Provided by Queensland University of Technology ePrints Archive

Metadata, citation and similar papers at core.ac.uk

The Real World Software Process

James M. Hogan

Glenn Smith Richard Thomas

Centre for Information Technology Innovation
Faculty of Information Technology
Queensland University of Technology
GPO Box 2434, Brisbane, QLD, 4001, AUSTRALIA
{j .hogan,gp.smith, r.thomasequt .edu.au}

Abstract

The industry-wide demand for rapid development in con-
cert with greater process maturity has seen many software
development firms adopt tightly structured iterative pro-
cesses. While a number of commercial vendors offer suit-
able process infrastructure and tool support, the cost of li-
censing, configuration and staff training may be prohibitive
for the Small and Medium size Enterprises (SMEs) which
dominate the Asia-Pacific software industry. This work ad-
dresses these problems through the introduction of the Real
World Software Process (RWSP), a freely available, web-
based iterative scheme designed specifically for small teams
and organisations. RWSP provides a detailed process de-
scription, high quality document templates — including code
review and inspection guidelines — and the integrated tu-
torial support necessary for successful usage by inexperi-
enced developers and teams. In particular, it is intended
that the process be readily usable by software houses which
at present do not follow a formal process, and that the free
RWSP process infrastructure should be a vehicle for im-
proving industry standards.

1 Introduction

Recent years have seen a pronounced shift in soft-
ware engineering practice away from linear waterfall pro-
cess models toward the iterative approaches pioneered by
Boehm [2] and others!. It is well-established that the use
of a defined, repeatable process is an important factor in
improving the likelihood of project success (see for exam-
ple the data provided by the International Software Bench-
marking Standards Group [6]) and this insight has formed

! Although it should of course be noted that even the waterfall process
in its original statement [10] allowed for continual iterative refinement of
the software system.

the basis of a number of software process improvement
frameworks — such as SEI’s Software Capability Maturity
Model [11]. However, it is not sufficient merely to define
such a process and to document it carefully in the firm’s
software process manual: productivity improvements de-
pend upon its actual deployment as part of software devel-
opment practice, and its refinement in the light of project
experience. However, the overheads inherent in obtain-
ing suitable process infrastructure and facilitating its us-
age within each team may be troublesome for the Small
and Medium size Enterprises (SMEs) which characterise
the software industry in the region.

The dominant iterative process architecture is supported
by a number of commercial vendors, notably through the
Unified Process framework of Rational [9], a firm which
also markets a successful suite of CASE tools integrated to
varying degrees with the process. However, such systems
introduce a number of barriers to their adoption by SMEs.
The initial purchase cost and recurrent licensing expendi-
ture - which may range from several thousand Australian
dollars for MicroSoft Word based document template sets,
through to tens of thousands of dollars for integrated CASE
environments - are readily seen as problematic. Yet, the
additional costs of configuring the process for the specific
needs of the company — and of training existing and newly
appointed staff in its usage — form a less obvious but equally
troublesome obstacle in the path of process maturity.

Non-commercial process frameworks such as OPEN?
provide freely available alternatives of high quality, and
appear the obvious solution for firms which cannot af-
ford the commercial products. However, their suitabil-
ity for the SME environment remains limited by their all-
encompassing generality, with the configuration and train-
ing costs again likely to prove insurmountable. It would
seem that a pre-requisite for rapid process improvement by
SMEs is the provision of a process configured specifically

2Object—oriented Process Environment and Notation [8].

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

https://core.ac.uk/display/10879746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

toward small teams, with supporting infrastructure and in-
tegrated tutorial support to allow ready adoption by inexpe-
rienced developers.

This work addresses these needs through the introduc-
tion of the Real World Software Process (RWSP), a freely
available, web-based iterative process designed specifically
for small teams and organisations. RWSP embodies the
principles of OPEN [8] and the Agile Methodologies move-
ment [1], but is deliberately less generic than these frame-
works, being tailored for the SME environment. At the core
of the process is the notion of the tight spiral [7], providing
frequent deliverables and the opportunity for regular client
feedback and the consequent refinement of specifications —
a characteristic shared with a number of processes which
fall under the Agile umbrella.

In addition to providing high quality document templates
- including code review and inspection guidelines - the pro-
cess documentation offers integrated tutorial support, guid-
ing the team through an initial startup phase, and subse-
quently through multiple process iterations during which
functionality is extended incrementally. It is our intention
that the process should be readily usable by software houses
which at present do not follow a formal process, and that
our targeted process infrastructure should be a vehicle for
improving industry standards.

