W Durham
University

AR

Durham E-Theses

Formal functional testing of graphical user interfaces.

Yip, Stephen Wai-Leung

How to cite:

Yip, Stephen Wai-Leung (1992) Formal functional testing of graphical user interfaces., Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/1617

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way
The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/1617/
 http://etheses.dur.ac.uk/1617/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

FORMAL FUNCTIONAL TESTING OF
GRAPHICAL USER INTERFACES

Stephen Wai-Leung Yip

October 1992

The copyright of this thesis rests with the author.
No quotation from 1t should be published without
his prior written consent and information derived

from 1t should be acknowledged.

Submitted for the Degree of Doctor of Philosophy
School of Engineering & Computer Science

University of Durham




Abstract

Graphical user interface software has acquired a high degree of popularity in a relatively
short time. This thesis investigates the software testing of graphical or window-based

user interfaces. It proposes an original validation approach called Formal Functional
Testing (FFT). This approach tests a user interface by its conformance to the required

functions as stated in a formal functional specification. A specification language (called
WinSpec) has been developed, using states and state predicates to specify functions of
graphical user intertaces. A special form of state transition diagram called WinSTD is
introduced to capture the visual appearance of display objects, and the control flow of
interactions. Functional test cases are then derived from specifications. The problem of
test case selection 1s addressed by analysing function paths into 1interaction sequences.

The graph theoretic algorithms of the Euler tour and the postman tour have been applied
to derive optimal test cases. This new validation approach 1s explored in the

specification and testing ot a number ot user intertaces. These include a logon interface
and a window editor. A 100% function coverage criterion 1s used, producing relatively

short test sequences that can be executed manually 1n about 10 minutes. The test
sequences derived from formal specifications are evaluated with seeded error detection
and code coverage measurements. The results obtained show a 80% success rate in the
detection of seeded errors and a 70% code coverage.



Acknowledgements

I would like to thank my supervisor Dr. Dave Robson, for his kindness and support. I

am also 1n debt to Prof. Keith Bennett for the facilities in the department, sponsorship to
attend technical conferences and critical comments on my work. I am grateful to Dr.

John Welford, Mr. Barry Cornelius and Miss Jenny Newton for comments on an earlier
draft of this thesis. Jenny checked Chapters 5 and 6, Barry gave useful comments to

improve the WinSpec notations, and John gave me support as a fellow Christian in
addition to technical comments. Thanks also go to fellow research students in the

Computer Science Division, especially the “testers”, for many heated discussions as
“iron sharpens iron” (Proverbs 27:17).

A remote “thank you” to Rick Kuhn of the US National Bureau of Standards, whom I
never met, who read a very early draft ot the first of my papers (quite voluntarily) and
sent encouraging comments. This served as a compass to cast the direction of my

research, when my knowledge and experience of the area was too immature to be sure
on what to focus. For similar reasons I would like to thank the referees who gave

comments on [ Y1p91a] to [ Yip91d]. Sincere thanks are also due to Abbas, Ian, Jim and
Hu, of the Open Software Foundation (Cambridge, Massachusetts); Microsoft (Seattle);

Hewlett Packard (Oregon); and DEC Western Research Lab (Palo Alto). They allowed
me to visit their companies during April 1991. The visits enlightened me to the

development and testing work on window systems and GUIs at these locations. Abbas
(Dr.Birjandi) also called, organized and chaired the session on GUI testing in the

Hawai International Conterence in Jan 1991, and made some useful comments on my
work. A number of USENET news group messages have assisted my research,

particularly ones from Tim Endres of Ice Engineering Inc. (MI 48189, USA), which
provided practical help on the JRR tool.

Acknowledgement 1s given to Symantec Corporation (Bedford, Massachusetts, USA)
for permission to use some of the GUI programs 1n their THINK Pascal package as test
objects in this thesis. Grants from the UK Science and Engineering Research Council

(SERC) and the British Telecom Laboratories (Martlesham Heath, Ipswich) are
gratefully acknowledged. Mr. Colin Archibald, Mr. Stuart Birchall, Mr. Ray Lewis and
Mr. Ray Watts of the BT Laboratories have given me support. Mr. Mike Cooper, Miss
Yvette Rooke and Miss Valerie Walker have helped to improve the English 1n this thesis.

The examiners' comments have led to the last and vital improvements to this thesis. I am
alone responsible for any remaining errors 1n the thesis, grammatical or technical.The

last word of thanks are taken from 1 Corinthians 4:7, “What do I have that I have not
received” from the Lord, my late parents and so many who sojourn with me

concurrently at many of life's rendezvous.



Synopsis

Thas thesis describes the research that the author has undertaken for a PhD in Computer
Science. Chapter 1 begins with an introduction to graphical user interfaces (GUIs),

justifying their importance and the need for proper validation. Chapter 2 serves as an
overview of existing software testing techniques. The various problems in GUI

validation are analysed in Chapter 3. These problems are classified into 3 categories :
functional; structural; and environmental 1issues. The largest functional difficulty

1dentified is the lack of a formal specification method suitable for validation purposes.
The main structural problem is deciding on which ot the software levels (1.e. window

systems, toolkits, user interface management system (UIMS) or applications) to target
tests. The environmental 1ssues involve human testers, automation, input synthesis and

output visual verification.

Based on the findings of the problem analysis (Chapter 3) and knowledge of existing
testing techniques (Chapter 2), 1t was decided to develop a functional testing approach.

Chapter 4 details a literature survey of specification methods for user interfaces, as
functional tests are specification based. The literature survey reveals that none of the

existing specification methods are suitable for the derivation of functional test cases. In
Chapter 5, an original specification approach for graphical user interfaces is developed.

All display objects are enumerated 1n a special state diagram called WinSTD. Interaction
functions relating display objects are specified in a set of formal notations called

WinSpec. Chapters 6 and 7 give details of the test case derivation process. Chapter 6
deals with the selection and grouping of individual functions to form effective test

sequences, as testing budgets are limited. Chapter 7 addresses the actual mechanics of
generating tests from specifications. In essence the ‘Inputs’ clauses in specifications of

functions provide the basis of test input generation. The other vital part of test cases, test
oracles for checking output of functions, 1s obtained from the state predicates.

Chapter 7 uses a small user interface, the Logon 1ntertace, to illustrate the derivation of

test cases. Chapters 8 and 9 together present the case study of ThinkEdit, a relatively
larger user interface. The two chapters cover the specification and testing of ThinkEdit

respectively. Specification for a number of other GUIs 1s discussed 1n Chapter 10.

Chapter 11 examines the 1ssues of automating the proposed approach, and reports on
wider automation work on GUI validation being pursued in industry. Chapter 12

presents an analysis and review of the results of the case studies. Chapter 13 gives
conclusions and future directions. Specific and technical terms used 1n this thesis are

printed in italics at their first occurrence, and their respective meanings collected together
in a glossary in appendix A.



