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Abstract - Capacity analysis techniques and methodologies for estimating the absolute traffic 
carrying ability of facilities over a wide range of defined operational conditions are developed 
for railway systems and infrastructure in this paper. In particular we tackle numerous aspects 
on which the absolute carrying capacity depends that have not been previously and or 
significantly addressed before. These include the proportional mix of trains that travel through 
the system and the direction in which these trains travel, the length of trains, the planned 
dwell times of trains, the presence of crossing loops and intermediate signals in corridors and 
networks. The approaches are then illustrated in a case study.  
 
Keywords: Capacity analysis, railways 
 

 
 

1. INTRODUCTION 
 
 This paper which extends the work in Kozan and Burdett (2004 and 2005) is concerned 
with the quantification of capacity in more complex railway lines and networks. More 
specifically a general approach for determining absolute capacity is developed that is suitable 
for any railway system. For example the approach can be used to analyse complex railway 
networks consisting of uni-directional rail with high volumes of passenger trains that is 
typical of European railways. It can also be used to analyse long distance freight networks of 
bi-directional rail consisting of crossing (passing) loops and intermediate signals typical in 
North America or Australia. Any combination of these features can also be accommodated. 
 Primary motivation for this research occurs as a result of the additional demands that 
are to be placed upon railways in Australia to provide third party usage of infrastructure. The 
complete separation of railway infrastructure ownership and operation is also a potential 
reality in the near future which would result in even greater competition for railway 
infrastructure (see Ferreira (1997) for more information). To ensure fair and impartial access 
under these new regimes, railway operators must be able to clearly differentiate between free 
and used capacity. For example the railway operators will typically need to answer the 
question “does capacity exist in order to add an additional service to the existing timetable?” 
How much capacity exists (which is the focus of this paper) however must firstly be known if 
this is to be accomplished. 
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 Railway capacity however is an elusive concept that is not easily defined or quantified. 
Difficulties include the numerous interacting/interrelated factors, the complex structure of the 
railway layout, and the magnitude of terminology required. In this paper capacity is defined 
as the maximum number of trains that can traverse the entire railway or certain critical 
(bottleneck) section(s) in a given duration of time. The term absolute capacity is defined and 
refers to a theoretical value (overestimation) of capacity that is realised when only critical 
section(s) are saturated (i.e. continuously occupied). It is an ideal case that is not necessarily 
possible in reality due to the collision conflicts that are caused on non-critical sections as a 
consequence of insufficient passing (overtaking) facilities. Alternatively, actual (sustainable) 
capacity is the amount that occurs when interference delays are incorporated on the critical 
section(s). Interference delays are enforced idle time in the system that results when collision 
conflicts are resolved. Both actual and absolute measures of capacity are required in practice 
for a variety of reasons. Fore mostly is that they allow traffic congestion to be quantified (for 
example as the relative difference between the two). Traffic congestion in any transportation 
system is an important issue, particularly its minimisation.  Alternatively as an upper bound 
on capacity, the absolute measure can also be used for planning purposes. In some ways it is 
more robust than actual capacity approximations which are more statistical in nature. 
 Capacity is also not a unique value in railway scenarios. It may be different for each   
proportional mix of trains (train types). Similarly absolute capacity as defined in this paper 
may also be different for each proportional mix of trains. Hence capacity assessment can only 
be performed to decide whether the infrastructure can handle the intended traffic load. If there 
is sufficient capacity then a suitable train schedule/timetable may be developed otherwise the 
effort is unwarranted.  
 Capacity analysis is therefore an iterative process in which the modification of the train 
mix is a key step. For example, the planner would initially propose (or be given) proportions 
of each type of train in each direction for every section of rail. After evaluation the value of 
capacity and the actual numbers of each type of train are determined. These values are 
inspected and if satisfactory the process is complete. If they are not satisfactory then the 
process continues by evaluating mix alterations. A railway capacity analysis software tool 
(RCAT) has been developed to perform this process and is based upon the techniques 
developed in this paper.  
 Alternatively if there is insufficient capacity then additional infrastructure may be 
required and the capacity analysis techniques can then be used to determine where 
infrastructure should be placed to achieve the desired result.  
 We now review how capacity has been previously defined and quantified. The simplest 
definition and the most prevalent encountered in the literature is that the capacity of a single 
line is the total number of standard train paths that can be accommodated across a critical 
section in a given time period (i.e. the time period duration divided by the trains sectional 
running time), where a standard train is defined as the most prevalent type to traverse the 
corridor. This implies that a single bottleneck section limits the total flow of trains throughout 
the entire corridor and consequently the analysis is called a bottleneck approach. As an 
estimation of capacity, this approach is especially useful as an indicator of where additional 
infrastructure could best be placed. It is also useful because of its mathematical simplicity. 
Nonetheless, in practice rail corridors must accommodate trains of varying type and number, 
which travel in each direction in varying numbers. This definition also assumes that there is a 
prevalent type and that any train type can be converted to a standard train type without 
affecting the overall capacity level. It also assumes that sectional running times in each 
direction are equal and on bi-directional lines the traffic flow is equal in each direction. This 
bottleneck analysis also does not address the many other operational factors, such as the 
stopping protocols, the lengths of trains, the dwell times. Nor does it address the 
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determination of capacity in more complex railway systems which contain interrelated lines. 
In contrast the approach developed in this paper does include each of these aspects.  
 However, the schedule that actually gives such an output in total trains if at all 
“possible” is not known from such a bottleneck analysis and must be solved for separately. It 
should also be noted that this capacity approach does not indicate how efficiently the track 
infrastructure is utilised under a given schedule at each instant of time nor does it indicate 
how to place additional trains into the schedule.  
 The capacity of a rail line has also been evaluated using the delays encountered by trains 
under different operating assumptions (Assad 1980). Petersen (1974) for example develops 
expressions for average train delay, which are then incorporated into an expression for mean 
sectional running times. The usual bottleneck analysis can then be performed to give an 
alternative measure of capacity.  The approach for modelling delays however assumes that 
trains in each class are uniformly distributed over the time-period and that there is equal 
traffic in each direction, which again is unrealistic. Delays caused by multiple train 
interactions are also not handled.  The delays encountered in railways have also been 
addressed by other researchers using queuing theory and statistical techniques and examples 
include Petersen (1975), Kraft (1983), Hall (1987), Greenberg (1988), Carey and Kwiecinski 
(1994), Higgins, Kozan and Ferreira (1995), and Higgins and Kozan (1998). However, no 
simple analytic expressions result from these researches. The numerical investigations for 
these approaches are also generally compared to the results provided from simulation. 
Comparisons among the different approaches have not been performed to the author’s 
knowledge and hence it is not known which of these approaches is superior. 
 More recently De Kort et al (2003) provided a new approach for determining railway 
infrastructure capacity. Their approach is based upon the analysis of a generic infra element 
(building block), which allows many different combinations of infrastructure to be analysed. 
The approach however can not explicitly distinguish between different train types, although it 
can incorporate this aspect by considering the distribution of travel/release times weighted by 
the probability that a train is of a given type. It is also based upon the bottleneck analysis 
approach. The approach was illustrated on a high speed railway line being built in the 
Netherlands. 
 Other definitions of capacity exist, however these definitions have nothing to do with 
traffic volume. They are based upon the carrying capacity of trains in terms of passengers and 
freight, or the ability of the corridor to contain as many trains as possible at any moment of 
time.  
 Because railway terminology varies in each country, the following paragraph provides 
an explanation of the various basic railway components that are referred to in this paper so 
that any misconceptions that may occur are minimised. For readers that are unfamiliar with 
railways, this paragraph also provides a basic introduction. Other important entities and 
components will be defined within the paper as they are required. 
 A railway corridor is generally a single serial line (track) that is made up of one or 
more sections of specific length that are sequentially traversed. A section (segment) is the 
length of rail between two locations and a location is any fixed point of reference along the 
rail such as the end of a section of rail, the start or end of a crossing loop, crossover or 
junction, or the position of a signal device. Traffic movement on each line (track) can 
potentially be in one or both directions, that is, traffic is uni-directional or bi-directional. One 
train only however may generally occupy a section of rail at any given time (section 
occupation condition (SOC)) for safety reasons however it is physically possible for a train to 
follow another train (albeit separated by a headway interval) onto a section if it is long 
enough. Technological improvements (whatever they may be) may allow the SOC to be 
relaxed in the future. A railway system is a single corridor or a collection of separate and or 
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interrelated corridors. A railway line that branches outwards and hence inwards in the 
opposite direction is referred to as non-serial. Hence a network of interrelated corridors is a 
non-serial track. It should also be noted that parallel tracks with the same topography (i.e. 
sections are placed in the same position on each track) have also been referred to as corridors. 
Train types that use the railway are electric or diesel powered and may be used for moving 
passengers or freight. The total journey time for a train is referred to as it transit time, and the 
time it takes to traverse a given section is the sectional running time (SRT). The total time 
spent by a train on a section however, is the section occupation time (SOT) which may 
include pre planned dwell (dwell) time and scheduled/unscheduled delays. A trains path is a 
passage through the system from one input-output (IO) point to another. A group of trains that 
travel in the same direction (sequentially) on the railway without being disturbed by traffic in 
the other direction is called a fleet. 
 The content of the remainder of the paper is as follows. Techniques for simpler railway 
lines are firstly developed in section 3 after necessary terminology has been given in section 
2. In section 4, the approaches in section 3 are extended for general railway networks. 
Following this a case study which illustrates the techniques proposed in this paper is 
provided. Lastly our results and accomplishments are summarised in the conclusions. 
 