This paper is organised as follows. In section 2, we ex-
amine the relationship between RWSP and the earlier work
of Jeffery, and its links to the Agile movement and OPEN
framework. Section 3 considers the process in detail, pro-
ceeding from an outline of the process architecture through
to detailed examination of the role of each cycle, and discus-
sion of the integrated tutorial support. In section 4 we report
on the experience of local software engineers who have tri-
aled the method during its development, and the feedback
from industry and academic experts who have reviewed the
material. We conclude in section 5 with a discussion of
refinements to the material which will be undertaken in the
coming months, with particular reference to the issue of tool
support.

2 Background

The Queensland University of Technology (QUT) has
for more than a decade provided undergraduate software en-
gineering students with substantial process support - partic-
ularly through the availability of professional quality docu-
ment templates (with usage guidelines) and example project
documentation. Over time, as students have moved into
the profession, these materials have formed the basis — and
in some cases the whole — of the software process infras-
tructure of a number of software houses in the region. In
2000, the authors received a substantial university-based
grant to enhance the Faculty of Information Technology’s

undergraduate Software Engineering programmes, with a
particular focus being to integrate industry experience and
best-practice within the curriculum. In the light of this his-
tory of involvement in the industry, and the recognition that
the needs of student teams in many respects mirror those of
inexperienced teams within SMEs, it was decided from the
outset that the resulting process infrastructure should be for-
mally released to the software development community un-
der a non-restrictive licensing arrangement along the lines
of the GNU General Public License [4].

In developing RWSP, the central objectives were to take
account of the pressures brought to bear upon modern soft-
ware houses, specifically the need to produce quality soft-
ware in a restricted time frame. In particular, we were
strongly influenced by the comments of a number of indus-
try technical leads who were willing to answer a number of
questions about the core aspects of their development pro-
cesses, and to offer frank insights into process deficiencies.
A recurring theme in these discussions was the difficulty
of managing requirements, and of maintaining the relation-
ship with the documented requirements through subsequent
phases of the project. A strong linkage of this kind was
viewed as essential in order to guard against the twin project
nemeses of scope creep and team complacency in the face
of slippage.

Similarly, the leads reported substantial difficulty in en-
suring that adequate unit and integration testing is per-
formed, and there was a strong preference for automation
of unit testing and for integration testing to be performed
by an independent team.

After some discussion and a number of refinements, it
was decided that the new process should be guided by the
following principles:

1. The process should be highly visible but have a mini-
mal cost impact on a project.

2. All artefacts produced must be demonstrably useful to
the software project, to the student assessment process
and to our goal of ongoing software process improve-
ment.

3. The process should support rapid prototyping and iter-
ative development.

4. The process should embody proven requirements man-
agement techniques.

5. The process should use Unified Modelling Language
(UML)-based problem and system specification.

6. The process should facilitate rapid translation into
industry standard OO languages (especially java &
C++).

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

7. The process should support and encourage indepen-
dent verification and validation.

8. The process should incorporate programmer level pro-
ductivity measures such as the Personal Software Pro-
cess (PSP) [5].

On the basis of these guidelines, and the target audience
of SMEs and students, only a demonstrably lightweight pro-
cess could be considered. Moreover, the industry focus
upon requirements management and client feedback — to-
gether with the known difficulty of large software projects
— encouraged a strong bias toward Agile iterative methods,
in which the time between releases is kept extremely short.
The ‘tight spiral’ software engineering course of Jeffery [7]
proved a particularly useful model. In this programme, ad-
vanced SE students undertake a major project through five
process iterations within a fifteen week semester, with a
working release required at the end of each phase. Jeffery’s
experience, in addition to demonstrating that such an ap-
proach could be successful with inexperienced developers,
strongly reinforced the view that short or tight iterations of-
fered the greatest likelihood of success.

While it remains difficult to assign credit for improve-
ments in productivity to particular aspects of a process,
there are strong arguments to suggest that the following as-
pects are significant:

e The ongoing focus upon functionality, with teams de-
voted to the implementation of a clearly measurable set
of a features, rather than the more nebulous concept of
a large system ‘chunk’;

e Regular benchmarking of the software system against
requirements and the release schedule, with the (hope-
fully) inevitable consequence of regular unit and inte-
gration testing;

e The ability to organise the requirements into a staged
release plan, so that the current software development
task remains cognitively manageable;

These considerations have led to the development of a
process that has clearly defined phases ranging from the
initial set-up of the project, through cyclical development
phases to project finalisation. The process architecture, and
the role of each phase, are explored in detail in the following
section.