Contents

Introduction

1.1  The advent of graphical user interfaces
1.2  The need for proper validation

1.3  Importance of the subject matter
1.4  Onginality and contribution of research

1.5 Criteria for success

A Review of Software Testing
2.1  Testing strategies

2.2 Structural Testing (White Box) Techniques
2.3 Functional Testing (Black Box) Techniques

2.4  Module, Integration and System Testing
2.5  Summary

Problems confronting the validation of GUIs

3.1 Functional perspective
3.2  Code-based perspective

3.3  Architectural perspective
3.4  Testing Graphical User Interfaces

3.5  Structural Testing considerations
3.6  Functional Testing considerations

3.7  Tools for GUI testing
3.8 Review and Decision

Survey of specification methods for user interfaces

4.1  The use of State Transition Diagrams
4.2  The use of BNF-like grammars

4.3  Event Languages
4.4  Requirements of a user intertace specification

A contribution to the specification of GUIs

5.1 WinSTD
5.2  Anintroduction to WinSpec

5.3 Basic theories

10

11
12

13

14
16

17
22

25
26

27

28
29

31
34

36
37

39
40

42

47

47
48

50

51
34

33



5.4  WinSpec notations 60
5.5  Specification of interaction functions 66
5.6 A formal definition of WinSpec 67
J.7  Anexample of specification: the Logon user interface 63
5.8  Review, assumptions and summary 72
6 Graph theory, postman problem and test sequences 74
6.1  Definition of terms used in graph theory 74
6.2  The Euler tour problem 75
6.3  The postman tour 76
6.4  Test sequences for the Logon user interface 78
6.5  Other work on state machines and testing 83
Case Study 1:
7  Testing the Logon user interface 84
7.1  Survey of testing approaches using formal specifications 83
7.2  Formal Functional Testing of the Logon interface 36
7.3  Listing of Test Cases 39
7.4  Results of testing 93
7.5  Screen prints of some visible symptoms 94
7.6  Summary 96
Case Study 2:
8 Specifications for ThinkEdit 97
8.1  Natural language description of ThinkEdit functions 97
8.2  Specification approaches for editors 101
8.3  Text formatting, destRect and viewRect 105
8.4  Specification of edit and display functions 107
8.5  Summary and directions 127
9 The testing of ThinkEdit 129
9.1  Test selection criteria 131
9.2  From specification to test sequences 132
9.3  Test sequences generated 132
9.4  Error seeding and debugging 139
0.5  Results of testing 141
10 Other specification case studies 146
10.1 The X-Mail user interface 146
10.2 The WinSTD editor 149
10.3 The JRR tool 153
10.4 Summary 157



11 Automation Issues 158

11.1  WinSTD editor 159
11.2  WinSpec Parser 159
11.3  The Test Case Generator (TCG) 161
11.4  Journal Record and Replay (JRR) tools 167
11.5 Software vendors' approaches 168
11.6 Summary 169
12 Review and Evaluation 170
12.1  Findings from the testing of the Logon interface 170
12.2  Analysis of undetected errors in ThinkEdit 171
12.3 Complementing functional testing with code coverage 174
12.4 Common errors in GUIs 176
12.5 Considerations on design, specification and testing 178
12.6 Justifications for the case studies 179
13 Conclusions 181
13.1 Assessment: Achievements 183
13.2 Assessment: Criticisms 184
13.3 Future directions 186
References 187
A Glossary 197
B Specification of menu functions 201
C Specification of scroll bar functions 223
D Specification of window management functions 227
Bibliography 232



Chapter 1

Introduction

This thesis 1s the outcome of an investigation into the development of approaches to the
validation of graphical user interfaces (GUIs). It begins by introducing graphical user

interfaces.

1.1 The advent of graphical user interfaces

The concept of using windows, icons, pop-up menus and a mouse as a user interface

originated from Xerox PARC (Palo Alto Research Centre) in the late 1960s, in projects
such as SmallTalk and Star [Myers88]. The first use of icons was due to [Smith82] in

the design of the Star User Interface at Xerox. The graphical user interface concept was
developed as part of the preparation for and expectation of the shift from mainframe to

distributed computing. It was not until the mid to the late 1980s, when more powerful
CPUs in workstations and PCs coincided with the lower cost of memory and bitmap

displays, that window systems eventually became generally available to users of a wider
range of vendors' hardware. Since then, window user interfaces have become popular,

and now play an important role within many software packages. Surveys ot artificial
intelligence applications, for example, report that 40% to 50% of the code and run time

memory are devoted to aspects of the user interface [Bobrow86]. Another survey
[Took90] reports that 50% to 80% of interactive systems are devoted to user interface

considerations.

Graphical user interfaces are sometimes called WIMPs, for Windows, Icons, Menus
and Pointers (or Window, Icon, Mouse and Pull-down/Pop-up menus). With the advent



of graphical user interfaces, a new style of user interaction called direct manipulation has
emerged [Shneiderman83]. Instead of using a command language to describe operations
on objects that are invisible, users perform (or request) operations by manipulatinge
objects that are visible on a computer screen. Alongside a new class of word processors
called WYSIWYG ("What You See Is What You Get", which require no embedded

formatting commands), users are given graphical visual feedback and a sense of control
over what is happening on a graphic display. From the direct manipulation of a
spacecraft in a video game, to the deletion of a file by placing its icon onto the trash-
can 1con, the user interaction is direct, visible and graphical. However, as user

Interfaces are becoming more graphical, interactive and easier to use, their development
costs are also higher. It is now recognized that user interface software is often large,

complex, and difficult to create, test and maintain [Myers89].

Over the last decade, research and development efforts towards a better or more
formalized design of user interface software have been making advances. Since the

Graphical Input Interaction Technique (GIIT) Workshop at Seattle (1982) and the User
Interface Management Systems (UIMS) Workshop at Seeheim (Germany, Nov. 1983),

a number of models and specification methods have been published. The term User
Interface Management System (UIMS) was first coined at the Seattle workshop. Today,

in the early 1990s, implemented UIMSs have been emerging and they are promoting the
systematic and automatic creation of user interfaces [Lewis89T], [Lee90].

Graphical user interfaces have been promoted through vendor products. The first Apple
Macintosh systems, complete with their window user interfaces, were delivered 1n

1984. The Macintosh was the first of such systems commercially available to the public
and soon gained popularity [Crabb89]. Subsequently, the Sun workstation, with its

NeWs windowing system [Leler89] and user interfaces also became popular. By 1938,
the new IBM OS/2 systems were delivered with its native Presentation Manager
graphics. Whilst the existing PC DOS systems were enhanced with an additional layer
of software called Windows, to support graphical user interfaces. The X Window
System [Scheifler86] from MIT was first released in 1986, for a nominal charge similar
to the spread of Unix in its early days. It is based on the design of X, technically

speaking the name of a protocol for sending graphics around a computer network. With
the advantages of being device-independent and network-transparent, the X window

system emerged as the de facto standard window system [Anderson87]. An X
consortium and a company called the Open Software Foundation (OSF) were formed in

1988 to promote X and related software, such as the Motif user intertace tor Unix.
Members of OSF include IBM, DEC, Hewlett Packard and other leading manufacturers.

The idea of open software encourages the use of graphical user interfaces amongst
software producers. The portability of applications is enhanced, simply by virtue of user

interfaces being built on top of the de facto standard window system X [Malhortrad9] .



1.2 The need for proper validation

In contrast to the effort made to develop user interfaces, very little effort has been
directed towards developing means for their systematic and automated testing.

Prototyping has become the only usability assessment practice [Myers89], in both the
Industrial and academic worlds. The aim of prototyping is to allow users to try out

prototypes and to introduce modifications according to their comments [Ehrlich89].
Prototyping is useful as a means of testing the specification of user requirements. It is

designed to obtain feedback about the overall usability and acceptability of the user
interface. However, the final implementation could be quite different from the

prototype. Proper testing is needed to uncover bugs and to establish an acceptable level
of confidence in the conformance of the user interface to its specification. Conformance

testing 1S 1mportant, as an example, consider the user interface of a fly-by-wire aircraft.
An error 1n the user interface could cause the left engine to be shut down when the pilot

meant to give instruction to shut down the right engine! This is not just an imaginary
scenario. The simple fact is that a user interface works like a switch box in relaying user

requests to hardware functions. The "shutting down of the wrong engine"” scenario
represents a common class of “cross-wired” faults in switch boxes.

