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Abstract

Over the past decade, Intrusion Detection Systems 

(IDS) have improved steadily in the efficiency and 

effectiveness with which they detect intrusive activity. This 

is particularly true with signature-based IDS due to 

progress with intrusion analysis and intrusion signature 

specification. At the same time system complexity, overall 

numbers of bugs and security vulnerabilities have been on 
the increase. This has led to the recognition that in order 

to operate over the entire attack space, multiple 

heterogeneous IDS must be used, which need to 

interoperate with one another, and possibly also with 

other components of system security. This paper describes 

our research into developing algorithms for attack 

signature matching for detecting multi-stage attacks 

manifested by alerts from heterogeneous IDS. It describes 

also the testing and preliminary results of that research, 

and the administrator interface used to analyze the alerts 

produced by the tests and the results of signature 

matching.   

1. Introduction - Related Work and 

Motivation 

  Intrusion Detection Systems (IDS) have evolved 

significantly over the past two decades since their 

inception in the early 1980s [1]. The simple IDS of the 

early days were based either upon the use of simple rule–

based logic to detect very specific patterns of intrusive 

behaviour or upon historical activity profiles to confirm 

legitimate behaviour. In contrast, we now have IDS which 

use data-mining and machine-learning techniques [2] for 

the dynamic compilation of new intrusion signatures and 

which allow for quite general expressions of what may 

constitute intrusive behaviour. Other modern IDS may use  

a mixture of sophisticated statistical and forecasting 

techniques to predict what is legitimate activity.  

Alert correlation is one of the central issues currently 

challenging intrusion detection research. Recent work by 

Morin et al [3] provides a formal model - M2D2 - for 

alarm or alert correlation. The M2D2 model comes at a 

time when researchers and implementers are grappling 

with the need for reduction of the number of false 

positives, and indeed that is one of the focal points 

emphasised in the paper by Morin et al. Our work is 

related to previous work by Vigna et. al. [4], Doyle et. al. 

[5], Valdes and Skinner [6], Cuppens [7] and Debar and 

Wespi [8]. None of this work, including ours, attempts to 

incorporate the four dimensions of M2D2.  

The work by Vigna et. al. uses the STAT model to 

provide a framework for dynamic configurability of IDS 

sensors and uses Java to aid in portability. The work by 

Doyle et. al. with MAITA reflects similar goals, but 

utilises a more complex architecture to support 

interoperability and uses trend templates for the 

specification of chains of events as opposed to the STATL 

attack scenario language used in the STAT work. Valdes 

and Skinner use a probabilistic approach to perform 

correlation of information from multiple sensors, and 

focus on the concept of ‘threads’ to maintain links 

between alerts. Debar and Wespi [8] use features in the 

Tivoli Enterprise Console to perform aggregation and 

correlation of alerts, and focus on the abilities of a 

management system to reduce the amount of data 

presented to an administrator. Recent work by Cuppens 

([7], [9]) which focuses on commodity IDS, and uses a 

central database for alert aggregation and analysis is the 

most similar to our own approach. Cuppens uses a Prolog 

database and static signatures for attack detection, together 

with stored procedures to perform aggregation of alerts to 

reduce redundancy. The signature set is defined using the 

LAMBDA syntax, which enables the specification of very 

complex event relationships.  

While each of these systems has its own special 

objectives, they have in common that in each case use is 

made of a central alert store that captures alerts from 

multiple sensors in order to assist the overall intrusion 

detection process. Some of the systems use IDMEF for 

communication, and some utilise purpose built IDS 

platforms, rather than relying on commodity IDS for alert 

data. While all perform some sort of analysis on the data, 

the analysis mechanisms used are different.  
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Our work too is pitched at the correlation of alerts 

emanating from heterogeneous IDS using a central alert 

store that captures alerts from multiple sensors [10]. In 

contrast however, it adopts a bottom up approach to the 

problem and sets out to develop a simple framework built 

out of commodity and free software in order to produce 

practical alert correlation across heterogenous commodity 

IDS. There are some other, more minor, differences too 

with regard to implementation, such as not using stored 

procedures, the nature of the interaction between alert 

correlation and signatures, and the relatively simple format 

and implementation of the multi-step attack signatures 

themselves. The two major goals of our work have been to 

design and implement:  

1. signature-based attack detection which matches 

attack signatures with an alert stream comprising 

alerts from heterogeneous IDS and uses off the shelf 

software and a minimum of specialised components 

to do so, and 

2. an experimental platform to allow experimentation 

with new signature matching algorithms and 

mechanisms. 

To achieve these goals, the work has involved the 

development of an alert or cluster analysis capability to 

facilitate the analysis and correlation of alerts from 

heterogeneous IDS, and a visualization capability to 

complement and assist the alert analysis capability and to 

facilitate signature discovery.  The alert or cluster 

analysis was discussed in our paper [10], the visualization 

features are new.  