3 Process Description

While the Real World Software Process is inherently it-
erative in nature, during development it was felt that the
approach would be made more accessible to the novice if
the configuration overhead of the repeated phases was kept

to a minimum, with more strongly programmed startup and
finalisation phases bracketing the generic cycle.

Thus, the RWSP consists of four distinct regimes, termed
here:

e Phase Zero, describing the process which takes place
prior to the commencement of the formal software
project;

e Phase One, incorporating requirements gathering, re-
lease planning and the initial functionality;

e Phase N, the generic, repeatable cycle in which the
functionality of the system is incrementally extended
and the requirements reviewed; and

e Finalisation, addressing issues of delivery and instal-
lation.

These regimes are considered in detail in the subsequent
sections, with the bulk of the text drawn from the explana-
tory material integrated with the process. The process may
be viewed in situ at

http://www.fit.qut.edu.au/ " rwsp

3.1 Startup - Phase Zero

The development process starts with business planning
and the role of the new software system within the organi-
sation’s strategic plan. A request from one part of the busi-
ness may initiate the process by establishing the mission and
the objectives of the work. These should be underscored
by a list of priorities and associated measures to monitor
progress and evaluate success. The outcome of this pro-
cess is a short and succinct project proposal document. It
should contain a statement of the broad project mission, to-
gether with an initial estimate of costs and a list of other
constraints. The proposal should contain:

e A problem definition in terms of business processes
and commercial impact;

e The names of the project sponsor, domain experts and
key users;

e The broad scope of the project, a cost-benefit justifica-
tion and the project completion criteria;

e Optionally, cost-benefit, feasibility, risk and critical
success factor appendices. These will be produced as
required in order to obtain the sponsor’s signature;

e Optionally, a throwaway prototype to demonstrate the
concept.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

In particular, the Problem Statement should outline the
main objectives of the project, as well as providing some
high-level abstract functional requirements - thus forming
the basis for the formal Requirements Specification during
discussions with the client.

3.2 Commencement - Phase One

Phase One commences the software development aspect
of the project and focuses on discovering initial require-
ments. A development team must be established, and fa-
miliarised with the RWSP. In collaboration with the client,
requirements are gathered and written into a Requirements
Specification document, after which Release Planning is un-
dertaken to set milestones and determine the likely number
of iterations required.

The requirements and design sections of this phase are
lengthy and detailed, and the implementation phase may be
smaller than in future phases. The idea is to create rapidly
a core system that meets the central requirements of the
client, so that further requirements can be gathered. The
core system is evaluated in consultation with the client, and
the results of this evaluation are fed into the requirements
for the next phase.

The process support pages give detailed discussion of
these issues and links to templates and additional resources.
Excerpts from this material are included below.

Phase One

After project approval coming out of Phase Zero, the
software development side of the project needs to be ini-
tiated. The end product of Phase One is the minimalist sys-
tem or prototype.

Organise a team of developers

In any software project, it is important to choose a ded-
icated team. Ideally, the team will have fewer than eight
members. Ensure that the entire team is familiar with the
RWSP, and is committed to following the process through-
out the course of the project. [For a very small project,
an individual developer may be sufficient, but use of the
process will require that the developer assume a number of
roles.]

[Links: Team Size; Choosing Suitable People; Team
Goals; Team Roles; Team Problems; Managing Team
Membership; Templates: NEAT sheets — a format to or-
ganise a meeting agenda]

Organise document templates

Included with the process are several document tem-
plates which can be used to help document and manage all
steps of the process. It is important that before you begin
the project, you have obtained copies of each template and
understand how each one is to be used. Some documents are
better used in printed form, others are easier to use on-line.

The resources that the team creates are some of the most
valuable resources in a project. The documents that are pro-
duced after hours of work need to be carefully managed and
stored.

[Links: RWSP Documents; Keeping Track of Docu-
ments; Guidelines for Document Management]

Requirements Modelling

Expanding on the initial Problem Statement, you should
outline the main objectives of the project, as well as provid-
ing some high-level functional requirements. In discussions
with the client, these requirements will evolve into a formal
Requirements Definition. You should involve the client in
the development of the acceptance test plan. Minimally, the
client should agree with a plan that you write; at best they
should write it in collaboration with the team.