Another example 1s a new cash dispenser system. During prototyping, users may find

the system "works" as it 1s fairly easy to use, and the right amounts ot cash are given
during the trial runs. Yet the final system has to be tested systematically and thoroughly

to ensure that the correct amount of cash 1s dispensed at all possible request levels,
taking into account cash stocks. It should always produce accurate slip print outs, debit

accounts correctly, and cope with various possible user errors. In short, all tunctions
must be tested.

Until now, the testing of graphical user interfaces has usually been undertaken by

human testers to exercise the systems' functionality. Often these tests are managed 1n an
ad hoc manner [Winston91]. When a symptom is observed, it may have arisen out of

previous interactions, and human testers easily forget such earlier events. Thus the exact
cause of the problem is very difficult to determine. It is not an interesting task for any

human tester to try to check through a large number of windows and menus. Theretore,
it is important that the problems of graphical user interface testing be investigated, with

the goal of finding ways towards systematic and automated testing.

10



1.3 Importance of the subject matter

The study of user interfaces, also known as Man-Machine Interfaces (MMTI) or Human

Computer Interfaces (HCI), has been recognized as a significant research area in
information technology. This is evident in the Alvey program [Talbot85] which aimed to

stimulate advances in a number of identified key enabling areas :
 VLSI and CAD

* Man-Machine Interfaces
* Intelligent Knowledge Based Systems
* Software Engineering

Moreover, the validation of user interfaces also falls within the discipline of software
engineering, which is another key area in the above list.

Testing and Software Engineering
It 1s important to understand how software testing fits into the wider field of other
software engineering processes. This is best illustrated in the waterfall model

[Boehm38], [Royce70] of a software life cycle, reproduced with some simplification in
Figure 1.1.

It can be seen that some form of testing 1S necessary at all stages of the life cycle. The

b B X 4

terms “validation”, “verification” and “revalidation” are defined fully in Chapter 2. For
now they can be looked at as various forms of testing.

This thesis develops an approach to testing that would be conducted after "integration”,

but prior to software release. It would probably be nearest to the ““Product verification™
phase in the waterfall model. It 1s worth noting that “specification” 1s also a major phase

within the life cycle. An important part of this thesis 1s in the development of a
specification approach for the validation of graphical user interfaces.

11



System
teasibility

Validation

Requirements

Validation

Specification

Verification

Detailed design

Verification

Integration

Product
verification

Implementation

System test

Maintenance

Revalidation

Figure 1.1 The watertall model of software engineering life cycle

1.4 Originality and contribution of research

Although there has been a rapid growth in the use of window systems, there have been
few attempts to provide mechanisms for automating the testing of graphical user

interfaces, except the rerun of test suites. There are tew (if any) published research
reports that actually deal with the root problem of software testing : approaches to
generating reliable and effective test cases. This thesis addresses the root problem of test

design and generation.

12



The contribution to knowledge is developed in three parts:

* An original investigation of the problems confronting GUI validation 1s presented
through an analysis of graphical user interfaces (Chapter 3), and surveys of existing

testing and specification approaches (Chapters 2 and 4). It also examines the practcal
needs of validating GUIs in the software industry (Chapter 11).

» The main crux of this thesis is the proposed approach to validating GUIs by means of

test cases derived from formal specifications. The approach is substantiated by the
development of an original specification method, notation, criteria and algorithms for
test selection and test input generation.

 Case studies of actual testing experiments are conducted to assess the proposed testing
approach. Evaluations are carried out using both error seeding and code coverage

measures. The construction of a number of testing tools is explored to investigate
automation issues of the proposed approach.

1.5 Criteria for success

» The specification approach and notation should give a precise and comprehensible
description of GUI functions from the human tester's perspective.

» The approach should be applicable to a wide range of user intertaces, possibly on
different hardware platforms and window systems.

- The specification, once written, should lend itself to the systematic generation of test
cases.

. The capability of the specification approach to model GUI functions appropriately
would be reflected in the quality of test cases derived from the specification. A low

success rate in error detection, function or code coverage, should call for
improvements in the specification method and notations.

13



Chapter 2

A Review of Software Testing

This chapter aims to give an overview of software testing, rather than exhaustively
covering all available knowledge and references. It is intended to introduce and evaluate

techniques 1n software testing so that they can be used in later chapters for tackling the
problem of GUI validation. It is also important to give clear definitions of the terms

used 1n software testing.

"Software testing 1s the process of evaluating a program, with or

without execution, ¢to verify that 1t satisfies specified

requlrements.”

from ANSI/IEEE Std 729-1983,

Standard glossary of Software Engineering terminology.

“Testing is the process of executing a program with the 1intent of

finding errors.” from [Myers79]

An error is a mental mistake by a programmer or designer. It may
result in textual problem with the code called a fault. A failure
occurs when a program computes an 1incorrect output for an 1input 1n

the domain of the specification.
From [IEEE83] and [Morell87]

14



Software testing is defined in this thesis as the process of revealing the existence of
errors 1n computer programs, by exposing faults or differences in behaviour or code
structure from what is expected. Testing is usually carried out by executing the program

under test, or by examination and analysis of the program code and design. Debugging
1s different from testing. Debugging is the process of locating and rectifying the textual

faults in the program, design or specification, after the existence of errors has been
indicated during testing. Research in software testing has largely been practically

oriented with few theoretical works published [Goodenough75], [Weyuker80].
| T'utorial81}]. This thesis does not attempt to argue for or against the view that “‘program

testing can be used to show the presence of bugs, but never to show their absence”
[Dijkstra76]. Instead, this thesis subscribes to the pragmatic view that when testing

ceases to uncover some known classes of errors, the confidence in the correctness of a
program 1s increased [Morell87], [Hall88].

The terms "verification” and "validation” are sometimes used confusingly. The ANSI

/[IEEE Std 729-1983 gives clear definitions, and 1s used in this thesis. Verification is the
process of evaluating software during each life-cycle phase to ensure that it meets the

requirements set forth in the previous phase [IEEE&3]. Validation 1s the process ot
testing software or its specification at the end of the development etfort to ensure that 1t

meets its requirements (that it does what it 1s supposed to do). [IEEES3]

Confusingly, verification is sometimes used to mean program proving, which 1s the
specific process of proving (mathematically) that an implementation agrees with its

specification.

A few other terms are often used in testing practices. Module testing or Unit testing 1s
the process of testing the individual subprograms, subroutines, or procedures in a

program . A fest case is a detailed design, consisting of both the required input data tor
program execution, and a precise description of the correct output of the program for

that set of input data. A test oracle is the name given to an external mechanism which
can be used to check test output for correctness. Test oracles can take on ditferent

forms. They can consist of tables, hand calculated values, simulated results, or informal
design and requirement descriptions ((Howden78] in [Tutorial81]). An oracle can exist

in the form of a written specification or as a person who has the authority to decide if a
program is working correctly [Weyukerg2].

Test tools are software tools that assist the testing of programs in different ways , such
as analysing program structure, generating test data and recording test execution.

15



2.1 Testing strategies

The software engineering life cycle (see Figure 1.1), shows that some form of testing
must be carried out throughout the life time of a software product. This is in accordance
with the belief that the later an error is discovered after it was made, the more expensive
1t 1s to rectify. Hence it is very costly to fix a design error that is not discovered until the
maintenance phase. This partly accounts for the statistics that show software

maintenance is the most expensive phase of the life cycle, as revealed in the following
table [Roper87b].