 
2. NOMENCLATURE 
 
i:  Train type index. The set of trains is {1,2,...}I = . 
T:  Time period duration 
l,k:  Location index. 
→ :  This symbol signifies uni-directional travel between two locations, for example l k→ .  
 In contrast “− ” is used to signify a non directional or generic link as occurs when 
 defining a corridor.   
Φ :  The set of input/output (IO) points which are locations where trains may enter and leave 
 the network. Any location may be defined as an IO point. 

: The set of valid sections in the railway network. 
:  The set of valid corridors in the railway network. Note: ( ){ }, : ,l k l k= ∈Φ  

l kCS − : The critical section of the corridor that lies between l and k (i.e. corridor l k− ).  
l k
absC − : The absolute capacity of corridor l k− . Alternatively it is the capacity of section l k−  

 because the smallest corridor is a single section. To avoid confusion however the 
 absolute capacity of a section is redefined as ( , )l k

absC . Therefore, 
( )

( )
,

( , )

,
min

l k

l k l k
abs absl k S

C C ′ ′−

′ ′ ∈
= . 

l k
i
→Δ : Total dwelling time of train type i on corridor l k−  when travelling in the direction of k. 

 Note: ( ),
l k

l k l k
i i l

l P−

→ →
′

′∀ ∈

Δ = Δ∑  where ,
l k
i l
→
′Δ  is the specific dwelling time at location l′ . 

l k
iJ → : Total transit time of train type i on corridor l k−  when travelling in the direction of 

 location k.  Note: ( )
( ), l k

l kl k
ii

l k S

J SRT
−

′ ′→→

′ ′ ∈

= ∑  

l k
iη
− :  Proportion of train type i on corridor l k−  where ( ),l k ∈ .  
l k
iμ
→ : The proportion of train type i in the direction of k on corridor l k− .  If ( ),l k ∈ , then 

 1l k k l
i iμ μ→ →+ = . Note that 0l k

iμ
→ =  if movement from l to k is restricted (for example 

 as occurs in uni-directional systems). 
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train section corr
( , ), ,i l k l kL L L − : Respectively the length of train i, section (l,k) and corridor l k− .  

l k
iSRT → : The sectional running time of train i when travelling on section ( ),l k  in the 

 direction of location k including the time lag required by the rear to pass the section 
 boundary (i.e. ( )train section

( , )1 i l kL L+  times standard SRT). Note that the time lag may be 
 greater if dwell times exist and the length of the train is longer than the section. 
 Techniques for calculating the correct departure time for the rear and associated time 
 lag have been developed however are not addressed in this paper. 

l kP− , l kS − : Set of locations and sections traversed on corridor l k−  respectively. 
l k
iX − : Number of trains of type i that use corridor l k− . Note: l k l k k l

i i iX x x− → →= +  
l k
ix → : Number of trains of type i that travel from location l to k. Note: 0l k

ix → =  if  movement 
 in the given direction is restricted. 
 
In summary corridors and sections are referenced by two values namely the boundary 
locations. The ordering of these two values is used to define direction of travel which is not 
possible if a single index/label is used. If desired the →  and −  notation may be replaced with 
a simple comma and brackets notation instead, for example ( ),l k . It does however explain 
the directional aspects more easily. 
 
 
3. TECHNIQUES FOR RAILWAY LINES 
 
In this section we extend the bottleneck approach (as described in the introduction) by 
incorporating a variety of additional factors. The improvements in this section relate to 
railway lines while more complex techniques for networks are presented in the next section. It 
should also be noted that unless otherwise mentioned all quantities are assumed to be real 
valued. Quantities such as the absolute capacity and the number of trains of each type can be 
real valued because partial traversal of a corridor is still utilisable capacity (i.e. it is not 
important that whole trains reach their destination in a given duration of time). The time it 
takes for trains to reach a specific position prior to the time period is also of no concern (i.e. a 
“steady state” is assumed.)  
 
3.1. Train Mixes 
 
 The bottleneck analysis is usually performed in relation to a single train type. However 
in reality, the section will have to accommodate a variety of different trains with varying 
speeds. To remedy this, the concept of a percentage train mix is introduced, from which an 
actual train mix can be determined. Consequently the percentage of total traffic that consists 
of each train type is defined as the proportional distribution, while the percentages for travel 
in each direction are defined as the directional distribution. For every distinct proportional 
and directional distribution (i.e. percentage train mix), the capacity of the corridor will be 
potentially different. For a line with boundaries (l,k) and particular proportional and 
directional distributions, the proportion of traffic in each direction respectively is determined 
from the balance equation ( )( ) 1l k l k k l

i i i
i
η μ μ− → →+ =∑  as ( )l k l k

i i
i
η μ− →∑  and ( )l k k l

i i
i
η μ− →∑  

respectively. 
 A section of rail that is fully utilised is referred to as saturated, and this occurs when it is 
fully occupied. Under these conditions and for feasibility, the time-period must be greater 
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than or equal to the section occupancy time (i.e. number of trains in each direction multiplied 
by their respective SRT in that direction). That is, ( )l k l k k l k l

i i i i
i

x SRT x SRT T→ → → →

∀

+ ≤∑ . If the 

number of type i trains in each direction respectively is ( ) ( , )l k l k l k
i i absCη μ− →  and ( ) ( , )l k k l l k

i i absCη μ− → , 
then the substitution of these terms and the re-arrangement of the above equation gives the 
following expression for absolute capacity.  