[Links: Problem Statements; Templates: Acceptance
Test Plan]

Requirements Engineering

Determine and record the functional and non-functional
requirements for the system. Requirements Analysis in-
volves interviewing clients and end users and observing the
work environment in an attempt to discover exactly what is
required of the project. The Requirements Definition is the
record of what the client wants. This step and the previous
step may need to be iterated until satisfactory and realistic
outcomes are likely.

[Links: Requirements Engineering; Requirements
Analysis; Requirements Specification; Requirements Doc-
ument; The Degree of Detail; UML; Use Cases; Creating
a Use Case Diagram; Templates: Requirements Specifica-
tion; Use Case Template]

Undertake Release Planning

Once there is some indication of the project objectives,
the team needs to plan how it will spend its time. Some
things to consider are the number of iterations to be com-
pleted, dates of milestones, and resource requirements.

When deciding on the number of iterations, it is impor-
tant to balance the size of the project with the available time

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

and financial resources. A large or complicated project will
require more iterations.

Time and cost estimation is very important. Roughly de-
termine the tasks that need to be completed in order to ful-
fill the client’s requirements. Based on the time taken pre-
viously on similar tasks, estimate how long each task will
take, then develop an estimated timetable to come to a com-
pletion date.

Compare the completion date with the client’s desired
deadline. If the client’s deadline is earlier than the estimated
completion date, some changes will have to be made. This
may mean adding staff or resources. However, adding too
many extra people will not solve the problem, as the com-
munication overhead will take up any time that would be
saved by adding additional personnel. If possible, negotiate
with the client to set a realistic deadline. This step and the
next may need to be iterated until satisfactory and realistic
outcomes are likely.

[Links: Why do Release Planning?; Writing a Release
Plan; Managing Teams; Changing the Plan]

High-level Design

It is strongly recommended that all team members be in-
volved in the high-level design. Experience has shown that
if everyone is involved, then team members will be more
committed to the design and thus more likely to adhere to
it during detailed design and implementation — thus assist-
ing in the system integration step. This is called a “flow
on effect”. It has also been shown that team members will
receive more personal satisfaction in all milestones and out-
comes.

Design should not be rushed, as mistakes made in the
initial design will usually prove costly to fix once imple-
mented. A good design is any design which produces effi-
cient, maintainable code. For code to be maintained easily,
it must be possible to add or remove functionality as re-
quired.

The outcomes of this phase would be a high-level dia-
gram (usually a class diagram) and an overview of control
and data flow (eg UML interaction diagrams and specifica-
tions of public interfaces).

Once the high-level design is completed, the documents
are reviewed and particular subsections are allocated to in-
dividual team members or small groups of team members
for detailed design.

[Links: CRC Cards; Principles of Good Design; Cohe-
sion; Coupling; Inheritance; Reviews; Templates: Design
Specification; Integration Plan]

Detailed Design, Implementation & Unit Testing

The first step of this section involves individuals or small
groups working on the Detailed Design of their modules.
When the detailed design is nearly completed, the associ-
ated unit tests should be produced.

The next step involves the transformation of the detailed
design into code and subsequent review of this code for
quality and defects.

The final step of this section involves unit testing of the
modules written by the developer or small group of devel-
opers. The three steps — detailed design, coding and unit
testing — are usually cyclical, as the identification of defects
during code review or unit testing necessarily results in a
revised implementation and may result in a revision to the
detailed design.

Once developers have completed their individual units
(including unit testing), they should swap code samples and
perform a peer review to ensure code quality and consis-
tency within the team.

Upon successful completion of unit tests, developers
should integrate their unit code into the main system in se-
quence, returning to their code to fix any bugs which have
emerged from the integration process. [Scheduling of up-
dates to the code base is a critical issue — see the link to
Configuration Management below.] As before, this process
may require iteration as far back as the detailed design, and
it is imperative that unit tests be repeated successfully prior
to re-integration. [Guidance on System Integration is given
below.]

[Links: Purpose of Testing; Good Testing Practices; Re-
views; Configuration Management; Frequent Build; Tem-
plates: A List of Checkpoints for Source Code; Guidelines
for Code Review]

System Integration

Apply the integration plan looking for defects in the in-
tegrated system. Those who perform these tests need not
be responsible for fixing the faults which emerge. When
defects are found, they must be categorised, assigned an ap-
propriate priority and traced back to their source.

In some environments the use of Independent Verifica-
tion and Validation (IV&V) teams can be helpful. These
are people not involved in the programming of the system,
whose job is to test the current system and report back on
any errors found.