Life Cycle Phase % Cost [Lientz80] % Error Fix Cost [Glass79]
Requirements/Specification 10 4.6
Design 10 5.5
Implementation 10 6.5
Testing 20 7.0
Maintenance 50 76.4

As soon as program specifications and design papers are available, they should be
reviewed by testers. These early reviews can help to detect errors made in the

requirements-analysis process. In order to ensure coordinated validation and verification
throughout all lite cycle phases, 1t 1s vital to draw up a test plan at an early stage. A test

plan 1s the overall schedule covering all the different stages of testing, from design
reviews and module testing, to final regression testing. It may enlist many test cases

designed for individual modules and the program as a whole. Regression testing or
revalidation 1s the rerun of some existing tests after changes have been made to a

program which had previously been test-accepted. This 1s to determine 1if the changes
have regressed other aspects of the program.

When the first modules are coded and become available from the developers, module or

unit testing is carried out. These program units can then be executed according to some
previously designed test cases. Test design involves selecting a small subset of all

possible inputs to the module under test. This 1s because an exhaustive-input test 1s
often impossible [Myers79].

The process of test input selection should be based on all available tactual information

rather than on coincidence, myth or guesswork. There are two main sources of
information about a software product. The source code, 1t it 1s available to the testers,

and the functional specification of the program. They give rise to two main streams of
testing approaches, structural testing and functional testing. Structural testing 1s also

known as white box testing. It is a testing strategy by which the testers, concerned with
the internal structure of the program, can derive test data according to their

understanding of the program's logic. The program code provides a precise, formal and

16



machine readable notation required for the systematic generation of test data. This is the
reason why research has concentrated on white box testing [Ince84].

Functional testing is also known as black box testing. It is a testing strategy in which the
testers are unconcerned about the internal behaviour and structure of the program under

test. They perform tests based on their understanding of the intended function of the
program. Unlike program source codes, proper functional specifications are often
unavailable, incomplete or mainly written in natural language descriptions.
Consequently, functional testing has been carried out in informal and unsystematic ways
for many years [Howden81].

Another source of information is the expert knowledge of likely causes of errors
[Ostrand84]. This gives rise to an approach called error-based testing [Morell87]. It1s a

testing strategy which seeks to demonstrate that certain classes of errors have not been
made in the programming process [Weyuker83]. Error classes may be derived from a

history of programmers' errors, measures of software complexity, knowledge ot error-
prone syntactic constructs, or even error guessing [Myers79].

Once a strategy or a combination of strategies is decided, there are a number of

established techniques which can be followed to design test cases. Some of these
techniques require the execution of the program and some do not. This 1s why testing

techniques can also be classified as either dynamic or static. Static Analysis 1s any
testing technique that does not involve the execution of the program under test. Dynamic

analysis is any testing technique that requires the program to be executed. Generally, a
structural testing strategy can be performed with or without executing the program (i.e.

either dynamic or static). Although a functional testing strategy can either be static or
dynamic, it is often carried out by executing a program to test its functions (1.e. dynamic
techniques are used). A brief description of some structural and functional testing
techniques are given in the following sections.

2.2 Structural Testing (White Box) Techniques

Techniques of varying degrees of sophistication exist for the analysis of a program’s

code structure. The simplest approach is visual inspection by human testers. Complexity
of techniques increases from code coverage measurements, anomaly detection, through

to tools for proving the correctness of programs.

» Code Inspection and Walkthrough (Static)
These are "human testing" methods, involving the reading or visual inspection of a

program or module by a small group of people, with the help of the program'’s author.
Questions and reasoning interjected by testers, in the presence of the author, are

effective in exposing faults and errors. It appears to be a more effective strategy than

17



code inspection by the author alone. Uses of code inspections by IBM have shown error
detection rates of approximately 80% [Myers79].

* Anomaly analysis (Static tool)
There are code analysers which will produce flow-graphs for programs and detect
anomalies such as wunexecutable code (island code), array bounds, variable

initialization, unused variables and labels, jumps into and out of loops. Analysers are
automated tools and are therefore more efficient than code inspection by human testers.

However they are only sensitive to the raw mechanics of code structure. They are
incapable of detecting logic errors that are entirely proper constructs within the rules of

the programming language.

e Code coverage criteria (Dynamic)
These are a range of criteria requiring increasing code coverage of all program
statements, branches, conditions, combinations of conditions, and lastly, all program

paths. These criteria are well published [Myers79], [White87]. Brief but original
examples are used 1n the tollowing descriptions.

Statement coverage requires the design of test cases to ensure that every

statement in the program / module 1s executed at least once. This can be seen in
the example of a statement such as :

IF hours =225 THEN employed := "Full time” ;

A single test input of "hours=30" will satisfy statement coverage. Whilst it 1s a
useful and necessary criterion, statement coverage is by no means sutficient.

Consider a modification to the above IF statement by the addition of an ELSE
statement as given below :

IF hours =25 THEN employed := "Full time" ELSE employed := "Part time";

The test input of "hours=30" will not cover the ELSE statement, which can only
be tested with an input of "hours<25".

Branch coverage requires enough test cases to be written so that each direction of
branch (or decision ) in the program would have a true and false outcome at least

once. For the above program statement, there are two branches, THEN and
ELSE. The test inputs of "hours=20" and "hours=30" would test both branches,

thus satisfying the branch coverage criterion.

18



Consider a slightly different program statement :
IF (hours 2 25) AND (salary > 2500) THEN employee := "Taxable"

ELSE employee := "Tax-free" ;

There are still two branches, THEN and ELSE. However the statement now
consists of two conditions, "hours > 25" and "salary = 2500". The inputs

according to branch coverage, ("hours=20" and "hours=30", with a fixed value
of "salary=3000"), would still exercise both of the branches. However, the

condition "salary < 2500" remains untested.

Condition coverage requires enough test cases to be written so that each condition
would be tested for a true and false outcome at least once. The test inputs

"hours=20" with "salary=2000", and "hours=30" with "salary=3000", would
now satisty condition coverage as well as branch coverage.

The order of combination of conditions is important. If the test inputs "hours=20"

with "salary=3000", and "hours=30" with "salary=2000" were used instead,
condition coverage would still have been satisfied. However the THEN branch

would not have been tested.

Multiple condition coverage requires enough test cases to be written in order that
all possible combinations of conditions are tested. A multiple condition coverage

would always satisty both branch and condition coverage. Four sets of test
inputs would be required to test the above program statement according to

multiple condition coverage :
"hours=20" with "salary=2000",
"hours=20" with "salary=3000",
"hours=30" with "salary=2000" , and
"hours=30" with "salary=3000" .

Finally, path coverage is the strongest code coverage testing technique. It simply
requires that all possible program paths be executed at least once. This eftectively

satisfies all the above coverage criteria [Myers79]. However, there are a number
of shortcomings noticeable in code coverage strategies [Cowardd38a].

- Coverage criteria can assist test input design, but do not provide test oracles to

judge the correctness of the output.
- Exhaustive path testing cannot guarantee that the program matches its

specification.
- If some required functions of the program have been lett unimplemented, code

coverage cannot detect the missing paths for these tunctions.

19



- Combinations of all conditions can easily result in a situation called path

explosion, in which the existence of huge numbers of program paths prevents
exhaustive coverage.
- Due to the existence of infeasible paths, coverage criteria cannot guarantee that

every path is tested. For example if the program statement used in the last
example 1s followed by :

IF (employee = "Taxable") THEN ...:
IF (employee = "Tax-free") THEN ...:

Since a path through both of the THEN clauses cannot be satisfied with any
possible inputs, it is an infeasible path.