( )
( , )l k
abs l k l k l k k l k l

i i i i i
i

TC
SRT SRTη μ μ− → → → →

∀

=
+∑

                                     (1) 

 The denominator is the weighted average sectional running time and is defined as 
l k

SRT
−

. It gives the average performance of trains in the given mix.  When capacity is not 
fully utilised, free capacity (i.e. l k

iF → ) in terms of a particular train type and for a particular 
direction can then be determined by subtracting the current occupancy level  

( )l k l k k l k l
i i i i

i
x SRT x SRT→ → → →
′ ′ ′ ′

′∀

+∑  from T and then dividing by l k
iSRT → . This allows the rail 

operator a “what if” capability to see whether capacity exists for additional trains to be run.                            
 Absolute utilisation levels (not incorporating congestion and interaction effects) can also 
be computed by equation (2) and is the percentage time that an actual mix of trains utilises the 
section.  
 

 
( )

( , )

l k l k k l k l
i i i i

l k i
abs

x SRT x SRT
U

T

→ → → →

∀

+
=
∑

                            (2) 

 
Consequently ( )( ),1 l k

absU− is the percentage capacity that is theoretically free on section (l,k). 

The overall utilisation of the corridor can then be calculated as the minimum utilisation level 
of any section, i.e. 

( )
( )( ),

,
min

l k

l kl k
abs absl k S

U U
−

′ ′−

′ ′∀ ∈
= . 

 
3.2. Signals and Reference Locations 
 
 Equation (1) however assumes that crossing loops occur at the section boundaries thus 
allowing traffic to pass each other. However in practice this is not always the case. For 
example one or both section boundaries may have signal devices. Signal devices allow 
throughput in one direction to be increased, because it allows additional trains to safely 
occupy a section. However utilisation of capacity can be lost when consecutive trains travel in 
opposite directions as occurs when bi-directional flow is allowed. This is because trains can 
not pass each other at the section boundary. They can only pass each other at the nearest 
crossing loop or passing facility if one exists. Consequently enforced headways on that 
section must be incurred and these may be of considerable duration in some railways. An 
example of this is shown in Fig 1 on a time versus distance chart. The grey blocks are 
enforced headways. The train velocities are 100 km/h. 
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Figure 1. Enforced headways on a corridor containing signals 

 
 Therefore previously proposed capacity calculations may overestimate capacity levels 
on sections that are not bounded by crossing loops and a new approach is necessary. The 
approach taken in this paper in particular is based upon the observation that the number of 
enforced headways is proportional to the number of pairs of alternating trains. This is dictated 
by a particular sequence (i.e. train schedule), and is unknown from a capacity analysis 
viewpoint. Therefore, we can only define a range in which the absolute capacity will lie and 
depending on the level of fleeting (see introduction for definition), this value will be closer to 
one bound than the other. In particular, the absolute capacity will be greatest (i.e. the upper 
bound) when there are two fleets, one in each direction. Absolute capacity will be smallest 
when there are many fleets of one train (i.e. trains commonly alternate in the sequence in each 
direction). 
 The lower bound value is determined by noting that the worst sequence containing 
alternating trains is of length 2z+1 where ( )min # , #z up dn= . The remaining trains form a 
fleet. For example the two possible resulting sequences have the following format: (d u d u d 
… d d …. d) or (u d u d u …. u u ….u) where u and d refer to an up or down train 
respectively. Consequently there will be at most 2z enforced headways that must be included. 
The upper bound is determined by choosing the permutation of the two fleets (i.e. all up and 
then all down, or all down and then all up) that has the smallest enforced headway between 
them. 
 We now define ( , )l kh as the enforced headway time on section (l,k) between traffic 
moving in opposite directions when there is no crossing loop at location k. Similarly, ( , )k lh is 
the enforced headway on the same section but at the opposite section boundary. In particular 
the headway between an l k→  and a k l→  train is ( , )l kh , and the headway between a 
k l→ and an l k→  train is ( , )k lh . It should be noted that ( , )k lh  and ( , )l kh  are zero if location l 
and k respectively are crossing loops. The enforced headways are calculated as the sum of two 
weighted average travelling times, i.e. ( , ) l l l lk lh SRT SRT

′ ′→ →
= + .The weighted average 

travelling times to and from the nearest crossing loop location l′may be different depending 
on the particular proportional and directional distributions. Otherwise this value would just be 
twice the weighted average travelling time. The weighted average sectional running time in a 
particular direction is calculated as follows: 
 

 
( ) ( )1l k l k l k l k

i i il k l k
ii i

i

SRT SRTη μ
η μ

→ − → →
− →

∀
∀

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∑
                           (3)

         
 The second part of this equation is the weighted average sectional running time for 
trains travelling in one direction only however since the sum of these percentages does not 
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add to 100 percent, the value must be scaled by the bracketed value in the first part of the 
equation. The first part in particular is the inverse of the percentage traffic in the given 
direction. It should also be noted that: 
 
 ( ) ( )l k l k k ll k l k l k k l

i i i i
i i

SRT SRT SRTη μ η μ
− → →− → − →

∀ ∀

= +∑ ∑                           (4) 

 
 To derive equations for the lower and upper bounds on the absolute section capacity we 
note that for feasibility, the following inequalities (which represent section saturation 
conditions) must be satisfied for the lower and upper bound cases respectively: 

          
 ( ) ( )( , ) ( , )l k l k k l k l l k k l

i i i i
i

SRT x SRT x h h z T→ → → →

∀

+ + + ≤∑ (LB only)                         (5)

 ( ) ( )( , ) ( , )min ,l k l k k l k l l k k l
i i i i

i
SRT x SRT x h h T→ → → →

∀

+ + ≤∑ (UB only)                        (6) 

 
where z is the number of trains travelling in the direction with the least number trains and is 

computed as ( ) ( ) ( )if l k l k k l
i i i i i

i i i

z x η μ η μ→ → →

∀ ∀ ∀

⎛ ⎞= ≤⎜ ⎟
⎝ ⎠

∑ ∑ ∑  and ( ) z k l
i

i
x →

∀

=∑  otherwise. We 

also know that ( ),l kl k l k l k
i i i absx Cη μ→ − →=  and ( ),l kk l l k k l

i i i absx Cη μ→ − →=  from section 3.1. After 
substitution of these values the resulting intermediate equations are as follows: 
 
 ( ) ( ) ( ), ( , ) ( , )l k l k l k l k k l l k k l l k k l

abs i i i i i i
i

C SRT SRT h h z Tη μ η μ→ − → → − →

∀

+ + + ≤∑        (7) 

 ( ) ( ) ( ), ( , ) ( , )min ,l k l k l k l k k l l k k l l k k l
abs i i i i i i

i
C SRT SRT h h Tη μ η μ→ − → → − →

∀

+ + ≤∑        (8) 

 

The summation term is actually the weighted average sectional running time 
l k

SRT
−

 which 
can be substituted. Simple rearrangement in terms of ( ),l k

absC  and the replacement of the 

inequality with an equality sign gives the following equations (Note: LB and UB replace ( ),l k
absC  

to avoid confusion). 
 

