
Attack Signature Matching and Discovery in Systems Employing

Heterogeneous IDS

Nathan Carey, George Mohay and Andrew Clark

Queensland University of Technology

nl_carey@yahoo.com.au, g.mohay@qut.edu.au, a.clark@qut.edu.au

Abstract

Over the past decade, Intrusion Detection Systems

(IDS) have improved steadily in the efficiency and

effectiveness with which they detect intrusive activity. This

is particularly true with signature-based IDS due to

progress with intrusion analysis and intrusion signature

specification. At the same time system complexity, overall

numbers of bugs and security vulnerabilities have been on
the increase. This has led to the recognition that in order

to operate over the entire attack space, multiple

heterogeneous IDS must be used, which need to

interoperate with one another, and possibly also with

other components of system security. This paper describes

our research into developing algorithms for attack

signature matching for detecting multi-stage attacks

manifested by alerts from heterogeneous IDS. It describes

also the testing and preliminary results of that research,

and the administrator interface used to analyze the alerts

produced by the tests and the results of signature

matching.

1. Introduction - Related Work and

Motivation

 Intrusion Detection Systems (IDS) have evolved

significantly over the past two decades since their

inception in the early 1980s [1]. The simple IDS of the

early days were based either upon the use of simple rule–

based logic to detect very specific patterns of intrusive

behaviour or upon historical activity profiles to confirm

legitimate behaviour. In contrast, we now have IDS which

use data-mining and machine-learning techniques [2] for

the dynamic compilation of new intrusion signatures and

which allow for quite general expressions of what may

constitute intrusive behaviour. Other modern IDS may use

a mixture of sophisticated statistical and forecasting

techniques to predict what is legitimate activity.

Alert correlation is one of the central issues currently

challenging intrusion detection research. Recent work by

Morin et al [3] provides a formal model - M2D2 - for

alarm or alert correlation. The M2D2 model comes at a

time when researchers and implementers are grappling

with the need for reduction of the number of false

positives, and indeed that is one of the focal points

emphasised in the paper by Morin et al. Our work is

related to previous work by Vigna et. al. [4], Doyle et. al.

[5], Valdes and Skinner [6], Cuppens [7] and Debar and

Wespi [8]. None of this work, including ours, attempts to

incorporate the four dimensions of M2D2.

The work by Vigna et. al. uses the STAT model to

provide a framework for dynamic configurability of IDS

sensors and uses Java to aid in portability. The work by

Doyle et. al. with MAITA reflects similar goals, but

utilises a more complex architecture to support

interoperability and uses trend templates for the

specification of chains of events as opposed to the STATL

attack scenario language used in the STAT work. Valdes

and Skinner use a probabilistic approach to perform

correlation of information from multiple sensors, and

focus on the concept of ‘threads’ to maintain links

between alerts. Debar and Wespi [8] use features in the

Tivoli Enterprise Console to perform aggregation and

correlation of alerts, and focus on the abilities of a

management system to reduce the amount of data

presented to an administrator. Recent work by Cuppens

([7], [9]) which focuses on commodity IDS, and uses a

central database for alert aggregation and analysis is the

most similar to our own approach. Cuppens uses a Prolog

database and static signatures for attack detection, together

with stored procedures to perform aggregation of alerts to

reduce redundancy. The signature set is defined using the

LAMBDA syntax, which enables the specification of very

complex event relationships.

While each of these systems has its own special

objectives, they have in common that in each case use is

made of a central alert store that captures alerts from

multiple sensors in order to assist the overall intrusion

detection process. Some of the systems use IDMEF for

communication, and some utilise purpose built IDS

platforms, rather than relying on commodity IDS for alert

data. While all perform some sort of analysis on the data,

the analysis mechanisms used are different.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10879789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Our work too is pitched at the correlation of alerts

emanating from heterogeneous IDS using a central alert

store that captures alerts from multiple sensors [10]. In

contrast however, it adopts a bottom up approach to the

problem and sets out to develop a simple framework built

out of commodity and free software in order to produce

practical alert correlation across heterogenous commodity

IDS. There are some other, more minor, differences too

with regard to implementation, such as not using stored

procedures, the nature of the interaction between alert

correlation and signatures, and the relatively simple format

and implementation of the multi-step attack signatures

themselves. The two major goals of our work have been to

design and implement:

1. signature-based attack detection which matches

attack signatures with an alert stream comprising

alerts from heterogeneous IDS and uses off the shelf

software and a minimum of specialised components

to do so, and

2. an experimental platform to allow experimentation

with new signature matching algorithms and

mechanisms.

To achieve these goals, the work has involved the

development of an alert or cluster analysis capability to

facilitate the analysis and correlation of alerts from

heterogeneous IDS, and a visualization capability to

complement and assist the alert analysis capability and to

facilitate signature discovery. The alert or cluster

analysis was discussed in our paper [10], the visualization

features are new.

Interoperability is a crucial part of alert analysis,

providing a common platform for alerts arriving from

heterogeneous IDS and possibly other system security

components such as firewalls and host logs. We employ

IDMEF for this purpose and this allows us to exploit the

use of heterogeneous IDS to provide identification and

notification of a wider range of alerts than is possible with

homogeneous IDS and thus perform cross-sensor

signature-based attack detection.