Interoperability is a crucial part of alert analysis, 

providing a common platform for alerts arriving from 

heterogeneous IDS and possibly other system security 

components such as firewalls and host logs. We employ 

IDMEF for this purpose and this allows us to exploit the 

use of heterogeneous IDS to provide identification and 

notification of a wider range of alerts than is possible with 

homogeneous IDS and thus perform cross-sensor 

signature-based attack detection.  

While the ultimate goal of IDS and inter-IDS alert 

correlation is to provide real-time warning or even 

reaction to perceived alerts and attacks, there are 

outstanding issues to be solved relating to IDS 

interoperability and attack recognition which are most 

easily and productively tackled in an offline or post hoc 

context. Our focus has therefore been on the development 

of an offline platform for studying attack signature 

matching and discovery techniques. This enables us to 

concentrate on experimentation with signature 

specification and matching techniques and avoid being 

distracted unnecessarily by real-time performance 

considerations.  For the future, this will enable us to study 

outcomes such as how the error rate of false negatives and 

false positives varies with circumstances.   

The system also includes a security administrator 

interface with access to both the signature detection  and 

the alert analysis and visualization functions. The interface 

also provides access to a number of system configuration 

parameters thus providing the basis for studying the 

different outcomes (e.g., error rates) resulting from 

different experimental scenarios. 

The paper is structured as follows. This section has 

reviewed related work, including the authors’ previous 

work upon which the work described here is founded, and 

provides also the rationale for the work described in the 

paper.  Section 2 examines the detailed design of our 

attack signature specification and the detection algorithms 

we have developed.  Section 3 discusses an example of a 

specific attack signature that illustrates our approach while 

Section 4 describes the administrator interface which 

provides access to both the signature detection and alert 

analysis capabilities of our system, together with 

visualization features. Section 5 on Testing and Evaluation 

discusses the attack set used to test and evaluate our 

system and presents the preliminary results achieved with 

respect to that attack set. This is followed by the 

conclusions and summary of further work in Section 6.  

2. Signature Specification and Matching - 

Detailed Design 

Our earlier paper [10] focused on IDS interoperability, 

system architecture and alert cluster analysis, the 

subsequent work described in this paper relates to the 

signature specification and matching techniques that we 

have developed and details of these appear immediately 

below.   

2.1. Signature Specification 

The correlation of alerts whether from the one IDS over 

time or across several heterogeneous IDS provides two 

significant benefits: 

signature-based attack detection - it allows known 

multi-step attacks to be detected by matching alert 

streams against the set of known attack signatures, 

and 

attack and signature discovery - it allows for the 

discovery of new attacks by identifying hitherto 

unseen alert relationships, and the discovery and 

incorporation of new attack signatures into the set of 

known attack signatures. 

The alert correlation work most closely related to ours 

is that by Cuppens and Miege [7], their work is however 

more ambitious than ours and has somewhat different 

objectives. It uses a sophisticated model based around first 

order logic for expressing signatures for attacks and for 

representing alerts, and has the ultimate objective of 

anticipating the future steps of an attacker. The signature 

set is defined using the LAMBDA syntax, which enables 

the specification of very complex event inter-relationships.  

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003) 

1063-9527/03 $17.00 © 2003 IEEE



Our goal of producing a simple yet functional system 

for use in the context of heterogeneous IDS flows through 

into the specification and usage of signatures themselves. 

Attack specification languages such as LAMBDA [11] and 

CISL and S-expressions [12] provide the ability to define 

very complex relationships between events themselves.  

However they do not satisfy the goal of a simple 

method of specification. We on the other hand set out 

simply to recognize known multi-step attacks from an alert 

stream containing alerts from heterogeneous IDS, and to 

be able to learn new attacks to include into the signature 

set and to do both of these with simple, off-the-shelf 

components. The signature specification notation has thus 

been kept intentionally minimal.  

Our attack signatures are couched in terms of alert 

elements which consist of the following two alert 

characteristics:

1. alert name (the unique name of the alert), and 

2. alert time (the time the alert was detected). 

In addition, we include with each alert element some 

additional attributes as follows:  

3. timeout (inter-alert timeout) – this allows the expiry 

of signature (and hence attack) matching based upon 

expiry of the expected maximum time between 

successive alerts, 

4. optional/mandatory components - the alerts 

specified within an attack signature are by  default 

mandatory, and the absence of a mandatory alert 

within the timeout period will flag absence of the 

attack and expire the matching activity. An alert 

may however be marked as optional, and absence 

of an optional alert will not of itself lead to the 

conclusion that the attack is absent. An optional 

alert has an alert weight associated with it and a 

necessary condition for the signature to fire (i.e., for 

the signature as a whole to have been matched by 

alerts from the alert stream, thus signifying that an 

attack has been detected) is that the sum of the 

weights of matched optional alerts equals or exceeds 

a specified optional alert weight threshold 

associated with the signature.  

5. alert repeat factor - signatures include the facility 

for associating an alert repeat factor with an alert 

element, this is the threshold number of repeats 

(default of one) that needs to be achieved for an 

alert to satisfy the alert element. This does not affect 

the semantics of alert element weights.  

