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The LILI-II Keystream Generator

Abstract. The LILI-IT keystream generator is a LFSR based synchronous
stream cipher with a 128 bit key. LILI-IT is a specific cipher from the
LILI family of keystream generators, and was designed with larger in-
ternal components than previous ciphers in this class. The design offers
large period and linear complexity, is immune to currently known styles
of attack, and is simple to implement in hardware or software. The cipher
achieves a security level of 128 bits.

1 Introduction

Many keystream generator designs are based on shift registers, both for the
simplicity and speed of Linear Feedback Shift Register (LFSR) implementation
in hardware and for the long period and good statistical properties LFSR se-
quences possess. To make use of the good keystream properties while avoiding
the inherent linear predictability of LFSR sequences, many constructions intro-
duce nonlinearity, by applying a nonlinear function to the outputs of regularly
clocked LFSRs or by irregular clocking of the LFSRs [21].

However, keystream generators using regularly clocked LFSRs are suscep-
tible to correlation attacks, including fast correlation attacks, a concept first
introduced in [19]. As a means of achieving immunity to these correlation at-
tacks, keystream generators consisting of irregularly clocked LFSRs were pro-
posed. These keystream generators are also susceptible to certain correlation
attacks, such as the generalised correlation attack proposed in [11]. As corre-
lation attacks have been successful against keystream generators based on the
single design principles of either a nonlinear function of regularly clocked LFSR
sequences [24,22] or on irregular clocking of LFSRs [11,25], both of these ap-
proaches are combined for the LILI keystream generators, a family of keystream
generators first introduced in [27].

LILI-IT is a specific cipher from the LILI family of keystream generators. The
development of LILI-IT was motivated by the response to the LILI-128 keystream
generator, included as a stream cipher candidate for NESSIE [8]. Although the
design for the LILI keystream generators is conceptually simple, it produces
output sequences with provable properties with respect to basic cryptographic
security requirements. Hypothesised attacks on LILI-128, and the request for
a re-keying proposal prompted a review of the LILI-128 parameters to ensure
provable security properties could be maintained while achieving an effective key
size of 128 bits. LILI-II is less efficient in software than LILI-128 mainly due to
the larger LFSRs and larger Boolean function which are used in the design to
increase security. However, in hardware LILI-II offers the same high speed as
LILI-128.

We now briefly summarise the security claims for LILI-II. Firstly, the period
at around 2'28 . 2127 = 2255 greatly exceeds 2'28, and exceeds the length of
any practical plaintext, rendering any attacks based on the period infeasible.



Secondly, the linear complexity is conjectured to be at least 217°, so that at least

2176 consecutive bits of known plaintext are required for the Berlekamp-Massey
attack. This is an infeasible amount of text to collect. Thirdly, the 127 4+ 128 =
255 bit state size renders any of the general time-memory-data tradeoff attacks
infeasible. Additionally, we conjecture that the complexity of divide and conquer
attacks on LILI-II exceeds 2!2® operations, and requires a substantial amount
of known keystream bits. Taken together, these results indicate that LILI-IT is a
secure synchronous stream cipher, in that there are no currently known attacks
on the cipher which are more feasible than exhaustive key search.

2 Description of LILI-IT Keystream Generator

The LILI-IT keystream generator is a simple and fast keystream generator us-
ing two binary LFSRs and two functions to generate a pseudorandom binary
keystream sequence. The structure of the LILI keystream generators is illus-
trated in Figure 1. The components of the keystream generator can be grouped
into two subsystems based on the functions they perform: clock control and data
generation. The LFSR for the clock-control subsystem is regularly clocked. The
output of this subsystem is an integer sequence which controls the clocking of
the LFSR within the data-generation subsystem. If regularly clocked, the data-
generation subsystem is a simple nonlinearly filtered LFSR [21] (nonlinear filter
generator).

The state of LILI-II is defined to be the contents of the two LFSRs. The
functions f. and fy; are evaluated on the current state data, and the feedback
bits are calculated. Then the LFSRs are clocked and the keystream bit is output.
At initialisation the 128 bit key and a publicly known 128 bit initialisation vector
are combined to form the initial values of the two shift registers. For efficiency,this
initialisation process uses the LILI-II structure itself, and can also be used for
re-keying. All valid keys produce different keystreams and there are no known
weak keys.