While the ultimate goal of IDS and inter-IDS alert

correlation is to provide real-time warning or even

reaction to perceived alerts and attacks, there are

outstanding issues to be solved relating to IDS

interoperability and attack recognition which are most

easily and productively tackled in an offline or post hoc

context. Our focus has therefore been on the development

of an offline platform for studying attack signature

matching and discovery techniques. This enables us to

concentrate on experimentation with signature

specification and matching techniques and avoid being

distracted unnecessarily by real-time performance

considerations. For the future, this will enable us to study

outcomes such as how the error rate of false negatives and

false positives varies with circumstances.

The system also includes a security administrator

interface with access to both the signature detection and

the alert analysis and visualization functions. The interface

also provides access to a number of system configuration

parameters thus providing the basis for studying the

different outcomes (e.g., error rates) resulting from

different experimental scenarios.

The paper is structured as follows. This section has

reviewed related work, including the authors’ previous

work upon which the work described here is founded, and

provides also the rationale for the work described in the

paper. Section 2 examines the detailed design of our

attack signature specification and the detection algorithms

we have developed. Section 3 discusses an example of a

specific attack signature that illustrates our approach while

Section 4 describes the administrator interface which

provides access to both the signature detection and alert

analysis capabilities of our system, together with

visualization features. Section 5 on Testing and Evaluation

discusses the attack set used to test and evaluate our

system and presents the preliminary results achieved with

respect to that attack set. This is followed by the

conclusions and summary of further work in Section 6.

2. Signature Specification and Matching -

Detailed Design

Our earlier paper [10] focused on IDS interoperability,

system architecture and alert cluster analysis, the

subsequent work described in this paper relates to the

signature specification and matching techniques that we

have developed and details of these appear immediately

below.

2.1. Signature Specification

The correlation of alerts whether from the one IDS over

time or across several heterogeneous IDS provides two

significant benefits:

signature-based attack detection - it allows known

multi-step attacks to be detected by matching alert

streams against the set of known attack signatures,

and

attack and signature discovery - it allows for the

discovery of new attacks by identifying hitherto

unseen alert relationships, and the discovery and

incorporation of new attack signatures into the set of

known attack signatures.

The alert correlation work most closely related to ours

is that by Cuppens and Miege [7], their work is however

more ambitious than ours and has somewhat different

objectives. It uses a sophisticated model based around first

order logic for expressing signatures for attacks and for

representing alerts, and has the ultimate objective of

anticipating the future steps of an attacker. The signature

set is defined using the LAMBDA syntax, which enables

the specification of very complex event inter-relationships.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

Our goal of producing a simple yet functional system

for use in the context of heterogeneous IDS flows through

into the specification and usage of signatures themselves.

Attack specification languages such as LAMBDA [11] and

CISL and S-expressions [12] provide the ability to define

very complex relationships between events themselves.

However they do not satisfy the goal of a simple

method of specification. We on the other hand set out

simply to recognize known multi-step attacks from an alert

stream containing alerts from heterogeneous IDS, and to

be able to learn new attacks to include into the signature

set and to do both of these with simple, off-the-shelf

components. The signature specification notation has thus

been kept intentionally minimal.

Our attack signatures are couched in terms of alert

elements which consist of the following two alert

characteristics:

1. alert name (the unique name of the alert), and

2. alert time (the time the alert was detected).

In addition, we include with each alert element some

additional attributes as follows:

3. timeout (inter-alert timeout) – this allows the expiry

of signature (and hence attack) matching based upon

expiry of the expected maximum time between

successive alerts,

4. optional/mandatory components - the alerts

specified within an attack signature are by default

mandatory, and the absence of a mandatory alert

within the timeout period will flag absence of the

attack and expire the matching activity. An alert

may however be marked as optional, and absence

of an optional alert will not of itself lead to the

conclusion that the attack is absent. An optional

alert has an alert weight associated with it and a

necessary condition for the signature to fire (i.e., for

the signature as a whole to have been matched by

alerts from the alert stream, thus signifying that an

attack has been detected) is that the sum of the

weights of matched optional alerts equals or exceeds

a specified optional alert weight threshold

associated with the signature.

5. alert repeat factor - signatures include the facility

for associating an alert repeat factor with an alert

element, this is the threshold number of repeats

(default of one) that needs to be achieved for an

alert to satisfy the alert element. This does not affect

the semantics of alert element weights.

The signatures themselves have five attributes that are

pivotal to the signature specification and matching

algorithm:

i. IP mask – this is the network mask (denoted by a

number of bits) which determines a valid set of

targets for this particular signature,

ii. signature priority - the signature priority governs

the order in which alerts are matched against

candidate attack signatures. Given the use of

‘single-fit’ of an alert from the alert stream to

candidate signatures (see below), the priority order

in which candidate signatures are matched against

the alert stream is critical;

iii. overall signature timeout – this allows the expiry of

signature (and hence attack) matching based upon

expiry of the total expected maximum time for an

attack to complete (to be effective this must be less

than the sum of the previously mentioned individual

alert timeouts),

iv. threshold weight – this is the threshold proportion

of optional alerts (see below) that needs to be

satisfied for the signature match to have been be

deemed successful and the signature to have fired.