The signatures themselves have five attributes that are 

pivotal to the signature specification and matching 

algorithm:  

i. IP mask – this is the network mask (denoted by a 

number of bits) which determines a valid set of 

targets for this particular signature,  

ii. signature priority - the signature priority governs 

the order in which alerts are matched against 

candidate attack signatures. Given the use of 

‘single-fit’ of an alert from the alert stream to 

candidate signatures (see below), the priority order 

in which candidate signatures are matched against 

the alert stream is critical;  

iii. overall signature timeout – this allows the expiry of 

signature (and hence attack) matching based upon 

expiry of the total expected maximum time for an 

attack to complete (to be effective this must be less 

than the sum of the previously mentioned individual 

alert timeouts),  

iv. threshold weight – this is the threshold proportion 

of optional alerts (see below) that needs to be 

satisfied for the signature match to have been be 

deemed successful and the signature to have fired.  

This is achieved by associating a weight with each 

optional alert forming part of the signature and 

setting a minimum total or threshold weight that 

needs to be satisfied; and  

v. action on firing – typically this includes noting to 

the administrator’s console that the signature has 

fired and may include re-insertion of a named 

synthetic alert into the alert stream.  

Optional elements of an Attack Signature refer to an 

alert which does not necessarily have to be matched for 

that signature to fire (in contrast to mandatory alert 

elements). Such elements have an associated weighting. 

When such an optional alert element is matched, then its 

weighting is accumulated into the 

‘optional_alert_accumulated_weight’ (initially zero) for 

that active signature. For a signature to fire, all mandatory 

alert elements must have been matched, and the value of 

its ‘optional_alert_accumulated_weight’ must equal or 

exceed the threshold firing weight. The latter has a default 

of zero, which assumes that the signature contains no 

optional alert elements. Arbitrary threshold and element 

values enable the specification of situations such as ‘two 

out of three alerts’ or ‘alert xxxx plus three other alerts’.  

Note that the mandatory/optional, repeat factor and 

inter-alert timeouts are all optional for a signature. For 

ease of use, a signature can be initially specified with only 

the signature name, basic timeout, and using a group 

signature in order to provide a simple method of selecting 

all of the component alerts within a given time period.  

2.2. Signature Composition 

An attack signature may be one of two basic types:  

a sequence of alerts, or  

a group of alerts.  

An attack signature consisting of an alert sequence is 

constructed as an ordered list, so that the signature is 

matched or fired when the final and all previous 

mandatory alert elements are satisfied in the order listed 

and when the threshold weight of optional alerts has been 

reached. An attack signature consisting of an alert group is 

constructed as a set such that the signature is matched or 
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fired when all the alert element items are matched, 

irrespective of order, and when the threshold weight of 

optional alerts has been reached. More complex attack 

signatures are composed by combining these two basic 

types of signatures by the concept of synthetic alerts, a 

concept which appears elsewhere in previous works (e.g., 

Cuppens [7]). When a basic attack signature type is fired, 

it can have two outcomes:  

notification of the occurrence of an attack, and/or  

insertion of a synthetic alert into the alert stream.  

Such a synthetic alert may itself then be matched with 

higher order signatures allowing the security administrator 

to construct attack signatures of arbitrary complexity.  

2.3. Signature Matching Algorithm  

Before considering the more significant design details 

of our signature-matching algorithm, we present the 

following definitions:  

the active signature set - this is the set of all 

partially matched signatures, it is the set of all 

those signatures which have matched at least one 

alert and not yet timed out or completed. 

the open signature set - this is initialised at start 

up to be the set of all attack signatures, it then 

grows to include the active signature set  

the candidate alert set - this is the set of alerts 

comprised of:  

i. the first unmatched mandatory alert plus 

every immediately preceding unmatched 

optional alert in the case of a sequence 

signature, for all sequence signatures in 

the open signature set; and 

ii. every unmatched alert in the group in 

the case of a group signature, for all 

group signatures in the open signature 

set

the per-alert candidate signature list - this is the 

priority-ordered list of open signatures ‘waiting’ 

for the alert. Signatures will typically appear in 

several such lists:  

- in the case of sequence signatures, the 

signature will appear in the signature list 

for its next unmatched mandatory alert, 

and in the signature lists of each 

unmatched optional alert preceding its 

next unmatched mandatory alert  

- in the case of a group alert, the signature 

will appear in the signature list for each 

of its unmatched alerts  

We now consider the details of our signature-matching 

algorithm.  

2.3.1 Single-fit Signature-matching We have 

implemented a ‘single-fit’ strategy for our matching 

algorithm, as opposed to a ‘multi-fit’ strategy. With a 

single-fit strategy of matching alerts to signatures, the 

current alert from the alert stream is matched against the 

candidate signature list associated with that alert, in 

particular with the first signature in the list i.e., the highest 

priority signature in the list, and this signature then 

‘consumes’ that alert. ‘Multi-fit’ on the other hand allows 

the current alert to contribute provisionally to multiple 

eligible signatures simultaneously until the first of these 

fires. At that time, the alert’s contribution to the other 

signatures is withdrawn and they are rolled back to their 

previous status.  This roll-back allows multiple threads of 

execution to run in parallel without affecting any other 

thread. 