[Links: Testing; Templates: Integration Plan]

Acceptance Testing

Apply the Acceptance Test Plan. If any errors are dis-
covered, go through the steps of fixing and changing until

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

both development team and client are satisfied. Acceptance
testing may be performed by the developers, an Independent
Verification and Validation (IV&V) team or in conjunction
with the client.

Acceptance testing is normally performed in the follow-
ing order:

e Acceptance testing by the development team (in order
to ensure that acceptance is likely);

o Alpha testing performed by the client;
o Beta testing following installation at the client site;

although Alpha and Beta testing may not take place for ev-
ery release in the schedule.
[Templates: Acceptance Test Plan]

Phase Evaluation

Evaluation should involve an assessment of the product
produced, and an analysis of the effectiveness of the process
used to create the current system. The aim of evaluation
is two-fold: to recognise those strategies and techniques
which proved effective during the course of the project so
that their use may be reinforced or expanded; and to identify
areas in the process and product that need to be improved in
the next phase.

[Links: Purpose of Evaluation; One method: PNI; Other
Methods; Templates: Phase Evaluation Template; PNI
template]

3.3 Cycle - Phase N

In RWSP, Phase N is the lightweight generic process it-
eration which may be repeated as many times as required
by the scope of the project. Phase N is centred around the
refinement of requirements and release planning on the ba-
sis of testing and client evaluation from the previous phase.
Over time, the functionality of the system is incrementally
enhanced until all project requirements have been imple-
mented. As before, excerpts from the process support ma-
terial are provided below, although a number of links and
resources have been excised due to their similarity to those
listed earlier.

Phase N

Phase N is a label applied to each of the possibly numer-
ous iterations following Phase One and prior to final deliv-
ery. The aim of these cycles is to extend the work that was
done previously, implementing more features in each suc-
cessive phase, until the project is complete.

Requirements Engineering

At this stage, the updated requirements document should
be based on the combined feedback from the client and
team’s comments from the previous evaluation. At a min-
imum, the team should consult with the client at the start
of each phase on the features that are to be included in the
product. Any new features or changes to existing features
need to be added to the Requirements Specification, and in-
corporated into release planning.

Release Planning

The team will need to decide which of the requirements
can be realistically implemented in this phase, and which
ones need to be left for future phases. Estimate how long
it will take to complete each task for each feature, and how
many people are required for each one. Put the tasks in the
order in which they must be completed, and set milestones
that will be realistic for the number of people available, and
the difficulty of the project.

Check the Release Plan to ensure that the project is on
schedule and budget. If the project is behind schedule or
over budget, negotiate with the client regarding possible
changes to the requirements or release plan. This may affect
both the Release Plan and the Requirements Specification.

High-level Design

In the design phase, the team should first look at the
existing design, and make any necessary changes. These
changes may be to fix design flaws found during system
testing of the previous iteration or may be to adapt the de-
sign so that it can accommodate planned extensions in this
iteration.

Subsequently, new features can be designed in light of
the existing system. Any existing design documentation
needs to be up-dated to reflect the changes and additions
made in this iteration. Principles of good design are to be
maintained, with design reviews used to help ensure this.

Detailed Design, Implementation & Unit Testing

The aims and tasks of this activity are the same as in
Phase One. In Phase N, this activity is applied to both
adding new requirements scheduled for this iteration and to
the modification of the existing system resulting from fault
reports. With refactoring and code reviews being conducted
to help ensure the quality of the system is maintained or
improved in each iteration.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

System Integration

As more features are added, defects may be introduced to
the previously-tested system. This is where system testing
comes into its own, as it is sometimes difficult to predict the
effects of added components on what was a quality system.
Therefore, it is not sufficient to only test the new part of the
system. One useful strategy at this point is to focus on new
tests which exercise the new components and their interaces
to the main program, while repeating the existing tests that
remain appropriate to the system.

Acceptance Testing

The tasks performed in this activity are the same as in
Phase One. The only addition for this iteration is that both
the previously implemented requirements and the new re-
quirements for this iteration are tested for acceptance by the
client.

Phase Evaluation

Evaluation forms the basis of future iterations. The com-
ments from the client and team members directly influence
changes made to the requirements and the development pro-
cess, and therefore the entire program. Even in the final it-
eration, an evaluation confirms that all requirements have
been met, and the client is happy with the finished product.

3.4 Finalisation

The Finalisation phase is used to separate out issues of
installation and handover from the generic cycle in order
that the latter retain its identity as a lightweight, repeatable
iteration. The brief guidance provided in the process sup-
port material is reproduced below.

Finalisation

When the project is nearing completion, the team must
finalise arrangements for the installation of the system at the
client site, and for the scheduled turn on and turn off dates.

