
Towards Context-aware Security: An Authorization Architecture for Intranet
Environments

Chris Wullems, Mark Looi and Andrew Clark
Information Security Research Centre,

Queensland University of Technology, Brisbane, QLD 4000, Australia
{c.wullems, m.looi, a.clark}@qut.edu.au

Abstract

This paper introduces a context-aware authorization ar-
chitecture that is designed to augment existing network se-
curity protocols in an Intranet environment. It describes the
architecture components, the proposed extensions to RBAC
that facilitate context-aware access control policy, details
of the prototyped implementation, and a number of perfor-
mance results.

1. Introduction

Ubiquitous computing has been a rapidly growing re-
search area, however its uses have been predominantly tar-
geted at context-aware applications for smart spaces such
as smart homes and workplaces. In this paper we present
an authorization architecture that uses the context-aware
paradigm to augment existing and time-tested technologies
such as Kerberos, facilitating fine-grained access control
to network resources and effective enforcement of security
policies.

In context-aware security, hosts are granted or denied ac-
cess to resources based on the perceived security of the host.
An example of contexts that are relevant to network security
include:

• Host location: This includes instances where access to
a given resource or operation would constitute a breach
of security if outside of a trusted location;

• Network topology between host and application
server: This includes contexts such as connection se-
curity, bandwidth, and routing;

• Host security: This includes contexts such as oper-
ating system patch level, antivirus signature version,
host firewall rules, routing tables and filesystem per-
missions / file-sharing settings; and

• Host execution environment: This includes contexts
such as currently executing applications that have con-
flicts of interest and validating the state of executing
applications such as resident virus scanners.

Context-aware authorization has a number of require-
ments traditional access control mechanisms do not pro-
vide. First the authorization system must be able to dynam-
ically grant and revoke permissions based on an access con-
trol policy and the continually changing context of a user.
It cannot be assumed that a given set of authorization cre-
dentials will persist for the lifetime of a session. In order
to support such access control policy, permissions must be
centralized and a common representation of context data
must be used.

The addition of context-awareness to access control sys-
tems significantly increases complexity, however it is a re-
quirement of our architecture that administration of secu-
rity policy must retain the same administrative efficiencies
afforded by the use of role based access control.

The proposed architecture supports GSSAPI-based ap-
plications through the use of Kerberos. Common appli-
cations that currently support Kerberos include SMB file
sharing, database servers (e.g. PostgreSQL), CVS and Java-
based applications though JAAS1. The use of GSSAPI2 al-
lows existing network applications to be easily migrated to
the proposed architecture.

The structure of the paper is as follows. First existing
and emerging efforts in pervasive computing security are
reviewed in Section 2. The architecture and its components
are described in Section 3. Implementation details includ-
ing a description of the testing environment and several per-
formance results of the prototyped architecture are detailed
in Section 4. Conclusions are presented in Section 5.

2. Emerging Solutions for Access Control in
Pervasive Computing

Recent security efforts in ubiquitous computing have
been targeted at security in pervasive applications for

1See Java Authentication and Authorization Service http://java.
sun.com/products/jaas/

2See RFC 2743 - Generic Security Services Application Program In-
terface

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04)
0-7695-2106-1/04 $ 20.00 © 2004 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10879813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

context-aware homes and offices. While our focus is im-
proving security of network applications through the aug-
mentation of context to access control processes, emerging
work in this field has introduced a number of interesting
approaches to securing pervasive applications in the smart
home/ office environment.

The first attempt of authorization in the smart-home en-
vironment was proposed by Al-Muhtadi et. al. [1], who
approaches authorization by using a scaled-down version
of SESAME3, an extension to Kerberos providing mini-
mal RBAC support. As SESAME is based on traditional
network security paradigms and a push model using privi-
lege attribute certificates, it is unable to provide support for
context-influenced credentials, nor can it support changes
to credentials within a session.