The LILI keystream generators may be viewed as clock-controlled nonlinear
filter generators. Such a system, with the clock control provided by a stop-and-
go generator, was examined in [9]. However, the use of stop-and-go clocking
produces repetition of the nonlinear filter generator output in the keystream,
which may permit attacks. This system is an improvement on that proposal,
as stop-and-go clocking is avoided. For LILI keystream generators, LF'SR; is
clocked at least once and at most d times between the production of consecutive
keystream bits. For LILI-II, d = 4, so LFSRy is clocked at most four times
between the production of consecutive keystream bits.

2.1 Clock Control Subsystem

The clock-control subsystem of LILI-II uses a pseudorandom binary sequence
produced by a regularly clocked LFSR, LF SR, of length 128 and a function, f.,
operating on the contents of m = 2 stages of LF'S R, to produce a pseudorandom
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Fig. 1. Overview of LILI keystream generators.

integer sequence, ¢ = {¢(t)}$2,. The feedback polynomial of LFSR, is chosen
to be the primitive polynomial
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and the initial state of LF'S R, can be any state except the all zero state. It follows
that LFSR,. produces a maximum-length sequence of period P, = 2!2% — 1.

At time instant ¢, the contents of stages 0 and 126 of LF'SR, are input to the

function f. and the output of f. is an integer c¢(¢), such that c(t) € {1,2,3,4}.
The function f. is given by

fe(xo, 126) = 2(x0) + T126 + 1.

This function was chosen to be a bijective mapping so that the distribution of
integers ¢(t) is close to uniform. Thus ¢ = {¢(t) };2, is a periodic integer sequence
with period equal to P, = 2128 — 1.

2.2 Data Generation Subsystem

The data-generation subsystem of LILI-II uses the integer sequence ¢ produced
by the clock-control subsystem to control the clocking of a binary LFSR, LF SR,
of length L; = 127. The contents of a fixed set of n = 12 stages of LFFSR,; are
input to a specially constructed Boolean function, f;. The truth table for this
function is given in the Appendix. The binary output of f; is the keystream bit



z(t). After z(t) is produced, the two LFSRs are clocked and the process repeated
to form the keystream z = {z(¢)}:2,.
The feedback polynomial of LF'S R, is chosen to be the primitive polynomial
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and the initial state of LF' SRy is not permitted to be the all zero state. Then
LFSR, produces a maximum-length sequence of period P; = 2'27 — 1, which is
a Mersenne Prime.

The 12 inputs to fy are taken from the following LF SR, positions (20, 7, 30,
44,8, 3,122, 1, 0, 12, 65, 96) which form a full positive difference set (see [14]).
The arrangement of these bits as input to the Boolean function has been se-
lected as optimal for the efficiency of our software implementation. The function
selected for fy; is balanced, highly nonlinear and has first order correlation im-
munity relative to the positions of 12 stages used as inputs to fgz. The function
fa has nonlinearity of 1992, and an algebraic order of 10. The truth table of the
Boolean function fy is given in Hex in the Appendix. A function with these prop-
erties was selected in order to provide greater security against possible attacks
(see Section 4).

2.3 Key loading and re-keying

In some communication systems, errors occur which require that the entire mes-
sage be re-sent. When a synchronous stream cipher such as LILI-II is used, then
security requires that a different keystream sequence be used. To achieve this,
a re-keying algorithm is used to combine the secret key, k, with v;, the 128-bit
initialisation vector for the i*" re-keying. If the initialisation vector has length
less than 128 bits, then multiple copies of the vector will be concatenated, re-
peated and truncated as required, to form a 128-bit vector. Typically the v;
sequence is publicly known, thus introducing security concerns. The existence
of re-keyed messages allows the possibility for attacks based on the re-keying.
These scenarios have subtle differences as described below.

If only a single segment of keystream is known, (no re-keying occurs) then
to break a particular instance of the cipher, the cryptanalyst must recover the
initial internal state Sp, using knowledge of the structure of the keystream gen-
erator and some amount of the keystream, z. Attacks based on this scenario are
discussed in Section 4. No attack which is better than exhaustive key search has
been identified.

In contrast, with resynchronisation occurring, the cryptanalyst has access to
related keystreams produced under the same k and for different but known v;,
typically sequential or differing in only a few bits. The cryptanalyst’s task is



then to recover k, given a set of (v;, z;) pairs. For security in this scenario, it is
required that the re-keying process should does not leak information about the
key k.