( ) ( )( ), ,l k k l

l k

T z h h
LB

SRT
−

− +
=  , 

( ) ( )( ), ,min ,l k k l

l k

T h h
UB

SRT
−

−
=                              (9) 

                                                  
 In practice, passing headways may also be imposed for safety reasons on sections 
bounded by crossing loops. Alternatively they may be added because crossing loops are not 
single points but small sections with their own length. Consequently a similar approach is 
taken for determining absolute capacity. This case is potentially simpler than the other case 
because the passing headway may be independent of train type and hence static. This is not 
the case however when the passing headway is proportional to a fixed distance, because trains 
have different velocities (i.e. they cover the same distance in different times). 
 If the section occupation condition was theoretically removed, and replaced with a 
minimum headway distance condition, the lower bound for absolute capacity would not be 
changed because the condition does not affect pairs of trains that travel in opposite directions. 
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The removal of this condition however significantly increases the throughput in one direction 
and hence the upper bound will be increased.  
 To calculate the upper bound for this scenario we need to be able to determine the 
capacity of a section with uni-directional traffic of one type only and minimum headways. A 
typical example is shown in Fig 2.  
 

 
 (a)    (b) 

Figure 2. Section saturation in one direction with minimum headways 
 
Note that the trains given by the dashed lines are also included normally but are not in the 
upper bound calculations. This is because there are two distinct unidirectional fleets being 
considered. It should be noted that the maximum number of trains that can be on a section at 
any given time (length excluded) is ( )( )section d

, 1l kL DIV h +  given that  dh  is the headway distance. 

Using this expression and Fig 2 the number of train paths that may be realised during a time 
period equal to the standard sectional running time (i.e. l k

iSRT → ) is computed as: 

( )

( )( )section d
, d

section
1 ,

1 2 1
l kL DIV h

j l k

j h
L=

⎛ ⎞⎛ ⎞×⎜ ⎟⎜ ⎟+ −
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ .  This equation was derived by noting that there is at least one 

full path and a number of partial paths which are symmetrically positioned on either side. The 
summation term in particular computes the number of partial paths on one side only. 
 The following equations are proposed for determining the absolute capacity of a line 
that has unidirectional traffic of a single train  type. 
 
  ( ) ( ), , , , , ,0 , , , , ,1l k l k

abs i iC G i l k T h G i l k SRT h→ →= +                                   (10) 

   
( )min ,

( , , , , , , / )
l k

i
l k

i i

t i h SRT
G i l k t h t h

SRT

β

α

α β
→

→
=

⎛ ⎞− ×
⎜ ⎟= =⎢ ⎥⎣ ⎦ ⎜ ⎟
⎝ ⎠

∑                                     (11) 

 
 Equation (10) consists of two parts and is based upon the observation (from Fig2(a)) 
that t t/ / 1l k

iT h SRT h→⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦ trains (where ⎢ ⎥⎣ ⎦  is the floor function) partially utilise the line 
(in the direction of k for example) during time period T. The sum of the partial utilisations is 
the total number of train paths and hence the level of capacity. The partial utilisation level for 
a particular train is determined by the bracketed term in function G. Function G requires 
parameters (i,l,k) and three additional values (t, h,α ). The first two are the time period 
duration and the headway time. The third is a binary parameter that signifies whether the first 
train starting at time zero is included or not. Normally this is true, however when determining 
the upper bound this train would be included twice and hence a one is required in the second 
part of equation (10). 
 When there are multiple train types, one approach that may be taken is to assume that 
there is only one train type with SRT’s given by the weighted average in one direction (as 
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defined by equation (3)). We therefore replace l k
iSRT →  in equation (10) and (11) with 

l k
SRT

→
and redefine ,

l k
abs iC →  as l k

absC → . By doing this, the conflicts that occur between fast and 
slow trains can be ignored, although inaccuracies may consequently result. 
 Finally the capacity of two fleets should be calculated to determine the upper bound. 
The trains that are represented by dashed lines in Fig 2 should be removed. In particular the 
trains with dashed lines on the right should be removed for the first fleet and the trains with 
dashed lines on the left but in the opposite direction should be removed for the second fleet. 
This is shown clearly in the Fig 3(a) and (b). 
 

 
(a)       (b) 

Figure 3. Upper bound calculation on signalled section 
 
The following equations result. Note that index i is no longer required. 
 

 ( ) ( ), , , ,0 , , , ,0UB G l k T h G k l T h′ ′′= +                                     (12)   

 ( ) ( ), , , ,0 , , , ,0UB G k l T h G l k T h′ ′′= +                                      (13) 
 

 The individual uni-directional capacities may be determined by splitting time period T 
into two sub periods (i.e. ( , ) ( , ) or l k k lT h T T T h T T′ ′′ ′ ′′= + + = + +  respectively). Because we 
can not explicitly define these, the following non-linear mathematical model (for the first case 
shown in Fig 3(a) for example) should be solved.   
 

Maximise  ( ) ( ) ( ), , , , ,0 , , , ,0l k
absC G l k T h G k l T h′ ′′= +                                                    (14) 

Subject to, 
( , )  l kT h T T′ ′′= + +                                                                                                      (15)                        

 ( ) ( ) ( ) ( ), , , ,0 , , , ,0 0k l l k
i i i i

i i

G l k T h G k l T hη μ η μ→ →

∀ ∀

′ ′′− =∑ ∑                                         (16) 

The decision variable is T ′ because T ′′can be replaced after (15) is rearranged and 
substituted. Constraint (16) is a balance equation which enforces that the proportional and 
directional distributions are satisfied.  This equation is derived by noting that traffic flow in 
each direction must satisfy ( ) ( ) ( ),, , , ,0 l k l k

abs i i
i

G l k T h C η μ →

∀

′ = ∑  and 

( ) ( ) ( ),, , , ,0 l k k l
abs i i

i
G k l T h C η μ →

∀

′′ = ∑ .  Rearrangement of these expressions in terms of ( ),l k
absC  and 

then setting them to be equal gives constraint (16). 
 In general when bi directional traffic is not split into two distinct uni-directional fleets 
(an example is shown in Fig 4) absolute capacity may be determined by the following 
equation. 
 
  ( ) ( ) ( ) ( ), , , , ,0 1 , , , ,0l k

abs b b b b
b

C G l k t h G k l t hδ δ
∀

= + −⎡ ⎤⎣ ⎦∑        (17) 
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The number of blocks (B) of alternating traffic (equivalently the number of fleets), the length 
of each block bt , and the direction of travel for that block bδ  (where 0 or 1kδ = ) might be 
chosen or solved for. However these variables should satisfy ( )1b

b
t B h T+ − =∑  

and 1b b b Bδ δ +≠ ∀ < .  