The architecture proposed by Covington et. al. [5] [4]
introduces a pull based model that supports changes to cre-
dentials within a session. Access control policy in this ar-
chitecture is based on an extension to RBAC, the General-
ized RBAC model [3], where object and environment roles
are introduced in addition to traditional subject roles. Ob-
ject roles contain a membership of resources and environ-
mental roles contain a membership of environmental con-
ditions. Access control decisions are then made based on a
policy combining environment roles, object roles and sub-
ject roles. While GRBAC provides an improvement in the
flexibility of security policy, it introduces complexity in ad-
ministering access control policies and difficulty in ensuring
they are conflict free.

The architecture proposed by Al-Muhtadi et. al. [2] dif-
fers from the architecture proposed by Covington et. al. [5]
[4], in that it uses first order predicate logic to form its ac-
cess control policy. While this offers increased flexibility to
GRBAC, it is also complex to administer due to the require-
ment of specifying each access control rule and associated
actions individually.

Our approach to access control policy differs in that our
work extends RBAC to provide a more flexible activation
mechanism for roles, as well as providing role-centric con-
text constraints. This allows for simple access control pol-
icy, rather than complex policy definitions that attempt to
bind context data to credentials.

3. Architecture Overview

The architecture is designed for use in an Intranet envi-
ronment due to the requirement of application servers hav-
ing reliable access to the authorization server, and the dif-
ficulty of managing access control policy between multiple

3See A Secure European System for Applications in a Multi-
vendor Environment https://www.cosic.esat.kuleuven.ac.
be/sesame/

administrative domains. It is assumed that access to autho-
rization servers over an Internet link would not perform ad-
equately given the required response times and frequency
of communications required by the use of centralized per-
missions and access control logic. The implementation of
the architecture operates in the context of a Kerberos (Mi-
crosoft Windows 2000) domain.

The proposed architecture has been designed for context-
transparency to application servers in that they do not pro-
cess any context information. For future applications that
may have a requirement for certain types of context data, the
application server must have activated an appropriate role
that allows updates of required type of context data to be
requested. This mechanism allows for the centralized stor-
age of user privacy policies which can determine whether
such permission is granted to an application server. Figure
1 illustrates a component view of the architecture.

Figure 1. Architecture Components

The following subsections detail the services provided
by the architecture.

3.1. Authentication Service

The authentication service is based on Kerberos [7]. An
LDAP directory provides the data storage for authentication
and authorization data, linking Kerberos principals with
roles in the authorization architecture. Kerberos V5 is based
on symmetric key cryptography, and is well suited to re-
source constrained mobile devices. For additional security,
devices capable of public key cryptography can perform the
initial authentication to the Key Distribution Center (KDC)
using public key cryptography as defined in PKINIT [8].
Constrained devices can use a mobile version of PKINIT
such as the service proposed by Harbitter [6]. Kerberos is
a widely accepted network authentication protocol that is
implemented on most Unix variants as well as Microsoft
Windows 2000/XP/2003. In addition, support for Kerberos
is included in Microsoft Windows CE .NET 4.2.

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04)
0-7695-2106-1/04 $ 20.00 © 2004 IEEE

3.2. Authorization Service

In this architecture, security context-awareness is mod-
eled through dynamic activation of roles. Standard RBAC
roles are extended such that role constraints are evaluated
based on activation triggers which may include user request
for activation, the activation of other roles, or a context
event. Role activation for a given principal depends on the
evaluation result of a role’s constraints, which are evaluated
by the Dynamic Context Service Manager (DCSM). Role
activation requests made to the authorization service by the
DCSM are only actioned if system-wide constraints, evalu-
ated by the authorization service, are fulfilled.

The architecture contains two types of roles: a standard
role as defined below, and a simplified type of role, the task.
A task represents a work function, containing a set of per-
missions (allowed operations for a given object), and is as-
signed to a role. For example, an “Administrator” role may
include a “AddDomainUser” task. This task contains per-
missions required to add a domain user. Tasks differ from
roles in that they have no members and tasks cannot be
assigned to another task, but otherwise have the same at-
tributes as a role. Roles in the architecture are stored in the
directory and contain the following attributes:

Inherits: Role inheritance is supported through this at-
tribute, where the role can inherit the members, per-
missions and constraints from parent roles assuming
separation of duties constraints are fulfilled. The at-
tribute contains a list of distinguished names of parent
roles in the directory.