* Domain Testing (Dynamic)
Domain testing is a modified form of path coverage. It helps to select a finite set of
paths for analysis. Ranges of inputs are deduced from the program structure to establish

path domains. This technique reveals errors by picking test data on and slightly off the
borders of path domains. Again, using the program statement :

IF (hours 2 25) AND (salary 2 2500) THEN employee := "Taxable"
ELSE employee := "Tax-free" ;
The path domains have two borders, the two lines representing "hours=25" and
"salary=2500". Points on and slightly off the borders are :

hours=25 and salary=2500,
hours=26 and salary=2501,

hours=26 and salary=2499,
hours=24 and salary=2501,

hours=24 and salary=2299.

The ideal path test, which requires execution of all possible paths in a program, is
almost always impractical. Domain testing aims to overcome this problem by selecting a

limited number of test points. However, 1ts application 1s restricted to linearly domained
programs, according to [White87]. Moreover, the presence of iteration loops i1n

programs may increase test points to an unacceptable number [Whited7].

« Symbolic execution (a test tool, Static)
Symbolic execution is a technique, also known as symbolic evaluation, which does not
execute a program in the traditional sense. Symbolic values of input data, instead of

actual values, are fed, together with the program, into a tool that carnes out symbolic
execution. The outcome of symbolic execution 1s a set of expressions based on the

symbolic values of the data. These output expressions represent what the program
would have produced as output with the given data, based on the tool's analysis of the

20



program. The output expressions can then be compared with the expected result
[King76], [Howden77]. The main difficulties with symbolic execution are in program
loop control variables and array element access indexes that are dependent on values of

Input variables. Module calls and infeasible paths are also problematic for symbolic
evaluators [Coward88b].

» Program proving (a test tool, Static) :
Program proving is a technique that goes one step beyond symbolic execution. It does

not simply analyse the program to see what it does; it is able to decide whether the
program 1s correct in trying to achieve what it is supposed to do. Mathematical

assertions are added at the beginning and end of all procedure blocks to specify the
inputs and oracles. By checking against the assertions, a program prover is able to

analyse the code and determine if it achieves its goals correctly [Hantler76]. Program
proving as described above, is related to the mathematical proof approach ([Hoare69],

[Floyd67]). Whilst assertions are handled by program proving tools, mathematical
proots are largely carried out by hand. More recently, the mathematical proof approach

has been developed during the 1980s into an important part of the formal methods 1n
software engineering [Gehani86]. Mathematical proof approaches use selt-contained

formal specifications written 1n well defined specification languages, which 1s ditferent
from scattering assertions alongside source codes as 1in program proving approaches.

Mathematical proofs are often conducted on specifications against invariant statements
and on specification refinements [Jones90], or against axioms [Liskov75] to validate the

correctness of the design even before the implementation stage. Automation of
mathematical proofs is generally pursued through theorem prover tools. However,

mathematical proofs are not infallible. Errors can exist in the specification, and 1n the
deduction process of proving the conformance of specification and implementation

[Hall91a, b].

e Mutation Analysis (Dynamic) :
Mutation analysis is a technique mainly performed by test tools. It requires the
production of many mutant programs , which are almost identical to the original, from

the original program under test. Mutants have very slight code variations, making them
subtly different from the original program. The idea is to establish a set of high quality

test data, by using these mutant programs to test the test data. If a given set of test data
always gave a different result in any mutant program, from the result of the test data on

the original program, this set of test data is shown to be of the highest quality. The
larger the number of live mutants (mutants that do not produce distinguished results),

the poorer the ability of that set of test data to reveal errors [Budd78]. This technique
lies between structural and error-based testing. The main difficulty of mutation testing 1s

the enormous number of mutant programs involved, even when a small number of

operators (€.g. =, <, S, >, 2, and, or) are considered for mutation.

2 1



2.3 Functional Testing (Black Box) Techniques :

As discussed earlier, research has concentrated on white box testing. It 1s because the
program code provides a precise, formal and machine readable notation required for the
systematic generation of test data [Ince84]. Nevertheless functional testing techniques
are important, as higher error detection rates have been reported with functional testing

than with structural testing [Howden76], as illustrated in the following table.

Method Errors discovered % _of total errors
Path testing 12 43
Branch testing 6 21
Functional testing 17 61

This section discusses a number of well known functional testing techniques, which are
extensively covered in [Myers79]. Brief but original examples of the use of these

techniques are given to show their strengths and weaknesses.

o Equivalence Partitioning (Dynamic) :
This 1s a technique which attempts to partition the input space, so as to select a small

subset of input data from the domain of all possible inputs, aiming to select the subset
with the highest probability of finding the most errors. The input domain of a program

1s partitioned into a finite number of equivalence classes, so that one can reasonably
assume a test of a representative value of each class 1s equivalent to a test of any other

value. This approach comes from the tact that an exhaustive input test of a program 1is
ideal, but impossible. Equivalence partitioning helps to select a finite set of input data

for testing. The main difficulty is that the identification of equivalence classes 1s largely
a heuristic process. The following gives a small part of a program specification, from

which a simple example of equivalence partitioning 1s developed.

“... An integer no_of_hrs can be inputted at this point of program execution,
representing the number of hours the employee 1s employed each week. A full-time

working week is 25 hours or more. No employee works for more than 70 hours, or less
than 7 hours a week. The program responds by printing one of the three possible

messages :
Employment is full time.

Employment is part time.
Invalid input for no_of_hrs.

22

Following the concept of equivalence partitioning, four equivalent classes are identified.

no of hrs =25, but <70, this is the valid class of “full time workers™.
no of hrs =7, but <25, this is the valid class of “part time workers”.

no of hrs <7, this is a class of invahd inputs.

22



no_of_hrs > 70, this is another class of invalid inputs.

A representative value from each of the four equivalence classes is chosen, producing
four different sets of test inputs :

no_of_hrs = 40
no_of_hrs = 10
no_of hrs=5

no_of hrs =90

» Boundary value analysis (Dynamic)
This technique can be seen as a special case of equivalence partitioning. Boundary value
analysis requires the selection of test data directly on, above and below the boundary of

equivalence classes. Thus it generates more test inputs than just one representative value
from each equivalence class. This approach can be used in the result space domain as

well as the input space, making boundary analysis difterent from equivalence
partitioning. Referring to the same example used for equivalence partitioning, 9 ditterent

test inputs are required to cover the three boundary values (7, 25 and 70) tor the input
of no_or_hrs:

no_of_hrs =6, 7, 8, 24, 25, 26, 69, 70, 71.

Experience shows that test cases which explore boundary conditions have a higher
payoff. The drawback is that a degree of creativity is required in order to derive

boundary conditions from specifications [Myers79]. Another weakness, according to
[Myers79], is that only boundary conditions of individual input or output variables are

analysed, and no consideration is given to exploring the combination of different input
or output variables.

e Cause-Effect graphing
This technique relies on functional specifications for the identification of causes and

effects [Elmendorf73]. A cause is a distinct input condition. An effect 1s an output
condition or a system transformation, i.e. an effect that an input has on the state of the

program. Causes and effects are identitied by reading the specification. Each cause and
effect is assigned an unique number. The semantic content of the specification 1s

analysed to link up causes and effects into a graph showing transitions from causes to
effects. The Boolean operators NOT, AND and OR are used to connect multiple causes.

For instance, the following may form part of a specification.