 
Figure 4. General case on signalled section 

3.3. Dwell Times  
 
 In practice it is also common for trains to have pre planned dwell times at intermediate 
locations. Passenger set downs and pick ups, and loading and unloading of freight are normal 
examples. Dwell times significantly reduce the utilisation of standard line capacity because 
stationary trains do not utilise capacity very well. They utilise capacity most efficiently when 
they are moving, and in particular when they are travelling at their maximum velocity. No 
generalised measure to our knowledge has been proposed for incorporating this aspect. 
Although, incorporating dwell times at those locations without passing facilities (for example 
signals) is easily accomplished. The dwell time at the far boundary in the direction of travel is 
just added to the train’s sectional running time. For example on section ( ),l k  the dwell time 
at k is added if the direction of travel is l k→ , and the dwell time at l is added if the direction 
of travel is k l→ . This is because trains stopped at these locations have not left the current 
section and hence other trains are not allowed to enter because of the section occupation 
condition.  
 Crossing loops however are different because a train that crosses a section boundary 
into a crossing loop is no longer on that section anymore, i.e. they are on another. 
Consequently the dwell time may not be added to the sectional running time as they 
previously were. However, as a crude first approach this is reasonable as an estimate. Dwell 
times also do not occur at the section boundaries but rather at the opposite ends of the 
crossing loops in the direction of travel. Because the crossing loop length is small, the 
absolute capacity of such a section will be very high even with dwell times included. Hence it 
is unlikely that such a section will become critical and thus dictate the overall “absolute” 
capacity for the corridor. Therefore, it is not necessarily appropriate to define the capacity of 
the entire corridor as the capacity of a single critical section.  
 We propose that a different approach be taken which is based upon the observation that 
dwell times affect the overall capacity of a railway line by reducing throughput of individual 
trains. The reduction in throughput is proportional to the total dwell time and the transit time. 
Therefore l k

iλ
−  is defined as the reduction in throughput for a particular train of type i on 

corridor l k−  and l kλ − is defined as the reduction in throughput for a mix of trains. 
Consequently absolute capacity calculation is proposed in the following way:  
 

l k

l k l k
abs CS

TC
SRT

λ
−

− − ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
                                              (18) 

 
 One of the following approaches can be used for the calculation of the reduction factors.  



 12

 
Approach 1:  

 ( )
( ) ,, l k

l k l k
i i

l k S
J SRT ′ ′→ →

′ ′∀ ∈

= ∑ , l k l k l k
i i iJ J→ → →= + Δ , 

l k
l k i
i l k

i

J
J

λ
→

→
→

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 

 l k l k l k k l k l
i i i i iλ μ λ μ λ− → → → →= + , ( )l k l k l k

i i
i

λ η λ− − −

∀

=∑                                           (19) 

 
The reduction factor l k

iλ
→ for a particular train type and direction is calculated as the ratio of 

the transit time l k
iJ → and the overall transit time l k

iJ → . The overall transit time includes dwell 
times whereas the standard measure does not. For each train type, the reduction factor l k

iλ
−  is 

calculated by averaging the reduction in each direction by the directional distribution. Lastly 
the overall reduction factor l kλ − is calculated as a weighted average value, i.e. the value is 
averaged with respect to the proportional distribution for the different train types. 
 
Approach 2:  
 l k l k l k k l k l

i i i i iJ J Jμ μ− → → → →= + , l k l k l k k l k l
i i i i iμ μ− → → → →Δ = Δ + Δ , 

  ( )l k l k l k
i i

i
J Jη

− − −

∀

=∑ , ( )l k l k l k
i i

i
η

− − −

∀

Δ = Δ∑ , 
l k

l k
l k l k

J

J
λ

−

−
− −=
+ Δ

                                (20) 

  
For each train type the weighted average journey time l k

iJ − and the weighted average total 
dwell time l k

i
−Δ  are calculated. These values are obtained by averaging the values for a 

particular direction by the directional distriubtion. 
l k

J
−

is then defined as the weighted 

average transit time and 
l k−

Δ is the weighted average total dwell time on corridor l k−  over 
all train types. The overall reduction factor is then calculated as the ratio between the 
weighted average transit time (no dwell time) and the weighted average total transit time (that 
includes dwell time). 
 
Approach 3: 

,ˆ

l k
l k i
i l k

i

j l l l k
j

λ
′ ′→

′ ′→
′ ′→

′ ′= ∀ ≠ ≠ , 
( ) ( )

, ,

or 
or 

l k
l k i
i l k l k k l

i i l i l

SRT l l l k
SRT

λ
′ ′→

′ ′→
′ ′→ → →

′ ′

′ ′= = =
+ Δ Δ

 

( ),l k l k l k k l k l
i i i i iλ μ λ μ λ′ ′ ′ ′ ′ ′→ → → →= + , ( ) ( )( ), ,l k l k

i i
i

λ η λ′ ′ ′ ′

∀

=∑ , 

( ) ( ), ,
( , )

l k l k
abs l k

TC
SRT

λ′ ′ ′ ′
′ ′

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
, 

( )
( )( ),

,
min l kl k

abs absl k
C C ′ ′−

′ ′∀ ∈
=                                           (21) 

 In this approach the reduction in throughput is assumed to be potentially different on 
each section. Consequently there is no single reduction factor for the entire corridor and the 
absolute capacity is determined as the capacity of the section with the smallest throughput.  
 Throughput on a particular section in particular is reduced by dwell times on prior 
sections in the direction of travel. The variables l k

ij
′ ′→  and ˆl k

ij
′ ′→  are introduced as the partial 

(cumulative) transit time and total transit time for a particular train type. More specifically 
they are the time to reach section boundary location l′  (in direction of k ′ ) with dwell times 
not included and included respectively. The calculation of these quantities however is not 
shown above. 
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 The reduction factors are calculated in a similar way to approaches 1 and 2, i.e. the 
values are averaged with respect to the directional and proportional distributions. The main 
difference in this approach is that the reduction factor (for each section) is proportional to the 
ratio of travelling time and total travelling time up to the current section and not including 
those sections afterwards in the direction of travel. It should be noted that at each corridor 
boundary, the ratio of the two partial transit times is zero because l k

ij
′ ′→  is zero. This implies 

that there is no throughput in this direction which is clearly incorrect. Consequently an 
alternative measure is given for defining the reduction in throughput. This expression takes 
the ratio of the transit times to the opposite section boundary instead (i.e. k ′ ) without taking 
into account the dwell time at that location (as occurs normally).  
  
 
4. TECHNIQUES FOR RAILWAY NETWORKS 
 
 In this section the approaches that were developed for railway lines in section 3 are 
modified and extended so that they are applicable to networks. Some examples /features of 
railway networks (displayed as line diagrams) that can be analysed by the approaches 
developed in this section are shown in Fig 5.  

 

 
               (a)                 (b)       (c)               (d) 

Figure 5. Line diagram examples of railway networks 
 

4.1. Train Mixes  
 
 For railway lines the absolute capacity was the number of trains that could traverse the 
critical section. This is equivalent to the number of trains that travel in each direction (i.e. 
from both IO points). The absolute capacity of a network is similar.  It is the total number of 
trains that traverse all corridors. Equivalently it is the number of trains that travel between 
each pair of IO locations, layout permitting.  
 Quantifying absolute capacity is however more difficult in networks because of the 
interaction of corridors. This occurs when corridors have common sections. Consequently, an 
optimisation model is required instead of single standalone equations. To determine the 
absolute capacity when train mixes are incorporated the following core model is used.  
 