Members: This attribute contains the role members, repre-
sented as a list of distinguished names of users in the
directory.

Tasks: This attribute contains the tasks the role contains,
represented as a list of distinguished names of tasks
for the given application in the directory.

Permissions: This attribute contains the permissions of the
role, represented as a list of distinguished names refer-
encing permissions specified for the given application.
A permission contains: (1) Permission Class, the type
of the permission represented; (2) Permission Name,
the name of the object this permission describes; and
(3) Actions, the name of actions granted on the speci-
fied object.

ActivationTriggers: This attribute contains the names of
supported triggers. The currently supported trigger
types include context class, role activation / deactiva-
tion, or the principal that requests role activation / de-
activation. When an event is fired, the roles containing
the corresponding trigger are evaluated. The evalua-
tion considers the constraints before making a deci-

sion of whether to activate the role for the principal
the event was targeted at.

Constraints: The following attributes represent the sup-
ported constraints:

• Requires: This attribute contains the names of
the prerequisite roles that must be active in or-
der for this role to be activated, represented as a
list of distinguished names.

• MutuallyExclusive: Dynamic separation of du-
ties are implemented as mutual exclusion sets.
This attribute contains the name of mutual ex-
clusion sets represented as lists of distinguished
names.

• ContextRule: This attribute contains a set of
statements that define contextual constraints
for role activation. The statements are con-
structed using the following syntax: <OBJECT>

OPERATION <PARAMETER>. Boolean operators
(and, or, not) can be used between consecutive
statements: (<STATEMENT>) <BOOLEAN OP>

(<STATEMENT>).
The variables $PRINCIPAL,

$CONTEXT(context class),
$LDAP(distinguished name) reference
the principal, the current principal’s context and
the directory object referenced by the LDAP
distinguished name. The example ContextRule
(Figure 2) allows the role to be activated only if
the principal performed mutual authentication
with the application and context location is at the
principal’s registered home or office location.

($CONTEXT(dcaa.dcsm.ConnectionSecurity)
hasMutualAuth) and

(($CONTEXT(dcaa.dcsm.Location) within
$LDAP(cn=OfficeLocation;cn=...)) or

($CONTEXT(dcaa.dcsm.Location) within
$LDAP(cn=HomeLocation;cn=$PRINCIPAL;cn=...)))

Figure 2. Example ContextRule

The authorization service maintains the roles for each
principal that are active in each application in the domain.
For a principal to become active, the application service
must initialize an access control context with the requested
roles on behalf of the user. When a user session ends, the
application service ends the context on behalf of the user.

The application service can request an access decision
by sending a checkPermission request to the authorization
service. The checkPermission function enumerates all the
permissions for the given principal’s active roles and tasks.
The function then checks that the permission, for which the
access decision is requested, is implied by a permission in
the set of enumerated permissions.

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04)
0-7695-2106-1/04 $ 20.00 © 2004 IEEE

3.3. Dynamic Context Service Manager

The Dynamic Context Service Manager (DCSM) is re-
sponsible for the activation and deactivation of roles and
tasks in the authorization service based on a principal’s con-
text. The DCSM has a context event listener where the
triggers defined in roles are registered. The following sub-
sections will provide an overview of its interactions with
context services and detail the dynamic context and event
update mechanisms.

3.4. Dynamic Context Services

Dynamic Context Services (DCS) are trusted services re-
sponsible for acquiring context information either directly
or via a third party. A DCS notifies the DCSM of context
changes based on its policy that specifies how trust and ac-
curacy are quantified given the raw context data, the fre-
quency at which the context is acquired and updated, and
the thresholds for notifying the DCSM.