This is achieved by associating a weight with each

optional alert forming part of the signature and

setting a minimum total or threshold weight that

needs to be satisfied; and

v. action on firing – typically this includes noting to

the administrator’s console that the signature has

fired and may include re-insertion of a named

synthetic alert into the alert stream.

Optional elements of an Attack Signature refer to an

alert which does not necessarily have to be matched for

that signature to fire (in contrast to mandatory alert

elements). Such elements have an associated weighting.

When such an optional alert element is matched, then its

weighting is accumulated into the

‘optional_alert_accumulated_weight’ (initially zero) for

that active signature. For a signature to fire, all mandatory

alert elements must have been matched, and the value of

its ‘optional_alert_accumulated_weight’ must equal or

exceed the threshold firing weight. The latter has a default

of zero, which assumes that the signature contains no

optional alert elements. Arbitrary threshold and element

values enable the specification of situations such as ‘two

out of three alerts’ or ‘alert xxxx plus three other alerts’.

Note that the mandatory/optional, repeat factor and

inter-alert timeouts are all optional for a signature. For

ease of use, a signature can be initially specified with only

the signature name, basic timeout, and using a group

signature in order to provide a simple method of selecting

all of the component alerts within a given time period.

2.2. Signature Composition

An attack signature may be one of two basic types:

a sequence of alerts, or

a group of alerts.

An attack signature consisting of an alert sequence is

constructed as an ordered list, so that the signature is

matched or fired when the final and all previous

mandatory alert elements are satisfied in the order listed

and when the threshold weight of optional alerts has been

reached. An attack signature consisting of an alert group is

constructed as a set such that the signature is matched or

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

fired when all the alert element items are matched,

irrespective of order, and when the threshold weight of

optional alerts has been reached. More complex attack

signatures are composed by combining these two basic

types of signatures by the concept of synthetic alerts, a

concept which appears elsewhere in previous works (e.g.,

Cuppens [7]). When a basic attack signature type is fired,

it can have two outcomes:

notification of the occurrence of an attack, and/or

insertion of a synthetic alert into the alert stream.

Such a synthetic alert may itself then be matched with

higher order signatures allowing the security administrator

to construct attack signatures of arbitrary complexity.

2.3. Signature Matching Algorithm

Before considering the more significant design details

of our signature-matching algorithm, we present the

following definitions:

the active signature set - this is the set of all

partially matched signatures, it is the set of all

those signatures which have matched at least one

alert and not yet timed out or completed.

the open signature set - this is initialised at start

up to be the set of all attack signatures, it then

grows to include the active signature set

the candidate alert set - this is the set of alerts

comprised of:

i. the first unmatched mandatory alert plus

every immediately preceding unmatched

optional alert in the case of a sequence

signature, for all sequence signatures in

the open signature set; and

ii. every unmatched alert in the group in

the case of a group signature, for all

group signatures in the open signature

set

the per-alert candidate signature list - this is the

priority-ordered list of open signatures ‘waiting’

for the alert. Signatures will typically appear in

several such lists:

- in the case of sequence signatures, the

signature will appear in the signature list

for its next unmatched mandatory alert,

and in the signature lists of each

unmatched optional alert preceding its

next unmatched mandatory alert

- in the case of a group alert, the signature

will appear in the signature list for each

of its unmatched alerts

We now consider the details of our signature-matching

algorithm.

2.3.1 Single-fit Signature-matching We have

implemented a ‘single-fit’ strategy for our matching

algorithm, as opposed to a ‘multi-fit’ strategy. With a

single-fit strategy of matching alerts to signatures, the

current alert from the alert stream is matched against the

candidate signature list associated with that alert, in

particular with the first signature in the list i.e., the highest

priority signature in the list, and this signature then

‘consumes’ that alert. ‘Multi-fit’ on the other hand allows

the current alert to contribute provisionally to multiple

eligible signatures simultaneously until the first of these

fires. At that time, the alert’s contribution to the other

signatures is withdrawn and they are rolled back to their

previous status. This roll-back allows multiple threads of

execution to run in parallel without affecting any other

thread.

Multi-fit has some advantages, the main one being that

it leaves open the possibility of matches with all possible

signatures until one fires and does so without necessarily

burdening the administrator with details of signature

priority (though priority may still be used). At the same

time it has the disadvantage of increasing the complexity

of the matching algorithm, where multiple roll-back

strategies may be required to produce a ‘best-fit’ for a

given stream of alerts.

We have opted to use the single-fit algorithm and

repeated experiments (given ours is currently an off-line

platform) to perform this role, rather than focus on the

algorithm for matching in exhaustive detail.

Successive experiments have enabled us to adjust the

relative priority ordering of signatures used in the single-

fit matching process and thus identify the alternative

signature matching outcomes that can result with different

signature priorities or ordering of alerts in the alert stream.

Single-fit has also enabled direct analysis on how basic

pattern matching is insufficient to describe the

relationships between alerts in complex attacks when

attack state, multiple attacks, alert overlap and out-of-

sequence alerts are considered.