We now describe the proposed method for initial key loading and for re-
keying of the LILI-II keystream generator. The process to generate the initial
state for the keystream generator uses the generator itself twice. The starting
state of LF'SR,. is obtained by XORing the two 128-bit binary strings k and v;.
The starting state of LF'S R is obtained by deleting the first bit of £ and the last
bit of v;, and XORing the two resulting 127-bit binary strings. Now the cipher
is run to produce an output string of length 255 bits. For the second application
of the cipher, the first 128 bits of this output string are used to form the initial
state of LFSR,., and the remaining 127 bits are used to form the initial state of
LFSR,. The cipher is run again to produce an output string of length 255 bits.
The output from this second application is used to form the initial state of the
keystream generator when we begin keystream production. As previously, the
first 128 bits form the initial state of LE'SR,, and the remaining 127 bits form
the initial state of LE'SR,.

By employing the LILI-IT algorithm itself, we take advantage of both the
known security properties of the algorithm and also its fast implementation.
Due to the high security of LILI-II we conclude that the best attack in the
re-keying scenario is exhaustive key search.

3 Keystream Properties

Several properties of pseudorandom binary sequences are considered basic se-
curity requirements: a sequence that does not possess these properties is gener-
ally considered unsuitable for cryptographic applications. Basic requirements for
pseudorandom binary sequences are a long period, high linear complexity and
good statistics regarding the distribution of zeroes and ones in the output. High
linear complexity avoids an attack using the Berlekamp-Massey [18] algorithm.
Using the results from [27] it can be shown that for the keystream of LILI-II:
- the period is (2'28 — 1) % (2127 — 1)
- the linear complexity is at least 217

. . 126
- the ratio of ones to zeroes is Q%T_l ~1

4 Possible Attacks

A number of attacks should be considered with respect to the LILI-IIT keystream
generator. These are known-plaintext attacks conducted under the standard as-
sumption that the cryptanalyst knows the complete structure of the generator,
and the secret key is only the initial states of the component shift registers. The
attacks we consider here are only in the no-rekeying scenario. In the re-keying
scenario, there may be some related key attack like that suggested in [3], how-
ever the high security of the re-keying algorithm we have proposed prevents any
rekeying attack from being effective.



Firstly, a general cryptanalytic attack on stream ciphers known as a T/M/D
(time/memory/data) tradeoff attack is discussed in relation to LILI-II. Alterna-
tively, for keystream generators based on more than one LFSR where the key
consists of the initial states of the LFSRs, such as the LILI-IT generator, divide-
and-conquer attacks targeting individual LFSRs should be considered. For these
attacks, the given keystream is viewed as an irregularly decimated version of a
nonlinearly filtered LF'S R, sequence, with the decimation under the control of
LFSR.. For divide and conquer attacks, we deal firstly with attacks that tar-
get LF'SR4, and then with those attacks that target LFSR.. We shall describe
these attacks in relation to the general LILI keystream generator as described
in [27], and point out why such attacks are not feasible for LILI-II.

4.1 Time/Memory/Data Tradeoff Attacks

The objective of the time-memory tradeoff attacks is to recover the internal state
at a known time. The attacks are conducted in two stages. During a preprocessing
phase, the cryptanalyst constructs a lookup table, mapping possible internal
states to prefixes of the corresponding output keystreams. In the real time phase
of the attack, the cryptanalyst takes a segment of known keystream and tries to
find the corresponding internal state, by searching through the lookup table.

In [3] Babbage described time-memory tradeoff attacks against LILI-128 with
complexity less than 2'?8, As mentioned in Section 1, LILI-II is designed to
overcome these attacks through the use of longer LFSRs providing a 255 bit
internal state, rather than the 128 bits of LILI-128. We analyse LILI-II in relation
to the time-memory tradeoff attacks below.

Let S,M,T, P and D denote the cardinality of the internal state space, the
memory (in binary words of size equal to log,S), the computational time (in
table lookups), the precomputation time (in table lookups), and the amount of
data (without re-keying, this is the length of known keystream), respectively.

