RBAC2. The authen-
tication object uses the SELinux policy file to recog-
nize the role of the user. However, the security labels
assigned to the data records are embedded within the
database files, rather than within the policy files.

A sanitization unit runs within a privileged sand-
box. The security of this unit is reinforced by the
use of SDOs. It packs data for export by stripping
away sensitive fields, and demoting the security level
of the resulting file (using the domain transitioning
abilities of SELinux in the layer below). This file is
encrypted prior to export. The alternative to this
strategy is to implement a low- watermarking scheme
within the operating system layer, such as that sug-
gested by (Safford & Zohar 2004), but it was viewed
as too complicated for this architecture.

In a large scale production system, medical data
and policy configuration will be distributed. Our pro-
totype does not encompass this element, but the re-
search work already performed on distributing data
using SDOs (Vasanta et al. 2004) means the extension
of the architecture to meet this goal will be painless.

6 Conclusion and Remarks

In this paper, we surveyed mandatory access con-
trol technologies at the hardware, operating system,
and application layers, with the aim of securing fre-
quently changing application data under a health-care
scenario based upon retrieving information from the



grid. The requirements of the scenario were the abil-
ity to secure data at a fine-grained level of control,
and to change the policy as circumstances demanded
it (for example, factors which may only be known at
the application level).

In our three-tiered model, a TPM placed on the
motherboard of the trusted computing base protects
the upper levels of the architecture.

SELinux was deemed to be the most appropriate
operating system technology because of its high level
of flexibility, and the detachment of the policy en-
forcement from the policy configuration logic. How-
ever, the granularity of SELinux is insufficient to be
able to elegantly secure application data on its own,
requiring further mechanisms in the application layer.
SELinux, as it stands, would be better able to sup-
port the scenario requirements if it were enhanced in
a number of ways. Firstly, it should provide support
for RBAC2, allowing inherited permissions, simplify-
ing SELinux’s notoriously complex configuration pro-
cess. Secondly, it should have a graceful mechanism
for handling changes within policies, to cater for the
highly dynamic environment applicable within our
scenarios. Thirdly, the requirements of our scenario
demand that SELinux is able to gracefully change
policies when circumstances change. It is assumed
that strong auditing acts as a preventative against an
abuse of this function.

Future work in this area aims to determine the
extent to which these changes to SELinux can sup-
port the success of self-defending objects in creating
a trusted computing base for such important applica-
tions as those in the healthcare information systems
area.
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