
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Tritilanunt, Suratose, Boyd, Colin A., Foo, Ernest, & Nieto, Juan Gonzalez
(2006) Examining the DOS Resistance to HIP. In Meersman, R. & Tari,
Z. (Eds.) On the Move to Meaningful Internet Systems 2006: OTM 2006
Workshops (LNCS 4277), 29 October - 3 November, Montpellier, France.

This file was downloaded from: http://eprints.qut.edu.au/10145/

c© Copyright 2006 Springer

The original publication is available at www.springerlink.com

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1007/11915034_85

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10879945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Boyd,_Colin.html
http://eprints.qut.edu.au/view/person/Foo,_Ernest.html
http://eprints.qut.edu.au/10145/
http://dx.doi.org/10.1007/11915034_85


Examining the DoS Resistance of HIP

Suratose Tritilanunt1, Colin Boyd2,
Ernest Foo2, and Juan Manuel González Nieto2
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Abstract. We examine DoS resistance of the Host Identity Protocol
(HIP) and reveal a technique to deny legitimate services. To demon-
strate the experiment, we implement a formal model of HIP based on
Timed Petri Nets and use a simulation approach provided in CPN Tools
to achieve a formal analysis. By integrating adjustable puzzle difficulty,
HIP can mitigate the effect of DoS attacks. However, the inability to
protect against coordinated adversaries on a hash-based puzzle causes
the responder to be susceptible to DoS attacks at the identity verifica-
tion phase. As a result, we propose an enhanced approach by employing
a time-lock puzzle instead of a hash-based scheme. Once the time-lock
puzzle is adopted, the effect of coordinated attacks will be removed and
the throughput from legitimate users will return to the desirable level.

1 Introduction

Many key exchange protocols have been developed for dealing with denial-of-
service (DoS) attacks, especially resource exhaustion attacks. Host Identity Pro-
tocol (HIP) [14] is an interesting example of a DoS-resistant protocol which has
been developed to deal with this kind of DoS attack. The concept behind this
implementation is that HIP does not commit the responder’s resource before
the responder ensures the identity of the initiator. HIP achieves this concept
by adopting stateless connection [3] and reachability testing by using a client
puzzle [4, 12] incorporated via a cookie [17] to protect the responder from SYN
flooding attacks [7] at the beginning phase. Moreover, the responder can authen-
ticate the initiator by starting with the cheap computation using a client puzzle
and then increase the level of authentication to the expensive computation using
a digital signature for ensuring the identity of the initiator.

HIP is a promising protocol for protecting the responder from DoS attacks.
However, lack of formal analysis in the design phase of HIP might introduce other
kinds of vulnerability. Moreover, the instruction on how to adjust the client puz-
zle difficulty is not clearly specified and examined in the HIP specification [14].
In this paper, we implement a formal model of HIP using the formal specification
language of Timed Petri Nets. In order to achieve a formal analysis, we use a



simulation technique provided in CPN Tools for analysing HIP model. The pur-
pose of the simulation in the cryptographic protocol is to identify vulnerabilities
in the system that might be difficult to explore in the design phase.

Simulation approaches are well-known not only for exploring vulnerabilities
in cryptographic protocols, but guaranteeing security services of such protocols
as well. Using simulation approaches has several benefits over mathematical anal-
ysis. For instance, they can provide flexibility and visualization during protocol
analysis and verification. In our experiment, we set up the simulation of HIP
for exploring unbalanced computational steps that cause a responder to spend
more computations than an initiator does. In addition, our experimental result
provides a measurement of successful legitimate traffic as proposed by Beal and
Shepard [6] in different situations under DoS attacks. This factor can be used
as a parameter for justifying the effectiveness of HIP to resist DoS attacks. In
order to set up an experiment, we allow four kinds of adversary and the honest
client to participate with the same responder during the protocol run. We set
up two experiments; 1) the responder can choose only a fixed value of a puzzle
difficulty no matter what the workload is, and 2) the responder has an ability
to flexibly adjust puzzle difficulty by using the workload condition as criterion.

The main contributions of this paper are:

1. A simulation and analysis of HIP in Timed Coloured Petri Nets.
2. Identification of four scenarios of resource exhaustion attack on HIP.
3. A proposed technique to deal with adversaries who try to overwhelm the

responder’s resource by computing a puzzle solution in parallel.