For the time-memory attacks described in [2,15] T - M = S, P = M and
D = T. For example, a 2'28.2127 = 225 tradeoff could be used although, as
this requires time equivalent to exhaustive key search, and an excessive amount
of memory and known keystream, such an attack is certainly not feasible. The
more general time-memory-data tradeoff [6] asserts that T'- M? - D* = S?
P = S/D,D? < T. This decreases D at the cost of increasing P. For example,
one may choose M = D = S'/3 and T = P = S?/3, but for LILI-II, with S = 255,
this gives M = D = 2% and T = P = 2'"%, clearly worse than exhaustive
key search. Alternatively, to reduce the time required (with a corresponding
reduction in D), we can increase the amount of memory required, and obtain, for
example, M = 2127 D = 254 and T = 2'?%, although this is still no better than
exhaustive search, and requires an excessive amount of memory. The tradeoffs
permitted by this attack result in either M or T being in excess of 2!28, when
applied to LILI-II.

In any case, the use of the initialisation scheme (the key-loading/re-keying
algorithm) to expand the 128-bit secret key into a 255 bit initial state renders



the time-memory attacks on LILI-IT infeasible, as their performance is at best,
no better than exhaustive key search.

4.2 Attacks on Irregularly Clocked LF SR,

Suppose a keystream segment of length N is known, say {z(¢)}Y,. This is a
decimated version of a segment of length M of the underlying regularly clocked
nonlinearly filtered LF SR, sequence, g = {g(i)}}%,, where M > N. The ob-
jective of correlation attacks targeting LF SR, is to recover the initial state of
LFSR, by identifying the segment {g(i)}, that {z(¢)}}Y, was obtained from
through decimation, using the correlation between the regularly clocked sequence
and the keystream, without knowing the decimating sequence.

For clock-controlled shift registers with constrained clocking (so that there is
a fixed maximum number of times the data shift register may be clocked before
an output bit must be produced), correlation attacks based on a constrained
Levenshtein distance and on a probabilistic measure of correlation are proposed
in [11] and [12], respectively, and further analysed in [13]. These attacks could be
adapted to be used as the first stage of a divide-and-conquer attack on LILI-II.
The rest of this section describes how such an attack would be performed.

For a candidate initial state of LF'SRy, say {d(i) L4 use the known LFSRy

feedback function to generate a segment of the LF'SR; sequence, {J(z)}lj‘i Fha—l
for some M > L4. Then use the known filter function f; to generate a segment of
length M of the output of the nonlinear filter generator when regularly clocked,
{g(i)}M,. A measure of correlation between {g(i)}}£, and {z(¢)}¥, is calculated
(either the Constrained Levenshtein Distance (CLD) [11], or the Probabilistic
Constrained Edit Distance (PCED) [12]) and the process repeated for all LF'SRy
initial states.

In either case, the attack is considered successful if only a few initial states
are identified. As the correlation attack based on the PCED takes into account
the probability distribution of the decimating sequence, it is statistically optimal
and may be successful in cases where the embedding attack based on the CLD
is not, such as for larger values of m. The value of M is a function of NV and
m. If M = 2™ x N, then the probability of not identifying the correct LF SR,
initial state is zero.

The second stage of a divide-and-conquer attack on the generator is the
recovery of the initial state of the second shift register. This can be performed
as in [25]. From the calculation of the edit distance (either CLD or PCED)
between {g(i)}M, and {z(t)}),, form the edit distance matrix, and use this to
find possible edit sequences. From each possible edit sequence, form a candidate
integer sequence {é(t)}Y,. From this, the underlying binary sequence {a(t)}¥,
and hence the candidate initial state of LF'SR,. can be recovered. To determine
whether the correct initial states of both LFSRs have been recovered, use both
candidate initial states to generate a candidate keystream and compare it with
the known keystream segment.

To conduct either of these correlation attacks requires exhaustive search of
the 227 — 1 LFSR, initial states. For each LF SRy initial state, the attacks

b



require calculation of either the CLD or the PCED, with computational com-
plexity O(N(M — N)). Finally, further computational complexity is added in
finding the corresponding LF'S R, initial state. For either correlation attack, the
minimum length of keystream required for a successful attack on LF SR, is lin-
ear in Lg, but exponential or even super-exponential in 2™ (see [13]). For m = 2,
the required keystream length [31] is prohibitively large.

This is supported by the work of Chambers and Gollman [7] on embedding,
which indicates embeddings for d > 3 require impractically long output se-
quences. The LILI class of ciphers uses d = 4. The complexity of such an attack
on LILI-IT is (2'%7 — 1) multiplied by the complexity of computing the corre-
lation measure, with the additional complexity of recovering the corresponding
LFSR,. state. That is, the performance of divide and conquer attacks which
target LF'SR,; are much worse than exhaustive key search.