« . If an employee is employed for not less than 25 hours each week, the employee's
income will be taxed. If the employee's income exceeds 2500 pounds or 1t free tull

board is given, income tax is applicable irrespective to the hours of employment. ...”
Three causes are identified from the above part-specification :

23



Cl: hour =25

C2: fullBoard = true
C3: salary > 2500

One effect is identified :
El: employee = “Taxable”

A simple cause-effect graph is then developed in Figure 2.1.

OR

Figure 2.1 A cause-effect graph

Cause-effect graphing overcomes the weakness of boundary value analysis by

considering combinations of inputs. However, such complexity is costly and is
therefore considered by [Abbott86] as impractical. Cause-effect graphs are often

converted into decision tables for the purpose of test generation.

o Error Guessing (Dynamic, intuitive) :
The basic idea of error guessing is to enumerate a list of possible errors or error-prone

situations and then write test cases based on the list [Myers79]. This 1s largely an
intuitive, ad hoc technique that is often used effectively and subconsciously by

experienced programmers and testers. It should not be confused with the more
formalized error-based testing approach [Morell87] mentioned earlier.

e Random Testing (Dynamic) :
This is a technique used to test a program by selecting at random subsets of all possible

input values. Random testing was considered “probably the poorest methodology of all”

[Myers79]. An argument against this was published in [Duran84], justifying its
effectiveness in terms of the theory of probability. More recent empirical results

[Cronin87] indicate that random testing are useful with small programs requiring
numerical inputs. [Loo88] reveals that random testing works well on error-prone

programs and programs with expected outputs that can be known easily.

24



2.4 Module, Integration and System Testing

A tester normally chooses a small subset of the techniques discussed above. The
decision depends on the nature and properties of the program under test. It is necessary

to consider factors such as program size, structure, nature (e.g. real time), severity (e.g.
life critical), and the resources available for testing. For example, some very large

programs may have problems with symbolic evaluators [Coward88a].

In general, a reasonably rigorous test can be developed by using certain black box
orientated test-case-design techniques and then supplementing these test cases with an

examination of the program's logic (i.e. using white box techniques). Having
successfully tested all the individual modules, the next step in the test plan would be to

test the whole program by combining modules together, a process called integration
testing. Again, a combination of functional and structural testing can be applied. Here,

functional tests will be used to examine the overall external functions of the whole
program. Structural testing will be used to check the interactions between the component

modules (e.g. a 100% subroutine coverage may be used to make sure all subroutines are
invoked). Integration testing can be carried out in two alternative ways, incremental or

non-mcremental.

Incremental integration 1s to add (or integrate) one module to the program at a time,
testing is performed before the integration of the next module. Incremental integration

generally results in more thorough testing and earlier detection of intertace errors
between modules [Myers79]. Non-incremental integration 1s also called "big-bang"

integration. In this approach, modules are combined all at once to form an integrated
program, before testing 1s applied.

When the modules are successfully integrated and have gone through integration testing,
the complete program (or package) is then subjected to function testing, to see if 1t

performs all its required functions as stated in the product specification.

After integration and function testing, the program is relatively error free (by and large a
"working system") and can now be subjected to system testing, such as :

o Installation Testing
» Performance Testing

o Stress Testing

Change or correction of an error in a working program can introduce new errors
elsewhere in the program. Therefore, regression testing must be carried out at different

stages within bug-fixing cycles of function testing and system testing.

295



It 1s a common industrial practice to carry out a Beta-Test, before a program (or
package) is to be finally test-accepted and ready for release to customers. Beta testing

entails the use of the pre-released program in a normal production environment, at a
certain selected customer site for a period of time, with proper problem monitoring.

problem reporting, debugging and bug-fixing procedures arranged amongst developers.
testers and users.

2.5 Summary

Testing 1s necessary at all stages of the software life cycle. It begins with requirements

and design review. It then progresses to module, integration, function, system and
acceptance testing, leading to product release. Any subsequent changes during software

maintenance are then subject to regression testing, throughout the life time of the
software. The testing approach being developed in this thesis is for the testing of user

interface functions after integration. These functional tests can constitute part of the
acceptance test package, and will most likely form the core of any regression test suites.

The proposed new testing approach, named Formal Functional Testing (FFT), 1s
explained in later chapters. Three main points derived from the above survey on

software testing were useful in the development of the FFT approach.

* A test oracle 1s essential;
A program can only be tested properly if the tester knows precisely what the program

under test should and should not do. This justifies the requirement for a test oracle 1n all
test cases. Such information, used for deciding if a program is behaving correctly, can

generally be derived from the specification of the program.

» Functional testing is often informal and unsystematic;
This occurs because functional specifications are often unavailable, incomplete or

mainly written in natural languages that give rise to ambiguity.

« Structural and functional testing are complementary;
Existing testing techniques belonging to the two main strategies (structural and

functional) can be combined to create stronger techniques. For instance, equivalence
partitioning can be combined with statement coverage.

26



Chapter 3

Problems confronting the Validation of
Graphical User Interfaces

The previous chapter gave a brief review of existing software testing techniques. This

chapter aims to consider their application in the validation of graphical user interfaces.
Some fundamental questions are useful for a wider understanding of the problem areas.

Q1 - Is a GUI sufficiently different from other types of software to require a separate
investigation ?
Q2 - What are the problems of applying existing software validation techniques to GUI ?

Q3 - Are there any theoretical, mathematical concepts or abstract models which could
help to reason about GUI software and its validation?

Answers to the above questions will be developed. This chapter begins with an analysis
of graphical user interfaces from three different perspectives. From the view of ordinary
users, it is a set of display objects (e.g. icons, menus, windows) which provide specific
interaction functions. To interface programmers it 1s a set of window system library
routines (e.g. to create windows and display objects). For system programmers, it 1s an

architecture for building application programs on top of window systems and other
support software. These three perspectives are discussed further in the following

sections.

2/



3.1 Functional perspective

Users perceive a graphical user interface as a means of performing their work through

Interactions with a set of display objects. Although GUIs are highly interactive and

mode-free’ , so far only a few basic types of interaction components are in common use.
They are 1dentified below :

 Windows - Text editing windows, terminal emulation windows, etc.

e Icons - For files, file folders, application programs, etc.

 Menus - Pop-up or pull-down menus, and variants such as command
buttons, radio buttons, and check boxes.

 Text boxes - Rectangular area where text can be entered.

 Scroll bars - Shders, dials and other "control panel” component variants.

 Dialogue boxes - Combination of command buttons and text boxes, which may
block processing until the dialogue box is cleared.

The most distinctive teature of GUISs 1s the use of graphical objects to convey meanings

and conduct communications between users and their computers. Previously, textual
messages, prompts and commands were the main media of user interactions. Lines of

text were simply rolled off the top of the screen in the traditional line mode input /
output. GUIs use windows and scroll bars to better manage text display. GUIs also

entail the organization of the screen layout of windows and other display objects, a
process called window management. Most window systems seem to offer a similar set

of window management functions [Myers88]. A list of the basic ones are given below :

e Create and destroy display objects (e.g. open and close windows).
» Move display objects around the screen.

 Hide and raise overlapping display objects.
 Resize display objects.

e Jconize windows.

The general functions of user interfaces are portrayed in a number of well known
models such as the Seeheim Model [Pfaff85], and SmallTalk's model-view-controller

paradigm [Goldberg83]. The Seeheim Model is shown in the following diagram.

— This means the user has many choices at every point [Myers89). See section 3.4.