Multi-fit has some advantages, the main one being that 

it leaves open the possibility of matches with all possible 

signatures until one fires and does so without necessarily 

burdening the administrator with details of signature 

priority (though priority may still be used). At the same 

time it has the disadvantage of increasing the complexity 

of the matching algorithm, where multiple roll-back 

strategies may be required to produce a ‘best-fit’ for a 

given stream of alerts.  

We have opted to use the single-fit algorithm and 

repeated experiments (given ours is currently an off-line 

platform) to perform this role, rather than focus on the 

algorithm for matching in exhaustive detail.  

Successive experiments have enabled us to adjust the 

relative priority ordering of signatures used in the single-

fit matching process and thus identify the alternative 

signature matching outcomes that can result with different 

signature priorities or ordering of alerts in the alert stream. 

Single-fit has also enabled direct analysis on how basic 

pattern matching is insufficient to describe the 

relationships between alerts in complex attacks when 

attack state, multiple attacks, alert overlap and out-of-

sequence alerts are considered. 

As single fit is, at it’s heart, basic sequential pattern 

matching, additional logic needed to be developed to 

enable the specification of priority, mandatory/optional, 

weighting and IP address filtering. These features were 

considered required functions to properly describe many 

of the attacks that can occur over the network. Indeed, this 

area of analysis of state-based attack detection 

mechanisms is considered an undeveloped area in IDS 

research. Implementation of a multi-fit strategy and 

comparisons between it and the single fit algorithm in 

practice is considered for future work.  

2.3.2 Duplicate Attacks Our system detects overlapped, 

duplicated attacks of the one identical type as the open 

signature set is initialised at start up to include all attack 

signatures and this is augmented with additional partially 

matched signatures as and when a new partial match 

occurs. This feature is configurable at set up time to be 

switched on or off for the purposes of experimentation and 
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so that it is possible for the administrator to forego the 

feature if desired. In some cases, detecting overlapped 

identical attacks is not necessarily more valuable than 

detecting just the one instance of the attack.  

2.3.3 Slow Attacks, Timeouts and Alert Propagation 

The system prevents knowledge of the timeouts used by 

signatures from being exploited by an attacker. That is, an 

attacker could attempt to subvert the system essentially by 

launching a slow attack or a number of such attacks. We 

guard against this situation by deploying two 

countermeasures:  

detection of overlapped, duplicate attacks - the 

first is the configurable detection of overlapped, 

duplicate attacks as discussed above,  

alert propagation - the second is our treatment of 

signature priority and the propagation of alerts 

between signatures. As mentioned previously, 

matching of the current alert to the open signature 

set takes place through the candidate signature 

list for that alert. There is a configurable option 

for that candidate signature list to include not just 

the bona fide candidate signatures for that alert, 

let us call it alertcurrent, but also all those active 

signatures that have recently matched an earlier 

duplicate of the same alert, say alertprevious. Any 

active signature, whose most recent previous alert 

match had been to such a duplicate alertprevious,

will also appear in the candidate alert list.  

The significance of the last point is that a signature that 

had previously matched alertprevious, is now expecting a 

completely different alert different-alert, but is about to 

time out due to expiry of the inter-alert time out 

mechanism will be refreshed with the new alert alertcurrent,

that is the new alert alertcurrent will replace the previous 

older one alerttprevious, thus preventing a possible signature 

time out. This of course may retrospectively contradict the 

previous inter-alert time out constraint but has the benefit 

of guarding against detection avoidance through 

manipulation of signature time out. The replaced alert is 

then propagated to the next candidate signature in the list 

and the process continues recursively. Since the list is 

ordered by signature priority, we ensure that the highest 

priority open signatures are given maximum chance of 

firing. The three factors which govern how alerts are 

matched against signatures are, in order:  

1. the alert type,  

2. the priority order of the signatures in the 

candidate signature list, and  

3. IP masking constraints associated with the alert 

element.  

3. Signature Specification and Matching  – An 

Example 

We provide here an example of an attack signature in 

order to demonstrate our approach. This example is used 

in the experiments described in Section 5. This particular 

attack is the same as the one used in work by Cuppens [7]. 

In fact, this particular attack requires four separate 

signatures. Three of these signatures generate synthetic 

alerts, as described above, which are matched by the 

fourth signature.  

FINGER root
query

[FINGER:ROOT]

Cuppens Finger Detect

RPC portmap
listing

RPC portmap
request mountd

DYNAMIC-TCP

Cuppens RPC Detect

RSERVICES
rlogin root

[RSH:ROOT]

Cuppens Remote Login Detect

Cuppens Finger
Detect

Cuppens RPC
Detect

Cuppens Remote
Login Detect Cuppens 3 Stage Detect

Figure 1: Cuppens Attack Signature 

The two IDS used in our experiments, Snort and 

Dragon, produce different alerts when detecting this 

attack. These alerts can be related to each other based on 

their content. Snort produces the following specific pattern 

of alerts:  

FINGER root query;

two occurrences of RPC portmap listing;

RPC portmap request mountd; and  

RSERVICES rlogin root.