Maximise ( )
,

network l k
abs i

l k i
C x →

∀ ∈Φ ∀

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑                                                 (22) 

Subject to, 
 ( ) , , |l k k l l k l k k l

i i i i i
i

x x x x i I l k l kη→ → − → →
′ ′

′∀

+ = + ∀ ∈ ∀ ∈Φ <∑                                  (23) 

( ) , , |l k l k l k k l
i i i ix x x i I l k l kμ→ → → →= + ∀ ∈ ∀ ∈Φ ≠                                             (24) 

0 ,l l
ix i I l→ = ∀ ∈ ∀ ∈Φ                                               (25)  

( ) ( ),l k l k k l k l
i i i i

i
SRT x SRT x T l k→ → → →

∀

+ ≤ ∀ ∈∑                                   (26) 
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( ),l k l k network
absX C l kσ− −= ∀ ∈                                              (27) 

 
 Constraint (23) and (24) enforce that the proportional and directional distributions are 
obeyed on valid corridors of the network. They may be alternatively written 
as ( )l k l k l k

i i i
i

X Xη− − −
′

′∀

= ∑  and l k l k l k
i i ix Xμ→ → −= . Without these constraints, the solution would 

be one sided as it would only contain the fastest trains travelling in the directions with the 
shortest sectional running times.   
 Constraint (26) is the standard balance equation which ensures that the flow through 
each section of the network must be less than or equal to the saturation limit (i.e. capacity of 
the section). To ensure that traffic on each corridor (i.e. corridor usage) is a given percentage 
of the total network traffic, constraint (27) may be optionally added. l kσ − is the proportion of 
traffic on corridor l k−  where ( )0,1l kσ − ∈ . This value gives the precentage usage of the 
corridor with respect to the other corridors of the network. The decision variables of the 
model however are the number of trains that travel to and from each IO point. The other 
variables signifying the number travelling across individual sections are therefore redundant. 
This means that the l k

ix → variables in constraint (26) must be converted.  To accomplish this 
we note that only corridors that contain the section contribute to the occupancy level of the 
section. An additional summation sign is hence added to the original constraint to loop 
through only the associated corridors.  A binary variable , , ,l k l k′ ′Θ  is introduced and signifies 
whether a section (l,k) is traversed in corridor l k′ ′− . It also signifies that when travelling 
from l′  to k ′  if section (l,k) is traversed in the direction of l or k. For example, , , , 1l k l k′ ′Θ =  
implies that location l is reached before location k when travelling from l′  to k ′ . It should be 
noted that , , , 1l k l k′ ′Θ =  implies that , , , 1k l k l′ ′Θ =  and , , , 0l k k l′ ′Θ = . The following constraint can 
then be written after conversion.  
 

 ( ) ( )
, , ,, | 1

, :
l k l k

l k l k k l k l
i i i i

l k i
SRT x SRT x T l k l k

′ ′

′ ′ ′ ′→ → → →

′ ′∀ ∈Φ Θ = ∀

⎛ ⎞+ ≤ ∀ ∈ <⎜ ⎟
⎝ ⎠

∑ ∑                   (28) 

 
 This approach (i.e. for determining network capacity) also works for serial lines which 
have a number of internal IO points. Previously this would not have been possible, especially 
using the theory of section 3. This is because only one corridor and one associated 
proportional and directional distribution existed. The mix of trains on each section was also 
consequently equal. This is not true when there are internal IO points however. 
 In a network it may also be reasonable to determine the proportional and directional 
distributions on sections as well as corridors, particularly sections which are members of two 
or more corridors. To do this the following equations are used. 

 
( )

( ) ( )
( , )

,
( , )

; ,
l k

l k i
i l k

i
i

x i l k
x

η
′

′∀

= ∀ ∀ ∈
∑

,   ( ); ,
l k

l k i
i l k

i

x i l k
X

μ
→

→
−= ∀ ∀ ∈                          (29) 

                 
 These expressions however can only be evaluated after the absolute capacity of the 
network has been determined. The proportional and directional distributions on each section 
do not appear to be directly calculable from the corridor proportional and directional 
distributions. 
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4.2. Signals 
 
 The incorporation of signals and other reference locations is more complex in networks. 
The added complexity results as a consequence of determining the enforced headway time on 
a section.  Enforced headways in railway lines were calculated as the sum of two weighted 
average travelling times. The travelling times in particular were also based upon the time it 
takes each train to reach the nearest crossing loop or passing facility and or return. Because 
the line is serial, there is only one nearest crossing loop on each side of the section if any at 
all. In networks however, there may be many crossing loop or passing facility because a 
section may be common to several different corridors. The particular one used depends on the 
corridor that the train is specifically traversing. A weighted average enforced headway is 
therefore proposed that takes into account all the enforced headways that may be incurred 
when travelling on different corridors. Therefore the mathematical model presented in section 
4.1 is modified by removing equation (28) and adding the following equations to determine 
the lower bound. 
           

( ) ( ) ( )( , ) min , , |l k l k k l k l l k l k k l
i i i i

i

SRT y SRT y h Y Y T l k l k→ → → → → →

∀

+ + ≤ ∀ ∈ <∑                   (30) 

 ( )
, , ,

( , )
, , , ,

, | 1

, |
l k l k

l k k l
l k l k l ki i

i l k i k ll k k l
l k i

x xh h h l k l k
Y Y

′ ′

′ ′ ′ ′→ →
′ ′ ′ ′− −

→ →
′ ′∀ ∈Φ Θ = ∀

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
= + ∀ ∈ <⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑               (31) 

( ) ( )
, , ,, | 1

 and    
l k l k

l k l k l k l k
i i i

l k i
y x Y y

′ ′

′ ′→ → → →

′ ′∀ ∈Φ Θ = ∀

= =∑ ∑                                           (32) 

 
 In these equations l k

iy →  and l kY →  are used to define the total number of trains of type i 
and the total number of trains respectively that traverse section ( ),l k  in the direction of k. 

These variables denote travel between sections while the original variables l k
ix →  and l kX →  

denoted travel between IO points only. In essence the redundant variables in the original 
model are re-inserted in equation (30). They are however calculated separately by the 
equations at (32). Equation (30) is otherwise taken directly from section 3. The equations at 
(32) are also formulated to make equation (31) more understandable. Equation (31) is a new 
equation which determines the headway on a section as a weighted average value that is 
proportional to the current actual mix of trains. The percentage values are determined by 

terms  and 
l k k l
i i
l k k l

x x
Y Y

′ ′ ′ ′→ →

→ →

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. In this equation , ,
l k
i l kh ′ ′−  is the enforced headway time for a train of 

type i on corridor l k′ ′−  on section ( ),l k  in the direction of k.  It is calculated with respect to 

the distance to the nearest crossing loop from section ( ),l k  on corridor l k′ ′−  in the direction 
of k.  

 The resulting model is non-linear however the non-linearity in constraint (30), that is, 
the min function, may be removed by introducing additional binary variables and constraints 
for each section. The upper bound is evaluated in the same way as previously described in 
section 3. 
 
4.3. Dwell Times 
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 When incorporating dwell times in networks, absolute capacity is determined by the 
following equation which apart from the added reduction factor essentially the same as 
equation (22). 
 

( )
( ),

network l k l k k l
abs i i

l k i
C x xλ − → →

∀ ∈ ∀

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑                                             (33) 

 
The reduction factors are calculated for each corridor according to the first two approaches in 
section 3.3. The original model proposed in section 4.1 can be solved firstly and then equation 
(33) can be evaluated. Alternatively this equation can be used directly as the model objective 
function. Note that the equations presented in section 3.3 should be added as additional 
constraints if the second choice is taken. Otherwise the approaches developed in section 3.3 
remain the same for networks.  
 The third approach for incorporating dwell times from section 3.3 is more difficult for 
networks for the same reason as incorprating signals in section 4.2 was more difficult for 
networks. The reduction factor on a section must now take into account all the different 
corridors that contain the section. The following modifications are needed for networks. 
Firstly the right hand side of equation (29) must be multiplied by ( , )l kλ . Secondly we need to 
recalculate ( , )l kλ  as follows. 
 