4.3 Attacks Targeting LFSR,.

A possible approach to attacking the proposed generator is by targeting the
clock-control sequence produced by LFSR.. Guess an initial state of LFSR,,
say {a(t)}L<,. Use the known LFSR, feedback function and the function f. to
generate the decimating sequence {é(t)}Y, for some N > L.. Then position
the known keystream bits {z(¢)}1*, in the corresponding positions of {g(i)}22,,
the nonlinear filter generator output when regularly clocked. At this point we
have some (not all consecutive) terms in the nonlinear filter generator output
sequence and are trying to reconstruct a candidate initial state for LFSRy.
Note that the amount of trial and error involved in guessing the initial state
of LFSR, is the same as for guessing the secret key. Thus, the performance of
any divide and conquer attack targeting LF'SR,. will be worse than exhaustive
key search. Nevertheless, we outline several ways such an attack could proceed.

Consistency Attack One method is to use the known filter function fy to
write equations relating terms in the underlying LF SRy sequence to terms in
{3(1)}32, . Reject the guessed initial state {¢(t)} <, when the equations are incon-
sistent. This is a generalisation of the linear consistency test [30]. The feasibility
of such an approach depends on the number of inputs to fg, on the tap positions
producing these inputs and on some properties of f; such as its nonlinearity and
order of correlation immunity. For example, this attack is complicated if the tap
positions are chosen according to a full positive difference set (see [14]), as in
the case of LILI-II.

Attacks on Regularly Clocked LFSR,; An alternative approach is to use
a correlation attack on the nonlinear filter generator [22] to recover a linear
transform of the LF'SR; sequence, and then recover the LF SR, initial state.
However, this is complicated by not having consecutive terms in the regularly
clocked nonlinear filter generator sequence. The feasibility of such an attack



primarily depends on the use of a feedback polynomial of LF SR, that is of low
weight or has low weight polynomial multiples and on the nonlinearity of fy.

The feedback polynomial of LF'S R4 has been selected so that it does not have
low-weight polynomial multiples of relatively small degrees, in order to avoid the
vulnerability to fast correlation attacks on LF'SR; when regularly clocked.

An alternative correlation attack on a (regularly clocked) nonlinear filter
generator which could be applied at this point is the conditional correlation
attack [1], with a difference that the known output bits are not consecutive.
The feasibility of such an attack depends on the number of inputs to the filter
function and on the tap positions. The use of a full positive difference set for
the tap positions, as suggested in [14], and of a filter function with correlation-
immunity order greater than zero renders this attack infeasible. The number and
positions of taps for the filter function, fy, have been chosen to ensure resistance
to the attacks discussed in Section 4.3. This was the motivation for our choice
of 12 inputs from tap positions which do form a full positive difference set.

Finally, the inversion attack [14] can be adapted to deal with the case of
non-consecutive output bits, but the associated branching process is then super-
critical, because more than one bit has to be guessed at a time. As a consequence,
the computational complexity may be prohibitively high even if the tap positions
are not spread across the LF'SR,; length.

Jonsson and Johansson’s Attack In [16], a divide and conquer attack on
the LILI-128 stream cipher was proposed. The attack involved guessing an ini-
tial state for LFSR,., and then solving the remaining LFSR; with the clocking
known. This is a fast correlation attack, that is not based on iterative proba-
bilistic decoding, and as such does not require the available keystream bits to
be consecutive.

Applying any of the approaches discussed above requires exhaustive search
over the LF SR, initial state space and additional computation for each candi-
date LFSR, state. Thus, all of these attacks are worse than exhaustive search
on the 128-bit secret key.

4.4 Summary of Security Claims

In this section we summarise the claims we make for the security of LILI-II.
Firstly, the period at around 22°° is sufficiently large. Secondly the linear com-
plexity is conjectured to be at least 2!7°, so that at least 2'7% consecutive bits
of known plaintext are required for the Berlekamp-Massey attack. This is an
infeasible amount of text to collect. Thirdly, we conjecture that the complexity
of divide and conquer attacks on LILI-II is in excess of 2!2% operations, and
additionally these attacks require knowledge of a large amount of keystream.
The best known attack is therefore conjectured to be exhaustive search on the
128-bit key. This indicates that LILI-II is a secure synchronous stream cipher.