While Dragon produces the following alerts:  

FINGER:ROOT;

three DYNAMIC-TCP alerts; and  

a RSH:ROOT alert.

Figure 1 shows the structure of each of the four 

signatures used in detecting this attack. The “FINGER 

root” alert generated by Snort and the “FINGER:ROOT” 

alert generated by Dragon are equivalent. These alerts are 

grouped in the first signature, which we label “CUPPENS 

Finger Detect”. The second signature, labelled 

“CUPPENS RPC Detect”, is made up of the “RPC 

portmap listing” and “RPC portmap request mountd” 

alerts generated by Snort and also includes the 

“DYNAMIC-TCP” alert generated by Dragon. Multiple 

instances of the “RPC portmap listing” and “DYNAMIC-

TCP” alerts are detected by setting the alert repeat factor 

to a value greater than one. The “RSERVICES rlogin 

root” (Snort) and “RSH:ROOT” (Dragon) together form 

the third signature, labelled “CUPPENS Remote Login 

Detect”. Finally, the fourth signature, which represents the 

entire Cuppens attack, is comprised of the first three 

synthetic alerts. 
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In this particular case, the format of the entry in the file 

used to store signatures is in the form of four signatures, 

shown here in basic form (no individual alert replication, 

timing or weighting information) using a comma-

delimited format: 

1. CuppenFinger, group, newalert, CUPPENS 

Finger Detect, 32, 5, 0, 2, FINGER root query, 

[FINGER:ROOT] 

2. CuppenRemoteLogin, sequence, newalert, 

CUPPENS Remote Login Detect, 32, 20, 0, 2, 

RSERVICES rlogin root, [RSH:ROOT] 

3. CuppenRPC, group, newalert, CUPPENS RPC 

Detect, 32, 30, 0, 3, RPC portmap listing, RPC 

portmap request mountd, [DYNAMIC-TCP] 

4. Cuppen3Stage, sequence, newalert, CUPPENS 

3 Stage Detect, 32, 20, 0, 3, CUPPENS Finger 

Detect, CUPPENS RPC Detect, CUPPENS 

Remote Login Detect 

We note for the purposes of illustration using the 

first signature as an example, that CuppenFinger, is a 

group signature spawning a ‘new alert’ of ‘CUPPENS 

Finger Detect’, it has a netmask of 32, a timeout of 5 

seconds, a weighting threshold of zero (i.e. not used) 

and a priority of 2 out of 5, with 1 being the highest. 

The first three signatures above correspond to the 

first three signatures  in Figure 1(the top two signatures, 

and the middle signature), and the fourth corresponds to  

the bottom signature in Figure 1 which combines the 

first three signature synthetic alerts into a second-level 

signature.  This is achieved by using the alerts produced 

by the ‘new alert’ option in each of the first three 

signatures.  

4. The Administrator Interface 

The administrator interface (Figure 2) provides the 

security administrator with access to both the signature 

detection and alert visualization and analysis functions.  

Figure 2: Administrator Interface Screenshot 

The Administrator Interface was developed to provide 

an interface to the following features:  

1. signature-based attack detection - execute signature-

based attack detection on the alert stream from the 

database with options:  

display the list of signatures that fired, and  

display the list of signatures that expired before 

firing  

2. an experimental platform to allow experimentation 

with new signature matching algorithms and 

mechanisms viz., a system configuration capability 

to configure a number of system parameters 

including signature priorities, duplicate attack 

detection, alert propagation  

3. an alert or cluster analysis capability to facilitate 

the analysis and correlation of alerts from 

heterogeneous IDS  

4. a visualization capability to complement and 

facilitate the above alert analysis capability in order 

to facilitate signature discovery; in particular to 

provide a summary graphing analysis of alerts with 

information on IDS, time, and alert name, and 

provide access to detailed information across a 

range of attributes down to the individual alert level. 

Feature 1 provides a display of the outcome of the attack 

signature detection that was discussed earlier in Section 2 

(right panel in Figure 2). This lists the names of the attacks 

that were detected and in each case allows the 

administrator to display the signature itself and the 

particular alerts that contributed to it. It also displays 

‘incomplete’ attacks and is included in order to assist the 

administrator in developing better or more complete attack 

signatures for inclusion in the attack signature set. Feature 

2 has been discussed in earlier sections of the paper. 

Feature 3, together with our architecture for 

interoperability, is discussed in our earlier paper [10]. 

We focus now on the remaining feature, feature 4, the 

provision of visualization and summary graphing 

information with access to detailed alert information (this 

can be seen in the left side of Figure 2). The intention of 

this feature is to provide the security administrator with 

the opportunity to examine alert traffic in general with a 

view to identifying unexpected traffic not diagnosed by 

the signature detection and to identify and evolve new 

attack signatures for inclusion in the attack signature set. 

The display presents the following information:  

time (x-axis),  

sensor (icon),  

alert type (top graph, y-axis), and 

alert number (bottom graph, y-axis).  