Turn On/Turn Off Dates

As the client’s staff will probably be working with exist-
ing software, you will need to discuss with the client when
to install the new software so that there will be no clashes
between the existing software and the new system. Nego-
tiations must result in firm dates for the changeover, and a
detailed record of any special arrangements which are the
responsibility of the project team.

Installation

Once the client is satisfied that the system passes the
agreed acceptance tests, installation of the system can be-
gin. Install the system at the client’s place of work and
repeat the suite of acceptance tests. If training is needed,
arrange it. Some discussions with the client about system
maintenance — and the scope and cost of ongoing techni-
cal support — are needed, and such arrangements must be
clearly defined prior to the end of the installation process.

Project Evaluation

At this stage the project and process is evaluated in an
attempt to limit problems in future projects.

3.5 Integrated Tutorial Support

As will have been clear from the treatment of Phase One
in section 3.2, the RWSP material provides substantial sup-
port for the novice user through links to explanatory mate-
rial, specialised guides and process templates. These doc-
uments range in sophistication from single sentence defini-
tions to extended guidance for particularly troublesome pro-
cess activities, in which a number of alternative strategies
may be explored. In particular, a menu of detailed practical
suggestions is given for requirements gathering and analy-
sis, as exemplified by the following excerpt:

The Requirements Specifications are the semi-
formal documents that provide details of all re-
quirements for the system. Techniques you may
apply during requirements gathering include:

1. Think about the problem statement and
brainstorm some ideas on what you think
the client is going to require. List these
ideas down.

2. Write a list of questions to ask the client.
For example, "What are you using at the
moment?”’, "Why is this no longer suit-
able?”

3. Meet with the client, and ask him/her to
explain exactly what he/she wants. Listen
carefully and take notes. Try to summarise
back to the client what he/she requires to
make sure that you understand. Take a tour
of the environment in which the system will
be used — maybe it has to be capable of op-
erating underwater, or in a dark room — the
client might be left with a totally unsuitable
product if it does not fit within the working
environment.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

4. Arrange another time to meet again to dis-
cuss the requirements.

5. Research other
projects.

similar development

Where possible, glossary entries and explanatory text are
kept at an elementary level, the intention being to make de-
velopers aware of the relationship between industry termi-
nology and concepts with which they may already be fa-
miliar, and to provide options which require little additional
research or training. However, some activities such as test-
ing and code review may require significant learning, and
so the documentation is focused upon the provision of more
structured, sequential material to enable the team to become
productive in a limited time frame.

Nevertheless, while the process documents are compre-
hensive, they are not intended as a substitute for a for-
mal course in software engineering, although some hyper-
links between lecture material and the process web site are
planned. Ideally, the team members will have had a good
grounding in SE process material from their university ed-
ucation, and the process and its web site may then play the
role of a coach, ensuring that their development practice re-
mains in accordance with the best technical practice. The
usefulness of RWSP in an industry context is among the is-
sues considered in the next section.

4 Industry Review

The authors have been fortunate throughout the develop-
ment of the process and its associated infrastructure to have
received valuable feedback from academic and industry-
based colleagues alike. As noted earlier, a number of ex-
perienced and talented technical leads helped enormously
in shaping the process in its early stages. Subsequently,
we have benefited from both their comments and those of
a number of academic colleagues, who have examined and
reviewed the material at various stages of maturity. More
importantly, we have been influenced by a number of trial
runs of the material in practice, with the process forming
the basis for both introductory and advanced software engi-
neering courses within the Faculty.

However, the ultimate test of any new process must lie
in its application to a live commercial project, and the ex-
periences of four development groups from the Queensland
industry are reported in this section. The groups span four
different industry sectors — finance, government, telecom-
munications and security — and all are small teams, ranging
in size from two to five developers. The process maturity
level prior to the adoption of RWSP was low, with none
of the teams following a formal process prior to its adop-
tion. Process maturity and software engineering experience
of the teams may be summarised as follows:

e Three of the teams include at least some team mem-
bers who had exposure to a formal software engineer-
ing process in a university project;

e One team is made up of developers with no formal
training and no exposure to processes, aside from read-
ing a small number of articles on the issue;

e In three of the teams all team members had some
industry experience, ranging from two years to over
twenty years in one case; and

e One team of two had one member with two years ex-
perience and the other with no experience.

The experiences of these teams are considered in turn be-
low.