As single fit is, at it’s heart, basic sequential pattern

matching, additional logic needed to be developed to

enable the specification of priority, mandatory/optional,

weighting and IP address filtering. These features were

considered required functions to properly describe many

of the attacks that can occur over the network. Indeed, this

area of analysis of state-based attack detection

mechanisms is considered an undeveloped area in IDS

research. Implementation of a multi-fit strategy and

comparisons between it and the single fit algorithm in

practice is considered for future work.

2.3.2 Duplicate Attacks Our system detects overlapped,

duplicated attacks of the one identical type as the open

signature set is initialised at start up to include all attack

signatures and this is augmented with additional partially

matched signatures as and when a new partial match

occurs. This feature is configurable at set up time to be

switched on or off for the purposes of experimentation and

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

so that it is possible for the administrator to forego the

feature if desired. In some cases, detecting overlapped

identical attacks is not necessarily more valuable than

detecting just the one instance of the attack.

2.3.3 Slow Attacks, Timeouts and Alert Propagation

The system prevents knowledge of the timeouts used by

signatures from being exploited by an attacker. That is, an

attacker could attempt to subvert the system essentially by

launching a slow attack or a number of such attacks. We

guard against this situation by deploying two

countermeasures:

detection of overlapped, duplicate attacks - the

first is the configurable detection of overlapped,

duplicate attacks as discussed above,

alert propagation - the second is our treatment of

signature priority and the propagation of alerts

between signatures. As mentioned previously,

matching of the current alert to the open signature

set takes place through the candidate signature

list for that alert. There is a configurable option

for that candidate signature list to include not just

the bona fide candidate signatures for that alert,

let us call it alertcurrent, but also all those active

signatures that have recently matched an earlier

duplicate of the same alert, say alertprevious. Any

active signature, whose most recent previous alert

match had been to such a duplicate alertprevious,

will also appear in the candidate alert list.

The significance of the last point is that a signature that

had previously matched alertprevious, is now expecting a

completely different alert different-alert, but is about to

time out due to expiry of the inter-alert time out

mechanism will be refreshed with the new alert alertcurrent,

that is the new alert alertcurrent will replace the previous

older one alerttprevious, thus preventing a possible signature

time out. This of course may retrospectively contradict the

previous inter-alert time out constraint but has the benefit

of guarding against detection avoidance through

manipulation of signature time out. The replaced alert is

then propagated to the next candidate signature in the list

and the process continues recursively. Since the list is

ordered by signature priority, we ensure that the highest

priority open signatures are given maximum chance of

firing. The three factors which govern how alerts are

matched against signatures are, in order:

1. the alert type,

2. the priority order of the signatures in the

candidate signature list, and

3. IP masking constraints associated with the alert

element.

3. Signature Specification and Matching – An

Example

We provide here an example of an attack signature in

order to demonstrate our approach. This example is used

in the experiments described in Section 5. This particular

attack is the same as the one used in work by Cuppens [7].

In fact, this particular attack requires four separate

signatures. Three of these signatures generate synthetic

alerts, as described above, which are matched by the

fourth signature.

FINGER root
query

[FINGER:ROOT]

Cuppens Finger Detect

RPC portmap
listing

RPC portmap
request mountd

DYNAMIC-TCP

Cuppens RPC Detect

RSERVICES
rlogin root

[RSH:ROOT]

Cuppens Remote Login Detect

Cuppens Finger
Detect

Cuppens RPC
Detect

Cuppens Remote
Login Detect Cuppens 3 Stage Detect

Figure 1: Cuppens Attack Signature

The two IDS used in our experiments, Snort and

Dragon, produce different alerts when detecting this

attack. These alerts can be related to each other based on

their content. Snort produces the following specific pattern

of alerts:

FINGER root query;

two occurrences of RPC portmap listing;

RPC portmap request mountd; and

RSERVICES rlogin root.

While Dragon produces the following alerts:

FINGER:ROOT;

three DYNAMIC-TCP alerts; and

a RSH:ROOT alert.

Figure 1 shows the structure of each of the four

signatures used in detecting this attack. The “FINGER

root” alert generated by Snort and the “FINGER:ROOT”

alert generated by Dragon are equivalent. These alerts are

grouped in the first signature, which we label “CUPPENS

Finger Detect”. The second signature, labelled

“CUPPENS RPC Detect”, is made up of the “RPC

portmap listing” and “RPC portmap request mountd”

alerts generated by Snort and also includes the

“DYNAMIC-TCP” alert generated by Dragon. Multiple

instances of the “RPC portmap listing” and “DYNAMIC-

TCP” alerts are detected by setting the alert repeat factor

to a value greater than one. The “RSERVICES rlogin

root” (Snort) and “RSH:ROOT” (Dragon) together form

the third signature, labelled “CUPPENS Remote Login

Detect”. Finally, the fourth signature, which represents the

entire Cuppens attack, is comprised of the first three

synthetic alerts.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

In this particular case, the format of the entry in the file

used to store signatures is in the form of four signatures,

shown here in basic form (no individual alert replication,

timing or weighting information) using a comma-

delimited format:

1. CuppenFinger, group, newalert, CUPPENS

Finger Detect, 32, 5, 0, 2, FINGER root query,

[FINGER:ROOT]

2. CuppenRemoteLogin, sequence, newalert,

CUPPENS Remote Login Detect, 32, 20, 0, 2,

RSERVICES rlogin root, [RSH:ROOT]

3. CuppenRPC, group, newalert, CUPPENS RPC

Detect, 32, 30, 0, 3, RPC portmap listing, RPC

portmap request mountd, [DYNAMIC-TCP]

4. Cuppen3Stage, sequence, newalert, CUPPENS

3 Stage Detect, 32, 20, 0, 3, CUPPENS Finger

Detect, CUPPENS RPC Detect, CUPPENS

Remote Login Detect

We note for the purposes of illustration using the

first signature as an example, that CuppenFinger, is a

group signature spawning a ‘new alert’ of ‘CUPPENS

Finger Detect’, it has a netmask of 32, a timeout of 5

seconds, a weighting threshold of zero (i.e. not used)

and a priority of 2 out of 5, with 1 being the highest.