1.1 Host Identity Protocol (HIP)

HIP has been developed by Moskowitz [14]. Later, Aura et al. [2] found some
vulnerabilities and proposed guidelines to strengthen its security. HIP is a four-
packet exchange protocol which allows the initiator I and responder R to es-
tablish an authenticated communication. Both I and R hold long-term keys to
generate signatures SigI(·) and SigR(·) respectively. It is assumed that both
principals know the public key PKI of the initiator and PKR of the responder
represented in the form of host identifiers (HI) in advance. HIT represents the
host identity tag created by taking a cryptographic hash H over a host identifier.

HKs represents a keyed hash function using session key Ks to generate a
hashed-MAC (HMAC ). The value s is a periodically changing secret only known
to the responder. LSB takes as input a string t and a parameter k and returns
the k least significant bits of t. 0k is a string consisting of k zero bits. EKe(·)
and DKe(·) denotes a symmetric encryption and decryption respectively under
session key Ke. In order to generate session keys Ke and Ks, HIP employs Diffie-
Hellman key agreement. Diffie-Hellman parameters used to generate these keys
consist of large prime numbers p and q, a generator g, a responder’s secret value
r, and an initiator’s secret value i.

HIP adopts a proof-of-work scheme [11] for countering resource exhaustion
attacks. In a proof-of-work, HIP extends the concept of a client puzzle [4, 12]
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Precomputed parameters

r, s ∈R [1, 2, . . . , q − 2]

sigR1 = SigR(gr ,HITR)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1) create HITI ,HITR
HITI ,HITR−−−−−−−→ check HITR

C = LSB(H (s,HITI ,HITR), 64 )

2) verify sigR1 HITI ,HITR, k ∈ [0, 1, . . . , 40] → puzzle = (C , k)

Find J such that
puzzle, gr , sigR1←−−−−−−−

LSB(H (C ,HITI ,HITR, J ), k) = 0 k

i ∈R [1 , 2 , . . . , q − 2 ]

Ke = H (HITI ,HITR, g ir , 01 )

E1 = EKe{HII }
sigI = SigI (HITI ,HITR, J , g i ,E1 )

3) HITI ,HITR, C = LSB(H (s,HITI ,HITR), 64 )

J , g i ,E1 , sigI−−−−−−−→ LSB(H (C ,HITI ,HITR, J ), k)
?
= 0 k

Ke = H (HITI ,HITR, g ir , 01 )

decrypt E1

verify sigI

Ks = H (HITI ,HITR, g ir , 02 )

HMAC = HKs (HITI ,HITR)

4) verify sigR2 HITI ,HITR, sigR2 = SigR(HITI ,HITR,HMAC )

Ks = H (HITI ,HITR, g ir , 02 )
HMAC , sigR2←−−−−−−−

HKs (HITI ,HITR)
?
= HMAC

Fig. 1. HIP Protocol [14]

for protecting the responder against DoS attacks. HIP uses the client puzzle to
delay state creation [3] in the responder until the checking of the second incoming
message and the authentication has been done in order to protect the responder
against resource exhaustion attacks.

1.2 Previous Work

Over many years, cryptographic and security protocols have been modeled and
verified using Coloured Petri Nets (CPNs). Doyle [8] developed a model of three-
pass mutual authentication and allowed an adversary to launch multiple iteration
and parallel session attacks. Han [10] adopted CPNs for constructing a reacha-
bility graph to insecure states and examining the final states in OAKLEY. Al-
Azzoni [1] developed a model of Needham-Schroeder public-key authentication
protocol and Tatebayashi-Matsuzaki-Neuman (TMN) key exchange protocol.



Beal and Shepard [6] constructed a model of HIP protocol using a mathemat-
ical equation for analysing the effect of puzzle difficulty under the steady-state
attack. In order to deamplify the arrival rate of incoming requests, Beal and
Shepard have set up two strategies; 1) forcing a sustainable arrival rate, and 2)
limiting service disruption. Beal and Shepard have modeled adversaries in which
the ability of adversaries has been limited to disrupt the service of legitimate
initiators by flooding bogus requests.

To the best of our knowledge, there is no implementation of CPNs focusing
on an exploration of vulnerabilities based on unbalanced computation that might
lead to resource exhaustion attacks in key exchange protocols. Moreover, Beal
and Shepard’s mathematical model has a few limitations including 1) they do
not allow the responder to dynamically adjust puzzle difficulty, and 2) there is
only one attacking technique to overwhelm the responder’s resources.