Team One

The first team to trial RWSP completed an intranet
project that required thirty-two person months of effort.
They followed the structure of the process and used initial
versions of some of the templates, but did not have access
to the process web-site. Feedback from this team has led to
modification of some of the templates and revision of some
aspects of each phase. Moreover, it has reinforced the view
that the process web site will be beneficial: as developers
follow paths other than those specified in the process, a sim-
ple and highly-visible process reference point should prove
very useful in turning their focus back toward the agreed
methodology.

Changes that were made to the process as a result of this
team’s experience include:

e Use case and requirements specification templates
were modified to streamline their usage;

e Measuring and monitoring project progress was more
strongly emphasised in Phase Zero;

e Requirements management and traceability was more
strongly emphasised in Phase One and Phase N;

e The testing process was completely rewritten for both
Phase One and Phase N.

Due to an organisational restructure, this development
group no longer exists, and the majority of the development
work within this firm is now outsourced, thus limiting the
opportunities for further evaluation of RWSP at this site.

The other three teams are currently at different stages of
their first project using RWSP, with various difficulties in-
troduced by the culture of the organisation. In each case, the
experience of previous processes is limited, and so the re-
portis focused upon the usability and contribution to project
success provided by the process.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

Team Two

The team with no process exposure has completed
phases Zero and One, and one three iterations of Phase N.
They are a successful software development house servic-
ing the security vertical market. This project is their first
contract to develop a bespoke system for a client. Due to
their lack of experience they have sought advice on how to
run the project. (The client appears to have well-defined for-
mal processes and this company wishes to appear in a good
professional light to their client through the use of a defined
process.) At the start of their project they also did not have
access to the process web-site. They are using the process
infrastructure and are finding it very useful. Once this team
was able to access the process web-site they thought it was
a useful tool and said ’they wished they had access to it at
the start of the project”. Experience with this team has only
led to very small changes in wording to parts of the RWSP
description. The limited process experience of the team,
and their desire to adopt a process, has meant they have not
provided a detailed critique.

Team Three

The third group is a single team within a large company.
This company follows no formal software development pro-
cesses, and has had only limited success with large software
projects in the past. At the time of writing, a number of
different teams are trialing different processes, with the in-
tention of bringing their development under control. The
team trialing RWSP is championed by a business analyst
and has three full-time software developers on the project.
They are developing a product for an internal client using
client-server technology.

Phase Zero was completed by the business analyst on
her own and the team has completed Phase One and a sin-
gle iteration of Phase N. This team has had access to the
process web-site from the start of their project. They are
using some of the process infrastructure and some of their
own document templates. This team is finding the process
fairly easy to follow and has not raised any issues to date.

Team Four

The final group is a small team within a medium-sized
organisation. This organisation has a formal process that is
meant to be used for projects but which is usually ignored.
Many of the projects undertaken by this organisation are
high-risk in nature, with the potential for large losses with
some types of software failure. The information technology
manager has committed resources to adopt a software en-
gineering process which interfaces well with management,

but will also be used by developers. A formal, but light-
weight, process like RWSP is thus an ideal candidate.

This project has only recently commenced and the team
had completed Phase Zero and started Phase One when a
new project manager took responsibility for the team. They
are now revisiting Phase Zero with a view to a change in
emphasis for the project, and thus no useful feedback has
been provided from this team so far. However, the team
have made a commitment to provide comments and feed-
back throughout their usage of the process.

These reports are considered further as part of the dis-
cussion in the following section.

5 Discussion and Further Development

On the evidence of early trials in both a university and
an industry setting, the Real World Software Process in-
troduced in this paper has proven to be a useful addition
to the process infrastructure available to the SE commu-
nity. Significantly, a large majority of the users to date
have found the process easy to follow, and their sugges-
tions have done much to clarify the guidelines and tutorial
support. Most of the process design principles listed in sec-
tion 2 have been incorporated successfully, notably those
concerned with visibility, usefulness of artefacts and limita-
tions on their number, and rapid and iterative development.
The use of the ‘tight spiral’ approach has the added benefit
of supporting effective requirements management, an effort
supplemented by the extensive tutorial material on interac-
tion with the client.

Yet there remain a number of weaknesses in the process
as it stands, principally the limited attention to configuration
management, and the lack of an appropriate source control
system. These issues will be addressed during the second
half of 2002 through the introduction of the open source
Web CVS system, and the development of usage and in-
stallation guides accessible to the target audience and their
integration with the process web site?