The first three signatures above correspond to the

first three signatures in Figure 1(the top two signatures,

and the middle signature), and the fourth corresponds to

the bottom signature in Figure 1 which combines the

first three signature synthetic alerts into a second-level

signature. This is achieved by using the alerts produced

by the ‘new alert’ option in each of the first three

signatures.

4. The Administrator Interface

The administrator interface (Figure 2) provides the

security administrator with access to both the signature

detection and alert visualization and analysis functions.

Figure 2: Administrator Interface Screenshot

The Administrator Interface was developed to provide

an interface to the following features:

1. signature-based attack detection - execute signature-

based attack detection on the alert stream from the

database with options:

display the list of signatures that fired, and

display the list of signatures that expired before

firing

2. an experimental platform to allow experimentation

with new signature matching algorithms and

mechanisms viz., a system configuration capability

to configure a number of system parameters

including signature priorities, duplicate attack

detection, alert propagation

3. an alert or cluster analysis capability to facilitate

the analysis and correlation of alerts from

heterogeneous IDS

4. a visualization capability to complement and

facilitate the above alert analysis capability in order

to facilitate signature discovery; in particular to

provide a summary graphing analysis of alerts with

information on IDS, time, and alert name, and

provide access to detailed information across a

range of attributes down to the individual alert level.

Feature 1 provides a display of the outcome of the attack

signature detection that was discussed earlier in Section 2

(right panel in Figure 2). This lists the names of the attacks

that were detected and in each case allows the

administrator to display the signature itself and the

particular alerts that contributed to it. It also displays

‘incomplete’ attacks and is included in order to assist the

administrator in developing better or more complete attack

signatures for inclusion in the attack signature set. Feature

2 has been discussed in earlier sections of the paper.

Feature 3, together with our architecture for

interoperability, is discussed in our earlier paper [10].

We focus now on the remaining feature, feature 4, the

provision of visualization and summary graphing

information with access to detailed alert information (this

can be seen in the left side of Figure 2). The intention of

this feature is to provide the security administrator with

the opportunity to examine alert traffic in general with a

view to identifying unexpected traffic not diagnosed by

the signature detection and to identify and evolve new

attack signatures for inclusion in the attack signature set.

The display presents the following information:

time (x-axis),

sensor (icon),

alert type (top graph, y-axis), and

alert number (bottom graph, y-axis).

This information is presented in two co-located graphs,

one showing alert type, sensor and time (the upper graph),

and the other showing the numbers of alerts within the

discrete time periods (the lower graph). Placing the mouse

over an item in the upper graph shows the specific name,

IDS and time of the alert(s) that are indicated. Clicking on

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

the item brings up detailed alert information. The lower

graph uses a logarithmic scale on the y-axis. The display

becomes particularly useful when a DoS or IDS

overloading attack occurs, as it allows the administrator to

see patterns in the alert data, and elements within the

graph can be clicked on to gather information about the

alerts which correspond to each item in the graph.

Visualization of the relationship between signatures and

surrounding alerts is also particularly useful.

When looking at the alerts that are attributed to a

signature, it is possible to view the other alerts that have

occurred at about the same time, and a graph can show this

information over a large time period, without becoming

overly complex.

There are certain attacks that cannot currently be

specified in our signatures, while they can be observed in

the graphs provided. The graphing functionality can be

used to identify trends and series of alerts that do not

correspond to signatures. For example, if a large number

of alerts is observed on a single host, one might assume

that an attack is taking place. By clicking on individual

items in the upper graph, the administrator can drill down

and see the alerts within that item, and look at the features

of those alerts. Certain attacks such as DoS or IDS alert

spoofing attacks can be observed visually by looking at the

amount, type and IDS of alerts that have been stored.

The general advantage of the prototype GUI over other

approaches is that the user is never confronted with any

sort of flat text file containing alerts. Alerts are shown

either in the graphs provided (where the user can identify

each alert type by the legend at the bottom of the screen)

or by investigation of the alerts that have been matched to

signatures. Alerts with high occurrences as well as those

with low occurrences are easily identified and can be

investigated by clicking on the graph. The graph also

identifies which alerts are produced by which sensor,

which is useful for tracking trends either of attacks moving

within the network, attacks that are only detected by a

particular IDS, or alerts that may constitute false alarms.

In practice, this makes the identification and analysis of

alert streams with large numbers of alerts much quicker

than some other approaches.