5 Efficiency and Implementation

5.1 Software Efficiency

The current software implementation of LILI-IT runs at 2.80 Mbps on a 300MHz
Pentium II. In comparison LILI-128 achieved speed of 7.5 Mbps on a 650 Mhz
Pentium ITI. On machines of similar power we expect LILI-II to operate at two-
thirds the speed of LILI-128, but with greatly increased security.

There are several internal differences between the implementation of LILI-
128 and that of LILI-II. These differences include using Galois structure (rather
than traditional Fibonacci style), for the LESR state transitions, the increase in
the size of the registers and increasing the number of inputs to the filter function
from 10 to 12. These aspects have different effects on the speed of the design in
software.

The use of Fibonacci style LFSRs is traditional in stream ciphers. In this
style, the feedback polynomial selects a set of bits which are added mod 2 (XOR)
to create the feedback bit which is shifted in to the LFSR. In contrast, the Galois
style checks the value of the bit shifted out and if it is 1 then a constant vector
(the feedback polynomial) is XORed in to the LFSR. These two styles can be
seen as the time reversal of each other. Their state sequences have the same
period. We believe that there is no security difference between the methods, so
we choose to use the Galois style as it is faster in software.

The length of the LFSR. and LFSR; are increased from 39 and 89 bits
to 128 bits and 127 bits, respectively. These structures now take 4 words each
(on 32-bit processors). The clocking of the LFSRs will take more operations
due to the extra words. This slight speed reduction compared to LILI-128 is
unavoidable, but will be less of a problem when implemented on processors with
64 or 128 bit words. LILI-IT will be slightly faster on those processors.

An interesting part of the implementation is the selection of bits from LF SRy
as input to the Boolean function. We have chosen a full positive difference set
(FPDS) to describe the bit positions selected, as this maximised resistance to
correlation attacks. However, each bit must be selected by a logical mask and
shifted to the desired position for input to a look-up-table. This means up to
two operations per bit are required to assemble the 12-bit boolean function input
value. By careful analysis of the FPDS and the positions in the four words of
LFSR;, we were able to reduce the total number of operations required. This
change speeded up the cipher from 2.74 to 2.80 Mbps on the 300MHz machine.

The most efficient way to implement the shifting of multiple-word LFSRs
requires every second word to be physically reversed and shifted the other way.
This removes the need for an extra shift per word to properly place the bit
shifting between words. This reversal was taken into account in the design of the
boolean function input assembly.

5.2 Hardware Efficiency

The basic approach to the hardware design of LILI-II does not differ signifi-
cantly from that proposed for LILI-128. Both ciphers can run at the clock speed



with very small space required. The timing is simulated using a Max+plus II
from the ALTERA Co., the logic circuit is implemented for an FPGA device
(EPF10K20RC240-3), and the throughput stability is analysed up to a rate of
50 Mbps (ie. higher than the T3 rate at 45 Mbps, plus the maximum delay rou-
tine in the proposed design was below 20ns) with a 50MHz system clock, We
have translated /simulated our VHDL design for Lucent’s ASIC device (LV160C,
1.3 micrometer CMOS and 1.5V technology) and it can achieve a throughpout
of about 500 Mbps with a 0.13 micrometer semiconducter for the maximum path
delay below 1.8ns.

Since the LILI-II cipher is a clock-controlled key/-stream generator, the key /-
stream data rate is degraded in a clock-synchronised hardware logic design.
Basically the clock-controlled LF'SR; in the LILI-II cipher requires clocking
at up to 4 times the rate of the LF'SR,. If the same clock is selected for both
then the system throughput will be lowered. Accordingly, we propose a 4-bit
parallel LF'SR; where each register bit includes four variable data routines for
feedback or shifting within the LF'SRy. After shifting LF'S Ry, output sequences
are generated using the nonlinear filter function from the 12 input taps in FPDS
structure. The primitive polynomials require only some XOR operations. The
data required to store the 12-input Boolean function is four times the space
required for the 10-bit function of LILI-128, however at 512 bytes, this is still no
problem even for memory-tight applications.