( )
, , ,

( , )
, , , ,

, | 1

, :
l k l k

l k k l
l k l k l ki i

i l k i k ll k l k
l k i

x x l k l k
Y Y

λ λ λ
′ ′

′ ′ ′ ′→ →
′ ′ ′ ′− −

− −
′ ′∀ ∈Φ Θ = ∀

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
= + ∀ ∈ <⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑              (34) 

 
In this equation , ,

l k
i l kλ ′ ′− is the reduction factor for train type i on section (l,k)  of corridor l k′ ′−  

in the direction of k.  The equation has the same structure as (31). 
 
 
5. CASE STUDY 
 
 To illustrate the proposed techniques the following network shown in Fig 6(a) is 
considered. It encompasses the most important, difficult and significant elements of theory 
developed in this paper. The network has nine corridors (i.e. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, , , , , , , , , , , , , , , , ,A C A D A E B C B D B E C D C E D E= ) out of a possible 
ten. There are twenty four sections, with a total of 171.59 kilometres of track. The set of IO 
locations is { }, , , ,A B C D EΦ = . Three train types use this network with velocities 

respectively (in km/h) ( )80,100,120V =  and equal in both directions. 
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(a)     (b) 
Figure 6. Network layout and equivalent reduced network (shown to scale) 

 
 It should be noted that in Fig 6(b) an equivalent but reduced network is shown. During 
our numerical investigations we found that many parts of the network are redundant and may 
be removed to simplify the analysis. The simplification involves reducing each serial line to 
one section which is a local bottleneck. Parallel sections can also be represented as single 
track with twice the capacity. The rest of the data is as follows. 
 
Table 1. Network data 

# Corridor #  of 
Sections 

Length 
(km) CS   # Section Length # Section Length 

1 A-C 9 55.29 6-13 1 A-1 3.36 13 3-4 4.23 
2 A-D 11 76.23 6-7 2 1-2 4.23 14 4-5 7.89 
3 A-E 11 89.01 6-7 3 2-5 7.89 15 6-13 9.05 
4 B-C 9 55.29 6-13 4 5-6 5.56 16 13-14 5.97 
5 B-D 11 76.23 6-7 5 6-7 11.93 17 14-15 5.31 
6 B-E 11 89.01 6-7 6 7-8 10.40 18 15-16 6.67 
7 C-D 12 89.45 6-7 7 8-9 3.45 19 16-C 7.25 
8 C-E 12 102.23 6-7 8 9-10 4.12 20 8-17 3.64 
9 D-E 10 78.50 18-19 9 10-11 5.58 21 17-18 9.23 
     10 11-12 8.80 22 18-19 11.50 
     11 12-D 10.92 23 19-20 11.25 
     12 B-3 3.36 24 20-E 10.01 

 
Table 2. Proportional and directional distributions 

l k
iη
−

 Train Type ,l k k l
i iμ μ→ →

 Train Type 

Corridor 1 2 3 Corridor 1 2 3 
A-C 0.00 0.44 0.56 A-C - - 0.47 0.53 0.63 0.37 
A-D 0.31 0.45 0.24 A-D 0.26 0.74 0.33 0.67 0.50 0.50 
A-E 0.86 0.14 0.00 A-E 0.92 0.08 0.23 0.77 - - 
B-C 0.33 0.32 0.35 B-C 0.04 0.96 0.35 0.65 0.32 0.68 
B-D 0.74 0.03 0.23 B-D 0.54 0.46 0.51 0.49 0.13 0.87 
B-E 0.29 0.00 0.71 B-E 0.16 0.84 - - 0.24 0.76 
C-D 0.87 0.10 0.03 C-D 0.19 0.81 0.33 0.67 0.82 0.18 
C-E 0.39 0.26 0.35 C-E 0.55 0.45 0.76 0.24 0.61 0.39 
D-E 0.49 0.36 0.15 D-E 0.05 0.95 0.99 0.01 0.49 0.51 

 
Table 3. Sectional running times (equal in both directions) 

SRT Train Type  Train Type 
Section 1 2 3 Section 1 2 3 

A-1 2.52 2.01 1.68 3-4 3.17 2.54 2.12 
1-2 3.17 2.54 2.12 4-5 5.91 4.73 3.94 
2-5 5.91 4.73 3.94 6-13 6.79 5.43 4.53 
5-6 4.17 3.34 2.78 13-14 4.48 3.58 2.98 
6-7 8.95 7.16 5.97 14-15 3.98 3.18 2.65 
7-8 7.80 6.24 5.20 15-16 5.01 4.00 3.34 
8-9 2.59 2.07 1.73 16-C 5.44 4.35 3.62 

9-10 3.09 2.47 2.06 8-17 2.73 2.18 1.82 
10-11 4.18 3.35 2.79 17-18 6.92 5.54 4.62 
11-12 6.60 5.28 4.40 18-19 8.63 6.90 5.75 
12-D 8.19 6.55 5.46 19-20 8.44 6.75 5.62 
B-3 2.52 2.01 1.68 20-E 7.51 6.01 5.01 



 18

 



 19

Table 4. Dwell times (in both directions) 
Train Type Type 

Location 
1 2 3 

Location 
1 2 3 

1 0.00 0.00 0.00 11 1.71 4.82 2.80 
2 0.00 0.00 0.00 12 2.05 0.35 0.85 
3 0.00 0.00 0.00 13 1.39 2.97 2.11 
4 0.00 0.00 0.00 14 2.82 0.65 0.08 
5 0.00 0.00 0.00 15 4.87 2.12 4.67 
6 0.00 0.00 0.00 16 4.39 1.63 1.45 
7 2.33 1.93 4.89 17 0.00 0.00 0.00 
8 0.00 0.00 0.00 18 4.16 0.10 2.28 
9 2.33 0.65 1.77 19 0.00 0.00 0.00 

10 3.59 1.70 1.40 20 0.14 3.01 1.17 

 
  The first part of the analysis determines the capacity of individual corridors as if they 
were independent. The results are shown in Table 5. The first column gives the results of the 
ideal situation which occurs when all sections are assumed to be bounded by passing 
facilities. The second column shows the results for the actual scenario (lower bound shown 
only). The remaining columns are the same except for the addition of dwell times. Approach 
1 and 3 are shown also when dwell times are included.  No significant difference between the 
first two dwell time approaches was found on this example and only one approach is therefore 
shown. This is not necessarily true of all problems however. The likely cause for this 
similarity is the assumption of equal travelling time in each direction in this case study. 
 