2 Experimental Results and Analysis

In our model, we have allowed a system to consist of honest clients, individual
type of adversaries, and a responder. The responder has to deal with different
strategies of adversaries and amounts of packets which consist of both legitimate
and bogus messages. We allow three different packet rates for both honest clients
and adversaries in order to measure the toleration of HIP under DoS attacks.

– Honest Clients (hc): can initiate requests at 80%, 100%, and 150% of the
responder’s capacity (R).

– Adversaries: can flood bogus requests at 100%, 200%, and 1000% of the
responder’s capacity (R).

Apart from honest clients who initiate the legitimate traffic, we allow four
types of adversary who have the similar goal to deny the service of the respon-
der by overwhelming CPU usage and connection queue of the responder. While
other adversarial strategies are certainly possible, the defined adversaries cover
the most obvious attacks at all stages of the protocol execution. To our knowl-
edge, no previous formal analysis of DoS-resistant protocols has included such a
comprehensive adversary definition.

Type 1 adversary (ad1) computes a valid first message (may be pre-computed
in practice), and then takes no further action in the protocol.

Type 2 adversary (ad2) completes the protocol normally until the third mes-
sage is sent and takes no further action after this. The computations of this
adversary include searching a correct client puzzle solution J , generating a
session key Ke and encrypting a public key PKI , and finally computing a
digital signature SigI .

Type 3 adversary (ad3) completes the protocol step one and two with the
exception that the adversary does not verify the responder signature sigR1.
The adversary searches for a correct client puzzle solution J but randomly
chooses the remaining message elements: an encrypted element Ke{HII } and
a digital signature sigI . The adversary takes no further action in the protocol.



Type 4 adversary (ad4) is like an adversary type 3, except that the client
puzzle solution J is now also chosen randomly.

In the simulation, we initially set up the responder’s capacity for handling
incoming requests. The hc initiates a request only once and keep waiting to
process next steps. If its requests is rejected, hc gives up. For adversaries, there
are two different situations in which the responder rejects bogus messages; 1)
the responder detects the bogus messages during the verification steps, and 2)
the responder does not have enough resources for serving requests. In order to
evaluate the system performance, the rate of successful legitimate traffic un-
der different attacks has been measured as the percentage of throughput. Some
sample results of our experiment are demonstrated in the following subsection.

Experiment 1: non-adjustable client puzzle
The purpose of experiment 1 is to investigate the behaviour of the protocol under
four different attacks in the non-adjustable client puzzle. We initially fix k=1,
i.e. the easiest value1. Under normal circumstances, hc prefers to spend nothing
expensive for establishing a connection. The experiments were run both with a
single and all adversary types running together defined as All.

(a) hc = 80% (b) hc = 150%

Fig. 2. Percentage of throughput from honest clients with k=1

From figure 2, when adversaries increase the number of bogus messages ,
the percentage of successful messages from hc to obtain a service will drop
drastically. Comparing ad1 and ad4, even though both of them craft random
messages, ad4 can achieve the goal at higher rate than ad1 because the responder
can process the incoming request at step 1 and clear a queue faster than at step 3.
At step 1, the responder only participates in the protocol by choosing the puzzle
difficulty (k) and pre-computed information, and returns it to ad1. Although,
ad1 can re-send bogus messages after receiving replied messages, this does not
cause the responder to reject a large number of messages because HIP mitigates

1 If we choose k=0, we cannot see the difference of costs between ad3 and ad4.



such problem by adopting a stateless-connection. On the other hand, the task of
ad4, to fill-up the responder’s queue at step 3, can be achieved more easily than
ad1 because the process of checking a puzzle solution and a digital signature
takes longer than a whole process at step 1.

Comparing ad2 and ad3 who attempt to deny service at phase 3 by computing
the puzzle solution, the results show that ad3 succeeds at higher proportion than
ad2. This is because ad3 can flood attack messages faster than ad2 who must
engage in the correct generation of message two. Nonetheless, both adversaries
can force the responder to engage in the signature verification. In the case of ad4,
although, they flood large number of messages at step 3 as well as ad2 and ad3,
ad4 cannot force the responder to engage in expensive operations because the
responder is able to detect the message forgery at the cheap puzzle verification
process. However, without the assistance of puzzle difficulty, the percentage of
successful messages in the case of hc and ad4 is lower than the others because ad4
floods message three at the highest rate. As a result, the most effective technique
to deny services on the responder would be the fourth scenario that attacks the
verification phase. Most key agreement protocols incorporate verification tasks
that would be susceptible to resource exhaustion attacks.