In the design for hardware, we have used an idea about the parallel structure
of LFSR, from [17]. In most clock-synchronised logic designs, the feedback/shift
in each register is implemented by a synchronised system clock to stabilise the
hardware. However, since LF'SR4 in LILI-IT requires many (1 to 4) clocks within
a system clock period, this is a serious drawback. A frequency multiplier has
been suggested to solve this problem, yet this is inappropriate for high-speed
communications due to the small margin in a clock time interval. Accordingly, a
4-bit parallel LF'SR, where each register has four variable data routines within
the LF'SR; was used. Note that the LFSR. and f. can be easily implemented
using a general shift register with feedback and a full adder device. Whereas
each register in the 127-stage LF'S R4 represented by dy, d1, -..d126 can randomly
jump 1-4 registers from right to left according to the output of f.. This LFSRy
can be implemented using 127 D flip-flops and 127 multiplexors (4-1 MUX). For
example the dj2o register can select a 1-bit input di2s s, from the 4-bit registers
d123 through di26, where the selection signal is the output of f., implemented
using a 1-bit full adder. The four feedback logics are identical, but each is shifted
one place.

6 Conclusion

In this paper, the LILI-II keystream generator, intended for use in stream cipher
applications, is proposed. The design is simple: the generator is based on two
binary LFSRs and uses two combining functions. The security of this keystream
generator has been investigated with respect to currently known styles of attack.



With the chosen parameters, LILI-II provides the basic security requirements
for cryptographic sequences, such as a long period and high linear complexity.
Also, LILI-II is immune to current known-plaintext attacks, conducted under the
assumption that the cryptanalyst knows the entire structure of the generator and
also the 128-bit initialisation vector. The 128-bit secret key is used only to form
the initial states of the two LFSRs, using the re-keying algorithm outlined. We
conjecture that the fastest possible attack on LILI-II is exhaustive key search.

The use of both nonlinear combining functions and irregular clocking in LESR
based stream ciphers is not a novel proposal, and has been employed in previous
constructions. However, in this proposal the two approaches are combined in a
manner that produces output sequences with provable properties with respect
to basic cryptographic security requirements and also provides security against
currently known cryptanalytic attacks.

The design is transparent, relying on basic known results in LFSR theory. In
addition, LILI-IT is easy to implement in software or hardware and, as it employs
only simple components, can be implemented efficiently on any platform. The
cipher is especially efficient in hardware. Our demonstration software implemen-
tation of LILI-II runs at two-thirds of the speed that LILI-128 achieves, while
giving far greater security. The speed we obtain in software is still fast enough
for most applications, and the very fast hardware speed is sufficient even for
applications requiring both high speed and high security.

Finally, the designers would like to state that no weakness has been deliber-
ately inserted into the LILI-IT design.
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APPENDIX
Output Boolean Function for LILI-II Stream Cipher
This is the truth table (in hex) of the output function fy:

C22C2CC22CC2C22CC22C2CC2C22C2CC2
C22CC22C2CC22CC2C22CC22CC22CC22C
C2022C2C2C2CC2C2C2C22C2CC2C22C2C
C2C2C2022C2C2C2CC2C2C2C2C2C2C2C2
CC2222CC22CCCC22CC2222CCCC2222CC
CC22C(C2222CC22CCCC22CC22CC22CC22
CCC(C22222222CCCCCCCC2222CCCC2222
CCCCCCCC22222222CCCCCCCCCCCCCCCC
A44AAAAIAAAAAAAAAA4AAAA4AA44A4AA4
A44AAIAAAAAIAAAAAAAAAJ4A A44A A44A
A4A4AAAAAAAAAAAAAAAAAAAAAA44A4A
A4ALAIAAAALALALAALAAAA4A4A4A4A4A4
AA4444AAA4AAAA44AA4444AAAA4444AA
AA44AA4444AA44AAAA44AA44AA44A A 44
AAAA44444444AAAAAAAA4444AAAA4444
AAAAAAAA444444446886866886686886
68868668688686686886688686688668
688668866886688366868368686866868
686886866868868668686868836868686
68686868686868686688886688666688
66888866668388666688668888663866
668866886683668866668888888836666
66668888666688886666666688838888
OEEOEOOEEOOEOEEOOEEOEOOEOEEOEOOE
OEEOOEEOEOOEEOOEOEEOOEEOOEEO0EEO
OEOEEOEOEOEO0EOEOEOEEOEOOEOEEOEO
O0EOEOEOEEOEOEOEOOOEEEEOOEEO000EE
00EEEEO000EEEEO000EEOOEEEEO0EEO00
4000AEEEEGEE0800CAA028 CAC642424E
C2CA26C88C626C842206C26CC4AAACS4
22C8EA0A2866404E2286286868668628
EC84022E84642EA8C86422C42A2C8AC6

The Boolean Function has 12 inputs and these properties:
Balanced, CI(1), Order=10, Nonlinearity=1992, No Linear Structures.