This information is presented in two co-located graphs, 

one showing alert type, sensor and time (the upper graph), 

and the other showing the numbers of alerts within the 

discrete time periods (the lower graph). Placing the mouse 

over an item in the upper graph shows the specific name, 

IDS and time of the alert(s) that are indicated. Clicking on 
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the item brings up detailed alert information. The lower 

graph uses a logarithmic scale on the y-axis. The display 

becomes particularly useful when a DoS or IDS 

overloading attack occurs, as it allows the administrator to 

see patterns in the alert data, and elements within the 

graph can be clicked on to gather information about the 

alerts which correspond to each item in the graph. 

Visualization of the relationship between signatures and 

surrounding alerts is also particularly useful.  

When looking at the alerts that are attributed to a 

signature, it is possible to view the other alerts that have 

occurred at about the same time, and a graph can show this 

information over a large time period, without becoming 

overly complex.  

There are certain attacks that cannot currently be 

specified in our signatures, while they can be observed in 

the graphs provided. The graphing functionality can be 

used to identify trends and series of alerts that do not 

correspond to signatures. For example, if a large number 

of alerts is observed on a single host, one might assume 

that an attack is taking place. By clicking on individual 

items in the upper graph, the administrator can drill down 

and see the alerts within that item, and look at the features 

of those alerts. Certain attacks such as DoS or IDS alert 

spoofing attacks can be observed visually by looking at the 

amount, type and IDS of alerts that have been stored.  

The general advantage of the prototype GUI over other 

approaches is that the user is never confronted with any 

sort of flat text file containing alerts. Alerts are shown 

either in the graphs provided (where the user can identify 

each alert type by the legend at the bottom of the screen) 

or by investigation of the alerts that have been matched to 

signatures. Alerts with high occurrences as well as those 

with low occurrences are easily identified and can be 

investigated by clicking on the graph. The graph also 

identifies which alerts are produced by which sensor, 

which is useful for tracking trends either of attacks moving 

within the network, attacks that are only detected by a 

particular IDS, or alerts that may constitute false alarms. 

In practice, this makes the identification and analysis of 

alert streams with large numbers of alerts much quicker 

than some other approaches. 

5. Testing and Evaluation 

In order to properly gauge the usefulness of our system, 

we experimented with various attacks and profiled the 

operation of our system on a set of attack data.  The testing 

procedure was developed both to test the operation of the 

system itself, and to evaluate the success of the 

methodology with regard to attack detection outcomes. 

This entailed the construction of a test network consisting 

of two ‘client’ machines, each hosting Snort and Dragon 

NIDS. The alerts from these systems are then interpreted 

by IDS Alert Agents, and sent to the Control Unit on a 

separate third machine. The Control Unit is co-located 

with a PostgreSQL Alert Database on a third host, and 

stores all alerts received in the database. This is then 

accessed from a separate fourth machine acting as the 

Administrative Console. The machines were placed on a 

switch, to separate traffic into distinct network segments. 

5.1. Attack Detection Outcomes  

In order to test the prototype, a suite of attacks with 

different characteristics was selected. The attacks utilised 

a number of different attack tools: two DoS-type tools, 

stick and tfn2k, the port-scanner nmap, the vulnerability 

scanner Vetescan, and two exploit tools which attack 

network management protocols. Four distinct attacks were 

run:   

Attack 1. A simple nmap stealth scan, with two phases: 

one with nmap running alone, and one running with the 

IDS alert spoofing tool stick run at the same time to 

obfuscate the nmap alerts. 

Attack 2. This attack consists of running Vetescan and the 

two exploit tools on both hosts. 

Attack 3. The Cuppens attack [7], which consists of 6 

steps, of which only five (all except step 5) are detectable 

by Snort and Dragon:  

1. finger root@target  

2. rcpinfo <target>  

3. showmount <target>  

4. mount <target directory>  

5. cat “++” < .rhost  

6. rlogin <target> 

Attack 4. An attack using the DoS tool tfn2k, first against 

one host, and then against both hosts, in order to determine 

the difference in amounts of alerts, if any.  

The attacks were scripted in order to satisfy 

reproducibility concerns, and the session was logged using 

TCPDUMP for later analysis. Using scripting meant that 

the attacks could be performed quickly and were 

repeatable for multiple iterations if required.  

The attacks were run in four different scenarios: 

sequentially; sequentially with background traffic; 

simultaneously; and simultaneously with background 

traffic. These scenarios enabled us to test the performance 

of the detection algorithms in very different 

circumstances, with differing levels of alert dispersion and 

intensity. The background traffic was injected onto the 

network while the attacks were running. This was 

achieved using the TCPREPLAY utility, in order to make 

the testing process reproducible.  

As shown in Table 1, in all except two instances, each 

of the attacks was detectable using our signature-based 

attack detection approach. Attack 2 was not detected in 

either of the cases where the attacks were run 

simultaneously. This was because higher priority alerts, 

such as those resulting from Attacks 1 and 3, have priority 

over the alerts that the Attack 2 signature required. The 

original alerts were not propagated by the detection engine 
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due to the exploit signature either not being active (and 

therefore not acknowledging the need for that alert), the 

exploit signature timing out before the alert could be 

reassigned, or the alert giving rise to a new instantiation of 

the higher priority signatures as they were needed for a 

group signature. However, the signatures could be 

matched if the priority for Attack 2 was increased to be 

higher than Attacks 1 and 3.  