Table 5. Capacity levels on independent corridors (w.r.t. the given mix) 

No Dwell Times Dwell (Approach 1) Dwell (Approach 3) 

All XL Actual  
(LB) All XL Actual  

(LB) All XL Actual  
(LB) # Corridor 

absC  absC  

Reduct
-ion 
(%) absC  absC  

Reduct
-ion 
(%) absC  absC  

Reduct-
ion 
(%) 

1 A-C 292.49 150.07 0.49 231.24 118.73 0.49 248.66 132.8 0.47 

2 A-D 193.83 119.14 0.39 157.59 96.88 0.39 159.9 108.94 0.32 
3 A-E 165.58 129.23 0.22 147.94 115.57 0.22 151.847 126.2 0.17 
4 B-C 258.94 181.61 0.3 201.97 141.75 0.3 184.64 142.35 0.23 
5 B-D 175.44 100.38 0.43 142.52 81.6 0.43 148.08 83.8 0.43 
6 B-E 210.71 125.39 0.4 174.71 103.96 0.4 185.92 109.44 0.41 
7 C-D 165.92 141.70 0.15 120.68 103.08 0.15 120.59 101.71 0.16 
8 C-E 193.59 147.39 0.24 148.54 113.12 0.24 145.41 111.48 0.23 
9 D-E 190.16 129.54 0.32 148.78 101.2 0.32 181.51 80.2 0.56 

Totals 1846.65 1224.18 0.34 1473.97 975.89 0.34 1526.56 996.92 0.35 

 
 From this table we can see that the dwell times cause roughly a 20% reduction in the 
utilisation of absolute capacity. The third approach for incorporating dwell times also gives a 
higher level of capacity than approach 1. 
 The second part of the analysis involves the determination of the capacity for the entire 
network. The results in Table 6 are obtained after the mathematical model was solved using 
GAMS. Because the model is non-linear the solutions are guaranteed to be only locally 
optimal to a given tolerance. 
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Table 6. Network capacity for various options  
No Dwell Dwell (Approach 1) Dwell (Approach 3) Train 

Type All XL Actual All XL Actual All XL Actual 
1 (only) 450.13 389.53 359.14 303.27 349.28 278.52 
2 (only) 562.66 407.34 460.29 316.16 410.1 234.08 
3 (only) 675.19 471.45 518.84 339.8 495.2 296.63 

Given mix 574.28 366.97 457.92 283.5 475.66 258.74 

 
 From Table 5 and 6 the utilisation level of each corridor is determined as a percentage 
of the total network capacity. Secondly the utilisation level of the corridor as a percentage of 
the unencumbered (i.e. independently used) corridor is determined. The effects of corridor 
interaction are calculated by comparing the absolute capacity of the network with the capacity 
of the network of independent corridors. For example for the given mix, the two values are 
366.97 and 1224.178 respectively which implies a 70% reduction in the utilisation of network 
capacity. As expected, the more interacting corridors the less capacity that can be utilised. 
 Lastly it should be noted that the removal of the directional distributions and the 
subsequent replication of the analysis will also give upper and lower bounds that are valid for 
all mixes. 
 

 
6. CONCLUSIONS 
 
 General approaches for determining absolute capacity in railways were developed in 
this paper and are based upon the logic of an existing bottleneck approach. The approaches 
are suitable for railway lines and networks with uni and or bi-directional traffic and do not 
require any major modifications when dealing with one scenario or another. Simplifications 
may however be made to reduce the computational burden in some circumstances. Our 
approaches are based upon an existing bottleneck approach however they are unique because 
many realistic aspects of railway operation that contribute to the determination of capacity 
were incorporated that to our knowledge are not normally included in analyses of capacity. 
These included train mixes, train lengths, dwell times, signals, section occupation conditions, 
and networks. Another significant factor in the approaches was the inclusion of headways of 
one particular type or another, for example, headway times and distances, enforced or passing 
headways, and safety headways. Because trains of different type use the railway, the most 
efficient way of performing the analysis was also to define a train with average performance 
or characteristics. Hence weighted average calculations also played a large part.  For example 
these included the calculation of weighted average sectional running time, dwell time, transit 
time, and headways.  
 The main approach developed in this paper is a generic optimisation approach. 
Consequently absolute capacity is determined by solving an optimisation model. The 
objective in particular is the total throughput between all pairs of IO locations. Alternative 
stand alone equations were also developed that are only suitable for simpler serial scenarios.  
 The approaches developed can also be used to measure (quantify) the potential 
interaction affects that occur in railway networks between interrelated corridors. The case 
study demonstrated the steps required to accomplish this. From our case study in particular 
we have illustrated that corridors can not be efficiently utilised if they are part of a complex 
network consisting of interacting corridors. This conclusion can be reached using common 
sense and validates our approach. 
 Absolute capacity is a term that is defined for the first time to our knowledge in this 
paper. It is a value of capacity that can be used for several planning purposes. For particular 
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input train mix proportions the approaches developed in this paper give a value for absolute 
capacity and an associated “actual” train mix. In practice however it is really the associated 
mix of trains that is most important when developing or modifying an actual timetable. 
Determination of absolute capacity values however depend on many conditions. This may be 
seen as a drawback, however to our knowledge it is unavoidable. There does not appear to be 
a definition of capacity that is unique for all situations, i.e. that is unconditional. 
 A value of absolute capacity may also be used in conjunction with an approximation of 
actual capacity to calculate the potential congestion that will occur on the railway. The 
approaches in this paper may also be used to calculate actual capacity as well. Actual capacity 
approaches have generally been statistical in nature. In particular they involve the 
calculation/approximation of interference delays but do not compute actual capacity directly. 
The interference delays must be added to the sectional running times and used in a bottleneck 
analysis (like our one) before actual capacity can be obtained.  
 Absolute capacity however is an ideal and not necessarily a reality. For this reason no 
simulation results and or other empirical proofs or comparisons were given. Simulation in 
particular is insufficient for any purpose associated with absolute capacity because only 
schedules that show actual operations can be obtained. Empirical proof of actual capacity 
through exact timetabling however is a possibility that is currently being further investigated. 
 
 

ACKNOWLEDGEMENTS 
 
The authors wish to thank two anonymous referees for their useful comments. The research 
underlying this paper was supported by Australian Research Council Linkage Grant 
LP0219595 with Queensland Rail. 
 
 

REFERENCES 
 
Assad A. A. (1980). Models for rail transportation. Transportation Research A, 14A, 205-220 
Carey M. and Kwiecinski A. (1994). Stochastic approximation to the effects of headways on 
knock-on-delays of trains. Transportation Research B, 28B (4), 251-267. 
Greenberg B. S. (1988). Predicting dispatching delays on a low speed single track railroad. 
Transportation Science, 22(1), 31-38. 
Hall R. W. (1987). Passenger delay in a rapid transit station. Transportation Science, 21(4), 
279-292. 
Higgins A., Kozan E., and Ferreira L. (1995). Modelling delay risks associated with train 
schedules. Transportation Planning and Technology, 19, 89-108. 
Higgins A. and Kozan E. (1998). Modelling train delays in urban networks. Transportation 
Science, 32 (4), 346-357. 
De Kort A. F. , Heidergott B., Ayhan H. (2003). A probabilistic (max,+) approach for 
determining railway infrastructure capacity. European Journal of Operational Research, 148, 
644-661. 
Ferreira L. (1997). Rail track infrastructure ownership: investment and operational issues.  
Transportation, 24, 183-200. 
Gibson S. (2003). Allocation of capacity in the rail industry. Utilities Policy, 11, 39-42. 
Kozan E. and Burdett R. L. (2004). Capacity determination issues in railways. RTSA 
Conference on Railway Engineering (CORE), Darwin, Australia. 



 22

Kozan E. and Burdett R. L. (2005). A Railway Capacity Determination Model and Rail 
Access Charging Methodologies. Transportation Planning and Technology, 28(1), 27-45 
Kraft E. R. (1987). A branch and bound procedure for optimal train dispatching. Journal of 
Transportation Research Forum, 28, 263-276. 
Petersen E. R. (1974). Over the road transit time for a single track railway. Transportation 
Science, 8, 65-74. 
Petersen E. R. (1975). Interference delays on a partially double tracked railway with 
intermediate signalling. Journal of the Transportation Forum, 16, 54-62. 