While the process is designed around object oriented de-
velopment, and provides a significant amount of tutorial
support for UML — at least at the level of class diagrams,
use cases and interaction diagrams — this is another area in
which integrated tool support is desirable. Many students
within our programmes use Rational’s Rose system under
academic licensing arrangements, but this arrangement can-
not of course be extended to the wider developer commu-
nity, and we are presently investigating a number of open
source alternatives.

Two additional objectives were considered early in the
development of the process, but deferred until subsequent
releases:

3This work will be supported by a Faculty Teaching and Learning
Grant. Material on CVS is available at www . cvshome . org.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

e It should be designed so that the student’s implemen-
tation of the process can be easily assessed within a
process improvement framework, such as CMM.

e The process should support the development of
component-based architectures and the integration of
components into a system. It should encourage com-
ponent re-use;

The first of these requires a greater focus upon the col-
lection of data — notably defect densities and effort records
— at both the team and the personal level. Both defect counts
and personal productivity are at present addressed through
the use of log sheets, but the estimation machinery of the
PSP (and its cousin the TSP) is not currently employed, and
its usage again may be dependent upon the identification of
appropriate tool support. Nevertheless, estimation is a crit-
ical issue in the commercial environment, and a perceptible
weakness of a number of Agile approaches, so the issue is
one which must receive attention in subsequent revisions.

Support for component based architectures is to some
extent merely an extension of that for object oriented devel-
opment, but this is to understate the importance of architec-
tural design in the development of large systems. In com-
mon with a number of Agile approaches, RWSP offers only
limited support in this area, and it remains an area in which
the process needs to be refined. The introduction later this
year of the Java Metrics Reporter (JMR) [3] is one positive
step in this direction, with the tool offering analysis of the
software system at a number of levels of description. Once
tool support for UML is integrated with the process, it is
intended to exploit the work undertaken as part of the JMR
project to provide analysis of designs from the system class
diagram. While this approach does not address the issue
of design in terms of existing components, it is neverthe-
less likely to result in a higher level of re-use, and superior
system design.

However, regardless of the additional convenience pro-
vided by good software tools, successful development of
the process and its supporting material will depend upon
the extent to which it is disseminated and used within the
industry, and on the refinements which emerge as a result
of the feedback provided. This paper is an important step in
facilitating its adoption.

Acknowledgements

The authors would like to acknowledge the numerous industry
developers, academic staff and students who have provided feed-
back during the development of the process. Particular thanks are
due to Michael Forbes (Opcom Pty. Ltd.) and Andrew Reye (As-
tracon Pty. Ltd.); Chris Ho-Stuart (QUT); David Carrington and
Anthony MacDonald (UQ); and Jim Over (SEI). This work was
supported by a QUT Teaching and Learning (Large Project) Grant.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSEC’02)
0-7695-1850-8/02 $17.00 © 2002 IEEE

The Agile Alliance, The agile development manifesto,
http://www.agilealliance.org/, 2001. Accessed: 30/06/2002.

B. Boehm, A spiral model of software development and en-
hancement, /[EEE Computer, 21(5):61-72, May 1988.

J. Cahill, J. Hogan, and R. Thomas, The java metrics reporter
— an extensible tool for OO software analysis, Asia-Pacific
Software Engineering Conference, 2002.

Free Software Foundation, Inc., GNU general public
license, http://www.gnu.org/copyleft/gpl.html, 1991. Ac-
cessed: 30/06/2002.

W. Humphrey, A Discipline for Software Engineering. Addi-
son Wesley, Boston, MA, 1995.

International Software Benchmarking Standards Group, The
benchmark, v.7, http://www.isbsg.org.au/, 2001. Accessed:
30/06/2002.

C. Jeffery, Tight spiral project for communicating software
engineering concepts, Proceedings of the Third Australasian
Conference on Computer Science Education, pages 136-144,
1998.

The OPEN Consortium, Object-oriented Process Environ-
ment and Notation, http://www.open.org.au/, 2002. Ac-
cessed: 30/06/2002.

Rational Corporation, The
http://www.rational.com/products/rup/,
30/06/2002.

rational unified process,
2002. Accessed:

W. Royce, Managing the development of large software sys-
tems: concepts and techniques, Proceedings of IEEE WEST-
CON, 1970.

The CMMI Product Team, CMMISM for systems engi-
neering/software engineering/integrated product and pro-
cess development/supplier sourcing, version 1.1, continu-
ous representation (CMMI-SE/SW/IPPD/SS, V1.1, Contin-
uous), Technical Report CMU/SEI-2002-TR-011, 2002.

YF]',F.

COMPUTER
SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