Table 1: Summary of results for each scenario 
tested 

Signature 
TCP-

Scan
Exploit Cuppens 

DoS 

Attack 

Sequential Detect Detect Detect Detect 

Sequential 

w/background 
Detect Detect Detect Detect 

Simultaneous Detect Detect* Detect Detect 

Simultaneous 

w/background 
Detect Detect* Detect Detect 

* This was not detected when run normally. This attack 
was only detected when its signature was rated at a higher 
priority than TCP-Scan and Cuppens (not the case by 
default in testing). 

We also performed experiments to determine the effect 

of different signature parameters on the matching 

operation. The results of those experiments are presented 

in the following sections.  

5.2. Other Test Results 

5.2.1. Mandatory/Optional/Weighting As described in 

Section 2.1, an alert appearing in a signature can be tagged 

as optional, in which case it is tagged also with an 

associated weight.  In the absence of optional alerts, a 

signature will fire – assuming no timeouts have occurred - 

when all its (mandatory) alerts have been matched by the 

alert stream.  With optional alerts, it is possible to 

construct signatures whose firing depends not only upon 

the matching of the regular or mandatory alerts forming 

part of the signature, but also upon the matching of a 

sufficient sub-set of optional alerts.   This is achieved by 

specifying a signature threshold for the cumulative 

optional alert weight and specifying individual alert 

weights for each optional alert.  Note that only the first 

alert of the type contributes to the cumulative optional 

alert weight.  We performed the following experiments 

varying the threshold weight to test the performance of 

this feature.  

The Attack 1 (TCP-Scan) signature consists of three 

alerts in a group, “TCP-SCAN”, “Scan Proxy (8080)” and 

“ICMP Ping NMAP”. It is illustrated in Figure 3 below. 

ICMP Ping NMAP
SCAN Proxy

(8080)
TCP-SCAN

TCPScan

Figure 3: Attack 1 (TCP-Scan) Signature 

Attack 1 can be specified as a ‘2 out of 3’ example, 

where if two of the signature’s alerts are detected, the 

TCP-Scan signature should be fired. This can be 

accomplished by setting each item to optional and each 

alert’s weighting to be 1, with a threshold of 2. Table 2 

gives the results of experiments relating to modifying the 

threshold value for optional alerts.  (The attack resulted in 

6 TCP-SCAN, 3 SCAN PROXY and 2 ICMP PING 

NMAP alerts). 

The testing consisted of four cases: 

Case 1. All Mandatory – Testing how many times the 

signature will match when requiring all alerts. 

Case 2. All Optional, Threshold 1 – Testing how the 

signature will match when 1 out of 3 is required. 

Case 3. All Optional, Threshold 2 – Testing how the 

signature will match when 2 out of 3 is required. 

Case 4. All Optional, Threshold 3 – Testing how the 

signature will match when 3 out of 3 is required 

(effectively  identical to Case 1). 

The number of expected and actual matches for each 

case is listed in Table 2.   

Table 2. Number of alerts generated for different 
threshold weights (M-Mandatory, O-Optional) 

Case 1 2 3 4

Threshold 

Weight
N/A 1 2 3 

TCP-SCAN M O O O 

SCAN Proxy 

(8080) 
M O O O 

ICMP PING 

NMAP
M O O O 

# of expected 

matches 
2 11 5 2 

# of actual 

matches 
2 11 4* 2 

* An out-of-sequence alert affected this result, meaning 

practical results did not meet theoretical expectations.

This feature should be useful in specifying random 

attacks such as spoofing attacks, portions of DoS attacks 
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or even scanning activity. 

5.2.2. Alert Repeat Factor The alert repeat factor is 

useful for signatures designed to detect attacks which 

consist of multiple instances of the same alert. A good 

example of such an attack is a denial of service attack, 

such as our Attack 4. 

 Attack 4, being a DoS attack, has a large number of 

alerts normally associated with it, however the alerts that 

appear are of three types, shown in Figure 4. 

TCP-SCAN
BAD TRAFFIC 0

ttl
BAD TRAFFIC
loopback traffic

DosAttack

Figure 4: Attack 4 (DosAttack) 

If a signature was used that required only a single 

instance of each of these alerts, it would fire tens of times 

per second. The alert repeat factor is provided in order to 

allow an administrator to better configure how the system 

responds to these sorts of attacks.   

With a well-tuned alert repeat factor, the number of 

times a signature matching occurs can be reduced. Table 3 

shows the relative numbers of the three different alerts 

within our simultaneous scenario. 

Table 3. Results for various alert repeat factors 
for Attack 4 

Total 

Alerts

Start

Time
End Time

TCP-SCAN 6 3:52:56 3:53:27 

BAD TRAFFIC 

0 ttl 
4895 3:52:55 3:53:17 

BAD TRAFFIC 

loopback traffic 
67 3:52:55 3:53:16 

Total 4968 3:52:55 3:53:27 

It should be noted that the distribution of these alerts can 

vary significantly, with the “BAD TRAFFIC 0 ttl” alert on 

average occurring 73 times more than the “BAD 

TRAFFIC loopback traffic” alert but in practice this 

number varies from  20-100 times. 