This allows a DCS to collect context information using
paradigms other than the event driven model used in the
architecture. In addition, context data can be sourced from
other context acquisition frameworks,4 whilst maintaining
the trust and security requirements of context acquisition
for access control decisions.

For example, we have implemented a GSM location
DCS that queries a GSM location service (Gateway Mobile
Positioning Center) every 30 seconds for active principals.
The DCS maintains a cache of location data. If a context
change exceeds the specified threshold, the updated con-
text is communicated to the DCSM in a dynamic context
update message containing a common context representa-
tion and the principal the update is relevant to. The DCS
is responsible for mapping the principal in the context to
corresponding principal in the directory. For example, the
GSM location service maps the MSISDN5 of the user to a
principal in the directory.

ContextObjects are used to represent context informa-
tion as well as containing default methods that manage trust,
time of last update and accuracy level determined as by the
DCS. An example is the more specific instance of Contex-
tObject, LocationContextObject, which contains a common
representation of location, and constructors that convert a
DCS’ location data (e.g. WGS-84, lat/long, GSM-Timing
Advance arc, etc.) to the common representation. This al-
lows multiple sources of location to have the same represen-
tation, such that it can be used by policy and contextRule
evaluators.

4Such as the Georgia Institute of Technology Context Toolkit http:
//www.cc.gatech.edu/fce/contexttoolkit/

5Mobile Subscriber ISDN, the number callers use to reach a mobile
subscriber.

3.5. Dynamic Context Update Mechanism

The following processes are executed when a dynamic
context update is received from a DCS, or an activation /
deactivation request event is received from the authorization
service.

When a dynamic context update is received, the last Con-
textObject for a given principal is retrieved from the context
cache. The ContextCombiner method of the new ContextO-
bject (and its subclasses) is then used to create a ContextO-
bject combining the context data from the update and the
cache. For example, the combining functionality may use
historic data to calculate a more accurate context with the
potential to increase trust. Finally, the context cache is up-
dated with the new ContextObject.

An event is fired for the given class of ContextObject,
such that all roles or tasks with a trigger of this class are
evaluated and activated according to the outcome of the
evaluation. In the case of an activation / deactivation re-
quest event, the specific role requested is evaluated. Suc-
cessful activation of a role or task fires the evaluation of any
roles or tasks which are triggered based on the activation of
that role. Note that tasks will not be evaluated unless a role
to which the task is assigned is active for a given principal.

3.6. The Event Update Mechanism

The authorization service has an Event Manager that is
responsible for informing application services of events that
occur. After an application service initiates a secure context
with the authorization service, an authorization service-side
listener is registered for each application service session.
When an event is fired, all event listeners that the event up-
date is relevant to are informed of the event. The event
listener for the given application service session sends an
event update message over the update channel as shown in
Figure 1. The application service can then take appropriate
action.

The architecture is designed in such as way as to allow
customized events to be implemented. The following events
are currently implemented in the architecture:

• Access Control Context Changed Event: If a role or
task is activated or deactivated for a given principal,
the applications in which the principal is active are no-
tified that the access control context for the given prin-
cipal has changed. The application service can then
check that the principals are still authorized to perform
an operation by sending a checkPermission request to
the authorization service.

• Dynamic Context Service Manager Failure Event:
In the case there is a failure in the DCSM, the appli-
cation service is notified and can take evasive action if
required.

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04)
0-7695-2106-1/04 $ 20.00 © 2004 IEEE

• Update Channel Not Responding Event: In the case
of an outage or attack against an update channel, the
application service is notified and can take evasive ac-
tion such as suspending the user’s session until the up-
date channel is restored. Failure of the update channel
is detected through the use of a heartbeat.

The event update mechanism has been implemented such
that future applications that may require context data can be
supported through a “Context Data Update Event”.