28



Application
Interface

Model

Dialogue

Presentation Control

User Application

Figure 3.1  The Seeheim Model of User Interface

In the Seeheim Model, the presentation component is responsible for the physical
appearance of the user interface, including all device interactions. The dialogue control

component manages the dialogue with the user. The application interface model holds
the communication between the user interface and the other parts of the application
program. The lines and arrows indicate directions of communications. The small box at
the bottom 1s intended for emergency use, to allow messages (e.g. alarms) to be sent to
the user rapidly, bypassing normal communication overheads.

3.2 Code-based perspective

A graphical user interface is generally accomplished by a large number of routine calls
to an underlying window systems library. The skeleton of a typical OS/2 PM
[Petzold89] user interface program is given in Figure 3.2. Another example of an X

Windows program can be seen in Figure 3.3.

Before the advent of GUIs, terminal I/Os were performed by the traditional line mode
character input / output. I/O interfaces had a very small number of system 1/O routines

as part of the operating system. The introduction of GUIs has brought additional code
complexity. An application program could have a significant increase in code size, when
employing a window user interface [Yip91b]. To substantiate this point, consider the
"hello world" program using the X Window System [MIT89]. It occupies about 2 to 3
pages of code and comments. In contrast, a typical C program with the conventional
character I/O, would only require a couple of lines to print the "hello world” string. The
X Windows "hello world" program basically creates a window on the screen and writes
the "hello world" string onto the window. Additional lines of code are required to set up

the event handling and various attributes for the window. Extra codes are also used to
program the desired font, position, size and colour for the character string.

29



/* WELCOME.C -- Skeleton of a typical window user interface program that has an icon,

it opens a window and undertakes processing according to input events. */

#define ...

#include <0s2.h>

Int main (void)

{ static ULONG flFrameFlags = FCF_TITLEBAR | FCF SYSMENU |

FCF_SIZEBORDER ... :
static CHAR szText [] = "Welcome" :

HAB hab;

HMQ hmg;
HWND hwndFrame;
QMSG qmsg;

hab = Winlnitialize (0) :
hmq = WinCreateMsgQueue (hab, 0) ;
hwndFrame = WinCreateStdWindow (

HWND DESKTOP, / / Parent window handle
WS_VISIBLE, // Window style
&flFrameFlags, ... ) / / Pointer to control data

WinSendMsg ( hwndFrame, WM_SECTION,
WinQuerySysPointer ( HWND_DESKTOP, SPTR_APPICON, FALSE),
NULL) :

while (WinGetMsg (hab, &qmsg, NULL, 0, 0))
{ switch (msg)
{ case WM CREATE:
[do initialization]

case WM PAINT:

[paint the window]
WinDrawText (hps, -1, szText, ...);

case WM CHAR:
[process keyboard messages]

case WM MOUSEMOVE:
[process mouse movement messages]

case WM DESTROY:
[clean up] j

}
WinDestroyWindow (hwndFrame) ;

WinDestroyMsgQueue (hmq) ;
WinTerminate (hab) ;

return O ;

}

Figure 3.2 Skeleton of a typical window user interface program

A distinctive feature of GUISs is the existence of a main program loop awaiting the next
event or user input, as can be seen 1n the “While (WinGetMsg(...))” statement 1n Figure

3.2. Another distinctive feature is the existence of call back routines. Call back routines
are part of the user interface code, for handling certain pre-declared I/O events

30



associated with interaction objects of the GUI. These call back routines would be given

control of processing by the event manager as the I/O events occur. The mode-free
nature of GUI user interfaces is generally implemented by asynchronous events and call
back routines.

3.3 Architectural perspective

There exist a number of different software levels on which a graphical user interface can

be built. They are window systems, toolkits and User Interface Management Systems
(UIMS). Figure 3.4 illustrates how they are related to the user interface.

3.3.1 Window systems

A window system consists of a program library that supports the display of objects for

user interfaces. It is also the run time system which enables interactions or input/outputs
to be performed through display objects.

A well known example is the X Windows System from MIT. (Its structure is illustrated

in Figure 3.3.) The X Window System has a library of routines called XLIB, providing
more than 200 different routines to be called by window applications.

The X Windows System incorporates a client - server model. Application programs that

make calls to XLIB are clients. I/O requests from clients are processed and passed to
server programs that carry out these I/O requests on workstations. The library (XLIB)

and servers communicate 1n the X Protocol, over a network 1f necessary. The library
and the server can both, of course, be running in the same workstation. The

introduction of the X Protocol between the library and the server i1s how the X Windows
System achieves one of its two main claims, that X 1s network transparent. The quality

of being network transparent is of major significance. Consider a configuration where
a heavy cpu-bound application is working out the weather map on a CRAY

supercomputer; the user interactions and graphics displays can take place on a number
of workstations connected to the supercomputer over a local area network.

In addition to being network-transparent, the X Window System 1s also claimed to be

device-independent. It can be observed in Figure 3.3 that a X Server consists largely of
a device-independent part that understands the X Protocol. New devices or workstations

can be added to support X simply by creating a new backend of the X Server for that
device. Once this 1s done, all existing applications that use X can be ported to run on

this new workstation, without modifications.

31



Application
SUI_

User interface
for Unix

Application
user interface

UIMS /

(e.g. Open Look)

Keyboard
Screen

Figure 3.3 The structure of the X Window System

3.3.2 Toolkits and User Interface Management Systems (UIMS)

A window system library can be tedious to use, as it generally provides a programming
interface of low level routines. To encourage programmers to use windows, low level
routines are built together to form a higher level programming interface generally called
a toolkit [Myers89], [Hall87]. Toolkits make life easier for programmers, by taking care
of small details. They provide a higher level abstraction of display objects called
widgets [MIT89]. Thus fewer routine calls are required. Toolkits automatically supply
default values to some parameters in window library calls. This 1s why toolkits tend to
dictate the “look and feel” of user interfaces. Examples are the X intrinsic toolkit and
the Interview toolkit [Linton89], which both exist on top of the X Window Systems.
The MacApp framework [Shmucker86] on the Macintosh 1s another example of a
toolkit. Toolkits have become popular through the success of underlying window
systems. This can be seen in Figure 3.4 which shows that GUIs can be constructed on
top of UIMSs, toolkits or window systems; and UIMSs can themselves be built on top

of toolkits or window systems.

32



Window systems

Figure 3.4 A diagram showing the different levels of software and usage

User Interface Management Systems (UIMS) provide a new approach to solving the

user 1nterface problem. A UIMS can be perceived as an integrated set of tools that help
user interface developers to create and manage many aspects of interfaces. [Myers89]

suggests that it 1s preferable to call them User Interface Development Systems (UIDS)
instead of UIMS. The name UIMS will be used in this thesis.

One main function of a UIMS 1is to support the execution of the user interface at run
time. In reality, a UIMS is both a user interface design tool and an underlying window
system. For example, the WINDLIB in the University of Alberta UIMS [Green85] 1s a

window-based graphics library package. This explains why a user interface 1s both
closely adhered to and dependent on the UIMS at run time, where the window graphics

library of the UIMS can be looked at as part of the run time system.

Some UIMSs support automatic code generation of interfaces, which can then be
connected into the main body of the application program ([Gray88], [OSU89]). UIMSs

encourage the idea of dialogue separation [Cockton86]; that 1s the dialogue component
(i.e. the user interface) should be separated from other components of the application

program.

3.3.3 Dialogue Separation
When a user interface is designed as a separate program module, distinct from other

components of the application program, dialogue independence is achieved. Dialogue
independence [Hartson89] means that design decisions which affect only the user

interface are isolated from those which affect the other components of the application
program. This concept is illustrated in the Seeheim model in Figure 3.1, where the user

33



Interface communicates with the application program throu gh an application interface.