5. Testing and Evaluation

In order to properly gauge the usefulness of our system,

we experimented with various attacks and profiled the

operation of our system on a set of attack data. The testing

procedure was developed both to test the operation of the

system itself, and to evaluate the success of the

methodology with regard to attack detection outcomes.

This entailed the construction of a test network consisting

of two ‘client’ machines, each hosting Snort and Dragon

NIDS. The alerts from these systems are then interpreted

by IDS Alert Agents, and sent to the Control Unit on a

separate third machine. The Control Unit is co-located

with a PostgreSQL Alert Database on a third host, and

stores all alerts received in the database. This is then

accessed from a separate fourth machine acting as the

Administrative Console. The machines were placed on a

switch, to separate traffic into distinct network segments.

5.1. Attack Detection Outcomes

In order to test the prototype, a suite of attacks with

different characteristics was selected. The attacks utilised

a number of different attack tools: two DoS-type tools,

stick and tfn2k, the port-scanner nmap, the vulnerability

scanner Vetescan, and two exploit tools which attack

network management protocols. Four distinct attacks were

run:

Attack 1. A simple nmap stealth scan, with two phases:

one with nmap running alone, and one running with the

IDS alert spoofing tool stick run at the same time to

obfuscate the nmap alerts.

Attack 2. This attack consists of running Vetescan and the

two exploit tools on both hosts.

Attack 3. The Cuppens attack [7], which consists of 6

steps, of which only five (all except step 5) are detectable

by Snort and Dragon:

1. finger root@target

2. rcpinfo <target>

3. showmount <target>

4. mount <target directory>

5. cat “++” < .rhost

6. rlogin <target>

Attack 4. An attack using the DoS tool tfn2k, first against

one host, and then against both hosts, in order to determine

the difference in amounts of alerts, if any.

The attacks were scripted in order to satisfy

reproducibility concerns, and the session was logged using

TCPDUMP for later analysis. Using scripting meant that

the attacks could be performed quickly and were

repeatable for multiple iterations if required.

The attacks were run in four different scenarios:

sequentially; sequentially with background traffic;

simultaneously; and simultaneously with background

traffic. These scenarios enabled us to test the performance

of the detection algorithms in very different

circumstances, with differing levels of alert dispersion and

intensity. The background traffic was injected onto the

network while the attacks were running. This was

achieved using the TCPREPLAY utility, in order to make

the testing process reproducible.

As shown in Table 1, in all except two instances, each

of the attacks was detectable using our signature-based

attack detection approach. Attack 2 was not detected in

either of the cases where the attacks were run

simultaneously. This was because higher priority alerts,

such as those resulting from Attacks 1 and 3, have priority

over the alerts that the Attack 2 signature required. The

original alerts were not propagated by the detection engine

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

due to the exploit signature either not being active (and

therefore not acknowledging the need for that alert), the

exploit signature timing out before the alert could be

reassigned, or the alert giving rise to a new instantiation of

the higher priority signatures as they were needed for a

group signature. However, the signatures could be

matched if the priority for Attack 2 was increased to be

higher than Attacks 1 and 3.

Table 1: Summary of results for each scenario
tested

Signature
TCP-

Scan
Exploit Cuppens

DoS

Attack

Sequential Detect Detect Detect Detect

Sequential

w/background
Detect Detect Detect Detect

Simultaneous Detect Detect* Detect Detect

Simultaneous

w/background
Detect Detect* Detect Detect

* This was not detected when run normally. This attack
was only detected when its signature was rated at a higher
priority than TCP-Scan and Cuppens (not the case by
default in testing).

We also performed experiments to determine the effect

of different signature parameters on the matching

operation. The results of those experiments are presented

in the following sections.

5.2. Other Test Results

5.2.1. Mandatory/Optional/Weighting As described in

Section 2.1, an alert appearing in a signature can be tagged

as optional, in which case it is tagged also with an

associated weight. In the absence of optional alerts, a

signature will fire – assuming no timeouts have occurred -

when all its (mandatory) alerts have been matched by the

alert stream. With optional alerts, it is possible to

construct signatures whose firing depends not only upon

the matching of the regular or mandatory alerts forming

part of the signature, but also upon the matching of a

sufficient sub-set of optional alerts. This is achieved by

specifying a signature threshold for the cumulative

optional alert weight and specifying individual alert

weights for each optional alert. Note that only the first

alert of the type contributes to the cumulative optional

alert weight. We performed the following experiments

varying the threshold weight to test the performance of

this feature.

The Attack 1 (TCP-Scan) signature consists of three

alerts in a group, “TCP-SCAN”, “Scan Proxy (8080)” and

“ICMP Ping NMAP”. It is illustrated in Figure 3 below.

ICMP Ping NMAP
SCAN Proxy

(8080)
TCP-SCAN

TCPScan

Figure 3: Attack 1 (TCP-Scan) Signature

Attack 1 can be specified as a ‘2 out of 3’ example,

where if two of the signature’s alerts are detected, the

TCP-Scan signature should be fired. This can be

accomplished by setting each item to optional and each

alert’s weighting to be 1, with a threshold of 2. Table 2

gives the results of experiments relating to modifying the

threshold value for optional alerts. (The attack resulted in

6 TCP-SCAN, 3 SCAN PROXY and 2 ICMP PING

NMAP alerts).