4. Implementation Details

The architecture is centered around the use of open stan-
dards such as Kerberos, LDAP and XML messaging. This
allows the architecture to operate over different platforms.
Microsoft Windows 2000 Server was used as the platform
to host the directory and Kerberos functionality. The frame-
work implementation can also run on Linux with MIT Ker-
beros and OpenLDAP.

The testing platform, as illustrated in Figure 3, was built
using a number of Pentium III 833Mhz PCs with 256MB
RAM. The authorization data centre was configured with
Windows 2000 Advanced Server, and hosted the authoriza-
tion service and DCSM. To date GSM and Wireless LAN
location DCSs have been implemented, although the Wire-
less LAN location tamper resistance is still being investi-
gated. These services were hosted on the context server.
The GSM service requires users preregister their MSISDN,
stored as an attribute in the User object in the active direc-
tory. We are currently developing host-based security evalu-
ation context services and intend to present them in a future
paper.

Figure 3. System Architecture

The authorization and dynamic context service manage-
ment services were implemented using Java 1.4.2. The Ker-
beros implementation in the architecture components uses
Java Authentication and Authorization Services (JAAS) for
Kerberos authentication and key establishment between ar-
chitecture entities. The Java security architecture was cus-
tomized, such that a new Security Manager and Policy class
were implemented. The new classes facilitate the initializa-
tion of a secure Kerberos context for the standard commu-
nications channel and update channel with the authorization
server, subsequently allowing XML messages to be sent and
received in these channels. This approach allows standard
Java Security methods such as doAsPrivileged(), checkPer-
mission() and standard access control context constructs to
be used, resulting in transparent use of the authorization ar-
chitecture. An additional listener class was implemented,
such that event listener methods would be instantiated on
events such as “Access Control Context Changed”.

A benchmark of the architecture performance was con-
ducted to quantify the efficiency of the architecture. The
performance results detailed in Table 1 are average execu-
tion times for 1000 consecutive executions of checkPermis-
sion() for each application service running. Dynamic con-
text updates were continually sent to the DCSM for a princi-
pal with an established context in each application service.
The benchmark was conducted with 1, 5, and 10 simultane-
ous application services, requesting an access control deci-
sion continuously, simulating high load. The dynamic con-
text updates were benchmarked with a load of 10, 100 and
1000 active principals over 1, 5, and 10 application services.

checkPermission() Dynamic Context Updates
No. of
App Svrs

Average
Time (ms)

10 Princi-
pals (ms)

100 Princi-
pals (ms)

1000 Princi-
pals (ms)

1 24.209 328.55 448.55 1079.55
5 53.330 341.61 461.61 1092.61
10 97.341 571.13 691.13 1322.13

Table 1. Performance Results

As can be seen from the results, the architecture appears
to scale well with better than linear growth for context up-
dates as the number of active principals increases. The au-
thorization service and DCSM are designed such that they
can be distributed to improve performance for large do-
mains.

4.1. Architecture Usage Scenario

A prototype fileserver was developed to illustrate pos-
sible uses of the architecture. The fileserver is based on
Samba 3.0, which supports Kerberos authentication. The
following scenario illustrates the context-aware architecture
in the use of a fileserver that supports the requirements of
“commercial in confidence” file access.

There are three DCS’ that are used in this scenario:

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04)
0-7695-2106-1/04 $ 20.00 © 2004 IEEE

1. GSM Location DCS: This DCS acquires a trusted lo-
cation from a GSM cell phone using the methods we
have developed in [9]. The DCS authenticates the user
and confirms the user is associated with the cell phone.

2. iButton6 Location DCS: This DCS provides the loca-
tion of a user associated with an authenticated iButton
based on the known location of a given iButton reader.

3. Kerberos Connection Security DCS: This DCS is a
component of the fileserver which communicates the
properties of the authentication and subsequent com-
munications to the DCSM. The properties supported
by the DCS are hasMutualAuth, hasIntegrity,
and hasPrivacy.