 Table 4 shows the results of varying the number of 

repeated alerts in a single DosAttack instance. 

Table 4. Results for various alert repeat factors 
for Attack 4 

Case 1 2 3 4 5 6
TCP-SCAN 
(Optional)

1 1 1 1 1 1 

BAD TRAFFIC 
0 ttl 

1 1 1 1 10 90 

BAD TRAFFIC 

loopback traffic 
1 2 3 68 1 1 

# of expected 

matches 
67 33 22 0 67 54 

# of actual 

matches 
66 32 21 0 65 44 

The results indicate that the number of signature 

matches in this case is largely dependent upon the “BAD 

Traffic loopback traffic” alert. When the repeat factor for 

this particular alert is increased the overall number of 

signature matches is reduced. The high values for the 

“BAD TRAFFIC 0 ttl” alert repeat factor indicate that 

there are large numbers of this particular alert being 

generated. The administrator is able to tune the desired 

number of alerts of a particular type required in order for 

the signature to match thus allowing the number of times a 

signature fires to be reduced.   

5.2.3. Signature Priority Signature priority comes into 

play when two signatures are awaiting the arrival of the 

same alert. Examples are our signatures for Attacks 1 and 

2, which both utilise the alert “SCAN Proxy (8080)”, and 

Attacks 2 and 3, which both utilise the “RPC portmap 

listing” alert. When the attacks were run sequentially, 

Attack 2 was successfully detected.  However, during the 

simultaneous attack runs, the Attack 2 signatures were 

denied access to mandatory alert components. This is 

because the required alerts were consumed by higher 

priority signatures, namely those for Attacks 1 and 3. This 

illustrates the importance of selecting suitable priority 

values, especially when using our “single-fit” strategy. 

This scenario could be avoided (possibly at the expense 

of larger numbers of false-positive matchings) by 

employing a “multiple-fit” strategy. Further research is 

required to analyse these issues in greater detail. It should 

be noted that, as expected, we were able to cause the 

signature for Attack 2 to match by giving it a higher 

priority that those for Attacks 1 and 3. Of course, in this 

instance the matching of Attacks 1 and 3 is inhibited.  

5.2.4. IP Mask A limitation of the test network meant that 

the specification of an IP mask in the signatures could not 

be tested. For this reason we were not able to perform any 

experiments using the IP mask signature component. For 

the purposes of illustration we show how the IP mask may 

be useful for signatures when detecting Attack 4. A denial 

of service attack may be directed at a range of addresses 

on the victim network, impacting availability of the entire 
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network. By specifying a suitable IP mask in the signature, 

rather than a single target address, the effectiveness of the 

signature can be improved since a single signature can 

accumulate alerts generated for multiple target hosts. 

6. Conclusions and Future Work  

Our results to date have demonstrated a viable 

signature-based attack detection scheme that utilises 

commodity components. The signature structure which we 

propose is sufficiently flexible to detect a variety of 

complex attack scenarios. Through practical 

experimentation with the signature constraints, including 

mandatory/optional components with weighting, alert 

repeat factors and signature priorities it has been shown 

that this approach allows for the specification of accurate, 

yet fault-tolerant, signatures. The system we have 

developed was not intended for real-time analysis of alerts. 

Instead it has proven to be a useful test-bed for the 

development of complex attack signatures through 

experimentation with the various signature parameters in 

an off-line environment.  

The results are preliminary and more comprehensive 

testing is needed using a wide range of multi-step attacks, 

with alert information from both HIDS and NIDS, in order 

to establish performance with respect to error rates and to 

more firmly establish that the signature specification 

notation we have developed is sufficiently expressive. 

The signature notation we have developed promises to 

be useful for alert aggregation and reduction. In particular, 

the alert repeat factor acts as a tool for alert reduction (via 

aggregation). More experiments must be conducted to 

fully explore the benefits of this approach for reducing the 

overall number of alerts generated by the system.  

A multiple-fit signature-matching algorithm is currently 

being investigated. Multiple-fit needs to incorporate 

multiple simultaneous alert-matching threads in order to 

maintain concurrent matching in situations where alerts 

match multiple attack signatures. In this way an alert will 

potentially be matched to multiple signatures. In simplistic 

terms, this concurrent matching will then fire when the 

first contributing signature is completely matched, 

followed by rollback with respect to the other contributors, 

although this too presents issues with respect to relative 

priorities (severity) of the competing potentially matching 

signatures.   

Finally, further work is needed with respect to 

visualization to assist in analysing alerts and developing 

attack signatures. Additional features that have been 

identified for inclusion in the alert graphic tool to date are:  

graphing with and without the alerts 

attributable to signatures,  

graphing of the alerts only attributable to 

signatures, and  

the specific graphing of items such as pre-

defined clusters.  
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