The testing consisted of four cases:

Case 1. All Mandatory – Testing how many times the

signature will match when requiring all alerts.

Case 2. All Optional, Threshold 1 – Testing how the

signature will match when 1 out of 3 is required.

Case 3. All Optional, Threshold 2 – Testing how the

signature will match when 2 out of 3 is required.

Case 4. All Optional, Threshold 3 – Testing how the

signature will match when 3 out of 3 is required

(effectively identical to Case 1).

The number of expected and actual matches for each

case is listed in Table 2.

Table 2. Number of alerts generated for different
threshold weights (M-Mandatory, O-Optional)

Case 1 2 3 4

Threshold

Weight
N/A 1 2 3

TCP-SCAN M O O O

SCAN Proxy

(8080)
M O O O

ICMP PING

NMAP
M O O O

of expected

matches
2 11 5 2

of actual

matches
2 11 4* 2

* An out-of-sequence alert affected this result, meaning

practical results did not meet theoretical expectations.

This feature should be useful in specifying random

attacks such as spoofing attacks, portions of DoS attacks

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

or even scanning activity.

5.2.2. Alert Repeat Factor The alert repeat factor is

useful for signatures designed to detect attacks which

consist of multiple instances of the same alert. A good

example of such an attack is a denial of service attack,

such as our Attack 4.

 Attack 4, being a DoS attack, has a large number of

alerts normally associated with it, however the alerts that

appear are of three types, shown in Figure 4.

TCP-SCAN
BAD TRAFFIC 0

ttl
BAD TRAFFIC
loopback traffic

DosAttack

Figure 4: Attack 4 (DosAttack)

If a signature was used that required only a single

instance of each of these alerts, it would fire tens of times

per second. The alert repeat factor is provided in order to

allow an administrator to better configure how the system

responds to these sorts of attacks.

With a well-tuned alert repeat factor, the number of

times a signature matching occurs can be reduced. Table 3

shows the relative numbers of the three different alerts

within our simultaneous scenario.

Table 3. Results for various alert repeat factors
for Attack 4

Total

Alerts

Start

Time
End Time

TCP-SCAN 6 3:52:56 3:53:27

BAD TRAFFIC

0 ttl
4895 3:52:55 3:53:17

BAD TRAFFIC

loopback traffic
67 3:52:55 3:53:16

Total 4968 3:52:55 3:53:27

It should be noted that the distribution of these alerts can

vary significantly, with the “BAD TRAFFIC 0 ttl” alert on

average occurring 73 times more than the “BAD

TRAFFIC loopback traffic” alert but in practice this

number varies from 20-100 times.

 Table 4 shows the results of varying the number of

repeated alerts in a single DosAttack instance.

Table 4. Results for various alert repeat factors
for Attack 4

Case 1 2 3 4 5 6
TCP-SCAN
(Optional)

1 1 1 1 1 1

BAD TRAFFIC
0 ttl

1 1 1 1 10 90

BAD TRAFFIC

loopback traffic
1 2 3 68 1 1

of expected

matches
67 33 22 0 67 54

of actual

matches
66 32 21 0 65 44

The results indicate that the number of signature

matches in this case is largely dependent upon the “BAD

Traffic loopback traffic” alert. When the repeat factor for

this particular alert is increased the overall number of

signature matches is reduced. The high values for the

“BAD TRAFFIC 0 ttl” alert repeat factor indicate that

there are large numbers of this particular alert being

generated. The administrator is able to tune the desired

number of alerts of a particular type required in order for

the signature to match thus allowing the number of times a

signature fires to be reduced.

5.2.3. Signature Priority Signature priority comes into

play when two signatures are awaiting the arrival of the

same alert. Examples are our signatures for Attacks 1 and

2, which both utilise the alert “SCAN Proxy (8080)”, and

Attacks 2 and 3, which both utilise the “RPC portmap

listing” alert. When the attacks were run sequentially,

Attack 2 was successfully detected. However, during the

simultaneous attack runs, the Attack 2 signatures were

denied access to mandatory alert components. This is

because the required alerts were consumed by higher

priority signatures, namely those for Attacks 1 and 3. This

illustrates the importance of selecting suitable priority

values, especially when using our “single-fit” strategy.

This scenario could be avoided (possibly at the expense

of larger numbers of false-positive matchings) by

employing a “multiple-fit” strategy. Further research is

required to analyse these issues in greater detail. It should

be noted that, as expected, we were able to cause the

signature for Attack 2 to match by giving it a higher

priority that those for Attacks 1 and 3. Of course, in this

instance the matching of Attacks 1 and 3 is inhibited.

5.2.4. IP Mask A limitation of the test network meant that

the specification of an IP mask in the signatures could not

be tested. For this reason we were not able to perform any

experiments using the IP mask signature component. For

the purposes of illustration we show how the IP mask may

be useful for signatures when detecting Attack 4. A denial

of service attack may be directed at a range of addresses

on the victim network, impacting availability of the entire

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

network. By specifying a suitable IP mask in the signature,

rather than a single target address, the effectiveness of the

signature can be improved since a single signature can

accumulate alerts generated for multiple target hosts.