Commercial in confidence projects have a project man-
ager and a series of consultants who occupy the roles
project1 manager and project1 consultant, which
are triggered by principal activation. The fileserver has a
shared area for each project and a personal area for each
consultant. Consultants are only permitted to work at the
office or home where appropriate security arrangements ex-
ist. The home location of a consultant is registered in the
directory.

The project1 consultant role has a number of
tasks relating to file and printer access, one of which
is project1 filesystem access. This task contains
permissions for accessing the project share and the con-
sultant’s personal share. The task has triggers of the
dcaa.dcsm.Location context class and activation of the
project1 consultant role. In order to ensure the shares
are only accessed in approved locations and with appropri-
ate connection security, the task contains the ContextRule
illustrated in Figure 2.

A user wanting to work on “Project1” in the office
would tap their iButton at the office door on entry and
exit, causing a ContextUpdate with a dcaa.dcsm.Location
object to be sent to the DCSM. When the user attempts
to access the share, a Kerberos ticket is presented to the
fileserver. The fileserver initiates an access control con-
text with the authorization service and requests the role of
project1 consultant. Assuming the user is a member
of the role and no constraints prohibit the activation of the
role, the role will be activated. As activation of the role
triggers evaluation of the project1 filesystem access

task, it too will be activated assuming its constraints are ful-
filled.

A remote user would have to prove their location via the
GSM location DCS. If a user is to leave a trusted location
area, the task will be deactivated following the appropriate
DCS notifications. Similarly with the fileserver Connec-

6iButton R© is a tamper-resistant token that has a unique identifier and
may provide support for cryptography. http://www.ibutton.com

tionSecurity DCS, it notifies the DCSM of the established
Kerberos context security properties.

5. Conclusion

In conclusion, this paper has introduced a new autho-
rization architecture for Intranet environments that supports
context-aware authorization using both local and remote se-
curity contexts. We propose extensions to RBAC that facil-
itate efficient context-aware authorization with simple poli-
cies and administration. The implementation of the archi-
tecture has been described with the currently implemented
dynamic context services as well as the description of a
demonstration application that utilizes the architecture. Fu-
ture work in this architecture will involve investigating cross
domain context-aware authorization.

References

[1] J. Al-Muhtadi, M. Anand, M. D. Mickunas, and R. H.
Campbell. Secure smart homes using jini and uiuc sesame.
Uiucdcs-r-99-2142, University of Illinois at Urbana Cham-
paign, December 1999.

[2] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and M. D.
Mickunas. Cerberus: A context-aware security scheme for
smart spaces, March 2003.

[3] M. Covington, M. Moyer, and M. Ahamad. Generalized role-
based access control for securing future applications, 2000.

[4] M. J. Covington, P. Fogla, Z. Zhan, and M. Ahamad. A
context-aware security architecture for emerging applications.
In Proceeding of the Annual Computer Security Applications
Conference (ACSAC), December 2002.

[5] M. J. Covington, W. Long, S. Srinivasan, A. Dey, M. Ahamad,
and G. Abowd. Security context-aware applications using en-
vironment roles. In Proceedings of the 6th ACM Symposium
on Access Control Models and Technologies (SACMAT ’01),
May 2001.

[6] A. Harbitter and D. A. Menasce. The performance of pub-
lic key-enables kerberos authentication in mobile computing
applications. In ACM CCS’01, November 2001.

[7] J. Kohl and C. Neuman. The Kerberos Network Authentica-
tion Service (V5). Networking Working Group Request for
Comments, September 1993.

[8] B. Tung, C. Neuman, M. Hur, A. Medvinsky, S. Medvinsky,
J. Wray, and J. Trostle. Public Key Cryptography for Initial
Authentication in Kerberos. Kerberos WG Working Group of
the IETF, 16 edition, September 2002.

[9] C. Wullems, M. Looi, and A. Clark. Enhancing the security of
internet applications using location: A new model for tamper-
resistant gsm location. In Proceedings of the Eighth IEEE
Symposium on Computers and Communications (ISCC 2003),
volume 1, pages 1251–1258, July 2003.

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04)
0-7695-2106-1/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