Dialogue independence is crucial for easy modification and maintenance of the user
Interface. For example, if a more meaningful name is invented for an existing menu
option, it would only require code changes in the user interface module. However.

dialogue separation is difficult to achieve. In a survey of designer practices published
in 1987, it was found that 50% of all designers indicated that the user interface had not

been considered distinct from the rest of the system during design [Rosson87].

One important feature of a UIMS is that dialogue separation is encouraged and enforced.
Often the first step in the process of transforming a monolithic application package to

exploit a UIMS is to separate out user interface code (i.e. the dialogue component) from
the computation components [Prime88]. Dialogue separation is a popular area of

research amongst developers and researchers in user interface management control and
communication [Myers89]. An important question to ask at this point is how much

processing power should be included in the dialogue component? Where the dialogue
component 1S given processing power, the communication between the dialogue

component and the computation component is performed at a higher level, thus the name
"macro-communication” [Hartson89]. This is because the dialogue component is able

to 1nterpret raw input from the user and communicate interpreted commands and
parameters to the computation component. For example, the dialogue component can

include the ability to provide the visual feedback locally, simplifying the large
communication overhead. Without processing power, the dialogue component has to

send all input events to the computation component. This lower level of communication
is called "Micro-communication" [Hartson&9].

3.4 Testing Graphical User Interfaces

The above analysis has highlighted the need to target tests, since code structure varies at
different levels. It was decided that this thesis should concentrate on the testing of

application user interfaces. One reason for this is that there are a large number of
application programs making use of a relatively small number of window systems,

toolkits and UIMS. Vendors of window systems, toolkits and UIMS are better
equipped to test their respective products.

As GUIs are highly interactive, the validation of GUIs is difficult to automate. The old

automation practice of running a long script in batch mode to exercise programs
thoroughly is not applicable to GUIs. The need to generate interactive, position- and

timing-dependent test inputs, and to inspect output displays has ruled out batch mode
testing. There is also the usual testing need for test case selection and test oracles.

34



GUIs are interactive and mode free

GUISs are similar to communication programs or other interactive programs, in which an
input produces an output (or a change of state). GUIs differ from this class of programs

principally in that both the input and output are voluminous and graphical; useful

validation can be done by abstracting away some details, and extractin g the significant
features of the I/O.

Like other highly interactive systems, GUIs are largely mode-free [Myers89]. This
means the user has many choices at every point. The partitioning of the screen into

different windows and display objects has made it possible for users to chan ge quickly
from one mode of interaction to another by moving onto another object or window, thus

reducing the restriction of modes. However, this functional requirement of mode-free
interactions could easily lead the user interface into a state that has not been foreseen by

the designers. This level of complexity can be better handled if interactive functions of
user interfaces are clearly written down in a precise and unambiguous manner. It calls

for a formal specification of user interfaces.

Visual inspections are essential
A basic I/O function that is vital to GUIs is the movement of the mouse pointer on the

screen. Although the tracking of the mouse pointer is mainly achieved by hardware, this
basic function 1s important as most interactions (e.g. selecting a menu option) rely on

the accurate mapping between screen positions and the internal (x,y) coordinate
representation used in the software. This i1s one of the main functional differences

between GUIs and other interactive programs. Effectively, a GUI has extended the one
dimensional input space of command line interfaces to a two dimensional input space,

by utilizing the capability of modern display hardware.

The main difficulty in validating this new, position-dependent I/O function 1s that it
requires visual inspection of screen objects. Visual inspection can be time-consuming,

tiring and prone to human errors. There are questions concerning whether all locations
within the screen map (e.g. 512 x 512 points) should be checked. More importantly,

testers need to know the correct shape, size and position of display objects (1.e.
presentation attributes) for the purpose of verification.

Window Management Functions

Window managers are usually part of the underlying window system and not part of the
user interface. However, in most window management operations, the window

manager only makes decisions and draws the window frames. It 1s up to the application
programs to redisplay the window contents upon notifications from the window

manager, concerning changes 1n position, size, overlapping orders and other attributes.
Therefore, the testing of window management functions of user interfaces must not be

overlooked.

35



3.5 Structural Testing considerations

The structure of the GUI code varies according to the underlying software: window
systems, toolkits or UIMSs. It is vital to determine the right level at which to target
tests. It 1s also important that tests are designed to be reusable.

Static Structural Testing

Most GUI software contains a large number of library calls to the underlying window

system. The correctness of window application programs has now become dependent
on the parameters and sequences of these routine calls. Information (or rules) about the

correct use of parameters and routine sequences are external to the application program.
On some occasions this information (or collection of rules) is not always precisely or

clearly stated in reference manuals. Since these routines are external to the application
packages, it gives rise to difficulties with some structural testing techniques such as

code inspection and source analysis. There is also the complication in testing the
asynchronous event handling of call back routines. As call back routines are called

asynchronously by the window system, they do not fit in the main control flow of the
user interface code. The simplest program that uses the X Window System is shown in
Figure 3.5 .

Xrefresh - Refresh the Screen.

The following program (xrefresh) is the simplest X application :

%include <X/Xlib.h>
Y%include <stdio.h>
/*

* Copyright 1985, MIT

w

*/

main (argc, argv)

int argc;

char **argv;

{

Window w;
if (XOpenDisplay(argc ? argv[1]:" ") == NULL)
fprintf (stderr, “"Could not open Display!0);
w = XCreateWindow (RootWindow, 0, O, DisplayWidth(),

DisplayHeight(), 0, (Pixmap) 0, (Pixmap) 0);

XMapWindow(w); /* put it up on the screen */
XDestroyWindow(w); /* throw it away */
XFlush(); /* and make sure the server sees it "/

Figure 3.5  Anexample application program [MIT89]

This program consists of nothing but routine calls to the window system. Existing code
analysers are designed for standard programming language constructs and would not be

able to validate these external routine calls. To build a tool that would understand the

36



Syntax and semantics of all these routine calls in order to validate them. could require an
etfort that is comparable to the development of the window system 1itself. Also, UIMSs
and window systems have different program interfaces. A comparison of a small subset
of routine names used in three common window systems, namely X [MIT89]. OS/2 PM
|[Petzold89] and the Macintosh Toolbox [Apple85] is shown in Figure 3.6. This
exemplifies the fact that variations in routine names in different window systems would
hinder the reuse of any general purpose structural analysers, across different platforms.

However, these routines from different window systems are seen to provide similar
functions.

Dynamic Structural Testing
It 1s possible to take a dynamic approach (rather than the static code analyser approach)

to the structural testing of GUISs. For instance, a statement coverage criterion may be
used to ensure code coverage during testing. This may require the tester to validate the

behaviour of the user interface at each window library call. This is different from the
structural testing of programs that consist largely of arithmetic and logical operations,

which tend to give an accumulated result (or output) at the end of execution. User
Interface programs consist mainly of interactive inputs and outputs which need to be

examined during their execution. Since the user interface code consists of many routine
calls to the window system, this again requires the detailed understanding of the
window system functions.

3.6 Functional Testing Considerations

Structural testing tools and techniques, such as code analysers, are more developed
because they are reusable tor testing different programs (written in the languages for

which the tools are designed). For GUISs, functional testing appears to have the benefit
of being generally applicable to different window user interfaces. This is due to the

observation [Yip91d] that features and basic interaction components provided by
different window systems are very similar even across different hardware platforms.

Ideally, a user interface should provide the same functions, irrespective of the structure

of underlying software. A functional specification at the highest level (1.e. at the level of
user interaction<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>