6. Conclusions and Future Work

Our results to date have demonstrated a viable

signature-based attack detection scheme that utilises

commodity components. The signature structure which we

propose is sufficiently flexible to detect a variety of

complex attack scenarios. Through practical

experimentation with the signature constraints, including

mandatory/optional components with weighting, alert

repeat factors and signature priorities it has been shown

that this approach allows for the specification of accurate,

yet fault-tolerant, signatures. The system we have

developed was not intended for real-time analysis of alerts.

Instead it has proven to be a useful test-bed for the

development of complex attack signatures through

experimentation with the various signature parameters in

an off-line environment.

The results are preliminary and more comprehensive

testing is needed using a wide range of multi-step attacks,

with alert information from both HIDS and NIDS, in order

to establish performance with respect to error rates and to

more firmly establish that the signature specification

notation we have developed is sufficiently expressive.

The signature notation we have developed promises to

be useful for alert aggregation and reduction. In particular,

the alert repeat factor acts as a tool for alert reduction (via

aggregation). More experiments must be conducted to

fully explore the benefits of this approach for reducing the

overall number of alerts generated by the system.

A multiple-fit signature-matching algorithm is currently

being investigated. Multiple-fit needs to incorporate

multiple simultaneous alert-matching threads in order to

maintain concurrent matching in situations where alerts

match multiple attack signatures. In this way an alert will

potentially be matched to multiple signatures. In simplistic

terms, this concurrent matching will then fire when the

first contributing signature is completely matched,

followed by rollback with respect to the other contributors,

although this too presents issues with respect to relative

priorities (severity) of the competing potentially matching

signatures.

Finally, further work is needed with respect to

visualization to assist in analysing alerts and developing

attack signatures. Additional features that have been

identified for inclusion in the alert graphic tool to date are:

graphing with and without the alerts

attributable to signatures,

graphing of the alerts only attributable to

signatures, and

the specific graphing of items such as pre-

defined clusters.

8. References

[1] McHugh, J., “Intrusion and intrusion detection”,

International Journal of Information Security, 1:14– 35, 2001.

[2] Lee, W. and S. Stolfo, “Data Mining Approaches for

Intrusion Detection”, Proc. 1998 7th USENIX Security

Symposium,

http://www.cs.columbia.edu/~sal/hpapers/USENIX/usenix.html,

last visited Aug. 2002.

[3] Morin, Benjamin and Ludovic Me, Herve Debar and Mireille

Ducasse, “M2D2: A Formal Data Model for IDS Alert

Correlation”, In the Proceedings of the 5th International
Symposium on Recent Advances in Intrusion Detection

(RAID2002), Zurich, October 2002, volume 2516 of LNCS,

pages 115-137, Springer-Verlag. 16

[4] Vigna, G. and R.A. Kemmerer and P. Blix. “Designing a

Web of Highly-Configurable Intrusion Detection Sensors”. In

Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection (RAID 2001), Davis, CA,

October 2001. Volume 2212 of LNCS, pages 69–84, Springer-

Verlag.

[5] Doyle, Jon and Isaac Kohane, William Long, Howard

Shrobe, and Peter Szolovits, “Agile monitoring for cyber

defense”. In Proceedings of the DARPA Information
Survivability Conference and Exposition (DISCEX-II), Anaheim,

California, June 12-14 2001.

[6] Valdes, Alfonso and Keith Skinner. “Probabilistic alert

correlation”. In Proceedings of the 4th International Symposium
on Recent Advances in Intrusion Detection (RAID 2001), Davis,

CA, October 2001. Volume 2212 of LNCS, pages 54–68,

Springer-Verlag.

[7] Cuppens, Frederic and Alexandre Miege. “Alert correlation in

a cooperative intrusion detection framework”. In 2002 IEEE

Symposium on Security and Privacy (S&P’02), Berkeley, CA,

USA, May 12 - 15 2002, pages 187–202.

[8] Debar, Herve and Andreas Wespi. “Aggregation and

correlation of intrusion detection alerts”. In Proceedings of the

4th International Symposium on Recent Advances in Intrusion

Detection (RAID 2001), Davis, CA, October 2001. Volume 2212

of LNCS, pages 85–103, Springer-Verlag.

[9] Cuppens, Frederic.. “Managing alerts in a multi-intrusion

detection environment” In Annual Computer Security

Applications Conference (ACSAC 2001), New Orleans,

Louisiana, USA, December 10-14, 2001.

[10] Carey, N., G. Mohay, and A. Clark. “IDS Interoperability

and Correlation Using IDMEF and Commodity Systems” In

Proceedings of 4th International Conference of Information and
Communications Security (ICICS), Singapore, December 2002.

Volume 2513 of LNCS, pages 252-264, Springer-Verlag.

[11] Cuppens, Frederic and Rodolphe Ortalo. “Lambda: A

language to model a database for detection of attacks”. In Third
International Workshop on Recent Advances in Intrusion

Detection (RAID 2000), Toulouse, France, October 2-4, 2000.

Volume 1907 of LNCS, pages 197–216, Springer-Verlag.

[12] Tung, Brian, “The common intrusion specification

language: A retrospective.” In Proceedings of the DARPA

Information Survivability Conference and Exposition (DISCEX),

2000, pages 3–11, Hilton Head, SC, 2000.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