The result of the combination of all attack techniques shows that when the re-
sponder has to deal with all types of adversary, the percentage of legitimate users
served by the responder will fall significantly with increase of bogus messages.
Now we have identified the most effective scenario, we will apply this technique
to the experiment 2 for investigating the usefulness of puzzle difficulty.

Experiment 2: adjustable client puzzle
The purpose of the second experiment is to observe and evaluate how a client
puzzle can mitigate the problem of DoS attacks on the responder’s machine. By
calibrating several ranges of puzzle difficulty to obtain an optimal throughput,
we anticipate to find a simple and flexible technique for dynamically adjusting
puzzle difficulty to suit all DoS-attack scenarios.

To adjust the puzzle difficulty, we allocate two possible values for the re-
sponder to determine. Under normal circumstance, the responder selects k=1,
which means the easiest puzzle solution is required from the initiator. Once the
responder receives more requested packets than its maximum capacity to handle,
the responder raises the puzzle difficulty. In the experiments described here, we
choose k = 10. Because this puzzle technique is a hash-based puzzle, this value
will help the responder to slow down the incoming rate by requiring a work of
the initiator to solve a puzzles at the factor of 210.

From the experimental result in figure 3, the number of attacking machines
that the responder can tolerate is increased to a higher proportion compared
to the result of experiment 1. Another interesting result is that the successful
rate of an honest client’s message in the case of ad4 is higher than for the fixed
value k=1. The reason is that ad4 does not compute the puzzle solution, so, no
matter what the puzzle difficulty is, ad4 can flood the bogus messages at the
similar speed as experiment 1. However, at that amount of bogus messages, there
are only messages from ad4 (no legitimate traffic because hc has to spend some



(a) hc = 80% (b) hc = 150%

Fig. 3. Percentage of throughput from hc with k is adjustable between 1 and 10

amount of time to solve the puzzle solution), or just only a few messages from
hc that arrive to the connection queue before the responder increases puzzle
difficulty. As a result, the responder can validate the puzzle solution before the
next group of messages has arrived. Undoubtedly, these bogus messages from ad4
will be rejected at the first step of verification which requires only short period
and removes such attack from the connection queue. However, this situation does
not occur in the case of ad3 because they have to spend some amount of time
to solve the puzzle as well as hc.

In experiment 2, the most effective scenario is from ad3. Comparing to ex-
periment 1, if adversaries can flood messages at the same speed as ad4 and force
the responder to participate in expensive verification as for ad3, those adver-
saries would obtain higher satisfied outcome. A possible adversarial technique
to obtain higher rejected rate is that if ad3 can solve a puzzle more quickly
and flood these solutions as fast as ad4. These packets will be accumulated in
the connection queue longer than those from ad4 because the responder has to
participate and spend more computational time to verify ad3’s messages due to
the signature verification. To achieve this technique, suppose that we use SHA-1
for generating hash output, so the result is 160-bits long. When the responder
chooses k = 10, it means that the 10 left-most significant bits must be zero but
the remaining bits can be either 1 or 0. Therefore, the chance of a user to get the
result which have 10-zero bits at the beginning of the output would be 2−10 . As
a result, if ad3 shares value J , which is 64-bits long, to coordinated attackers
(Co-ad) trying to find a solution, they can save time in this process depending
on the number of participating machines in Co-ad. They can achieve this tech-
nique because a puzzle construction based on hash function can be computed
faster in a parallel fashion. This attack technique is defined in terms of a coor-
dinated attack [18]. Another attack on hash-based puzzles has been introduced
by Price [15]. The experiment and results of are demonstrated in Section 3.



3 A New Approach

Vulnerabilities based on unbalanced computations between an initiator and a
responder have been revealed in Section 2. This vulnerability leads to the risk
of the responder’s machine to be overwhelmed by the coordinated adversaries.
This section propose a technique to mitigate this problem. The results show that
the proposed technique can be help to deal with such attack.

In the experiment, we re-construct a HIP model by adopting the concept of a
time-lock puzzle [16] which has been developed by Rivest et al. The fundamental
property of time-lock puzzles is that they require a precise amount of time to be
solved and can not be solved in parallel computation. Therefore, the responder
can select the predetermined time period for a puzzle for delaying the incoming
requests when the responder has heavy load to serve.

In order to generate a time-lock puzzle, the responder has to determine the
amount of time for the client to spend in solving the puzzle (T ) and estimate
the initiator capacity in calculating repeated squaring per second (S). Next,
the responder computes the number of repeated squaring t = T · S that must
be computed by the initiator in order to find a solution of a time-lock puzzle.
Finally, the responder forces the initiator to calculate b = a2t

(mod n), where n
is the product of two large primes p and q. Because the responder knows the
factors p and q, he can compute b much faster by first computing 2t mod φ(n).

We setup simulation for evaluating a system with corresponding to coordi-
nated adversaries type 3 (Co-ad3). When we insert a time-lock puzzle into HIP
model at step two of an initiator, the result for hc and Co-ad3 will be improved
to the higher percentage of successful packets approximately equal to the exper-
iment 2. In the experimental results, graphs represented with Co-ad3 term are
simulated by using a hash-based puzzle with adjustable k, while graphs repre-
sented with k=1 and varied-k are simulated by using a time-lock puzzle with
fixed k=1, and adjustable k, respectively. From figure 4, if we compare the graph
of ad3 at workload hc = 80% of R in Figure 3(a) with Co-ad3 in Figure 4(a), the
throughput falls from 66.67% to 37.50%. Once we employed time-lock puzzle as
shown in the graph k=1 and varied-k of figure 4, the throughput will increase
to approximately the same as experiment 2 (shown in figure 3).

The reason is that Co-ad3 has been forced to spend time specified by the
responder until the time-lock puzzle has been solved. This period is similar to the
period in experiment 2 in which normal ad3 spends time to search for a correct
solution of a hash-based puzzle. As a result, when the responder constructs
a time-lock puzzle, the responder can control time required for the initiator to
solve a puzzle more precisely. Figure 4 displays results from the simulation which
adopts the time-lock puzzle technique into the system. We see that use of a hash-
based puzzle against a coordinated adversary results is less throughput than no
puzzle at all (k=1). Use of a time-lock puzzle with varied k effectively increases
the percentage of successful packets from the hc.



(a) Co-ad3 = 100% (b) Co-ad3 = 1000%

Fig. 4. Percentage of throughput from hc and Co-ad3 comparing between a hash-based
puzzle and a time-lock puzzle

4 Conclusion and Future Work

We have explored unbalanced computational vulnerabilities on HIP which cause
the responder to deplete resources and then terminate all processes. Even though
the experimental result demonstrates that puzzle difficulty can mitigate the
problem of resource exhaustion attacks, Co-ad can employ an alternative tech-
nique to attack hash-based puzzles and force the responder to verify the sig-
nature. In order to prevent such attacks, we replace hash-based puzzles with
time-lock puzzles.

According to a comparison by Feng et al. [9], the most interesting property of
time-lock puzzle is non-parallelizability that prevents Co-ad to speed up the pro-
cess of searching a solution by distributing a puzzle to other high-performance
machines. Moreover, time-lock puzzles also provide fine-grained control in order
to precisely adjust puzzle difficulty by the responder. Although the integration of
time-lock puzzles mitigates the problem of Co-ad3, the underlying computation
for constructing time-lock puzzle is a major concern because the puzzle genera-
tion is limited by the calculation of modular exponentiation which has greater
magnitude than hash-based puzzle. Some example uses of time-lock puzzles have
been evaluated and identified by Mao [13], Back [5], and Feng et al. [9] which all
suffer from the same problem.

We are currently working on a new technique to construct a client puzzle
satisfying desirable properties identified by Aura et al. [4]. In particular, puzzles
should be inexpensive for the responder to generate and verify, and impossible to
precompute a solution by the initiator. Two additional properties which enhance
DoS-resistant protocols for preventing Co-ad3 should be included:

1. the puzzle should not be solvable in parallel for obtaining an output in less
than a specific time.

2. the responder should be able to precisely control puzzle difficulty in a linear
manner.
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