
Durham E-Theses

Formal functional testing of graphical user interfaces.

Yip, Stephen Wai-Leung

How to cite:

Yip, Stephen Wai-Leung (1992) Formal functional testing of graphical user interfaces., Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/1617/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/1617/
 http://etheses.dur.ac.uk/1617/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

-I. -,

7

FORMAL FUNCTIONAL TESTING OF
GRAPHICAL USER INTERFACES

Stephen Wai-Leung Yip

October 1992

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Submitted for the Degree of Doctor of Philosophy
School of Engineering & Computer Science

University of Durham

Fl,
LUV

16 ASR 1993

Abstract

Graphical user interface software has acquired a high degree of popularity in a relatively
short time. This thesis investigates the software testing of graphical or window-based
user interfaces. It proposes an original validation approach called Formal Functional
Testing (FFT). This approach tests a user interface by its conformance to the required
functions as stated in a formal functional specification. A specification language (called
WinSpec) has been developed, using states and state predicates to specify functions of
graphical user interfaces. A special form of state transition diagram called WinSTD is
introduced to capture the visual appearance of display objects, and the control flow of
interactions. Functional test cases are then derived from specifications. The problem of
test case selection is addressed by analysing function paths into interaction sequences.
The graph theoretic algorithms of the Euler tour and the postman tour have been applied
to derive optimal test cases. This new validation approach is explored in the

specification and testing of a number of user interfaces. These include a logon interface

and a window editor. A 100% function coverage criterion is used, producing relatively
short test sequences that can be executed manually in about 10 minutes. The test

sequences derived from formal specifications are evaluated with seeded error detection

and code coverage measurements. The results obtained show a 80% success rate in the
detection of seeded errors and a 70% code coverage.

2

Acknowledgements

I would like to thank my supervisor Dr. Dave Robson, for his kindness and support. I

am also in debt to Prof. Keith Bennett for the facilities in the department, sponsorship to
attend technical conferences and critical comments on my work. I am grateful to Dr.
John Welford, Mr. Barry Cornelius and Miss Jenny Newton for comments on an earlier
draft of this thesis. Jenny checked Chapters 5 and 6, Barry gave useful comments to
improve the WinSpec notations, and John gave me support as a fellow Christian in

addition to technical comments. Thanks also go to fellow research students in the
Computer Science Division, especially the "testers", for many heated discussions as
"iron sharpens iron" (Proverbs 27: 17).

A remote "thank you" to Rick Kuhn of the US National Bureau of Standards, whom I

never met, who read a very early draft of the first of my papers (quite voluntarily) and
sent encouraging comments. This served as a compass to cast the direction of my
research, when my knowledge and experience of the area was too immature to be sure
on what to focus. For similar reasons I would like to thank the referees who gave
comments on [Yip9la] to [Yip9ld]. Sincere thanks are also due to Abbas, Ian, Jim and
Hu, of the Open Software Foundation (Cambridge, Massachusetts); Microsoft (Seattle);
Hewlett Packard (Oregon); and DEC Western Research Lab (Palo Alto). They allowed
me to visit their companies during April 1991. The visits enlightened me to the
development and testing work on window systems and GUIs at these locations. Abbas
(Dr. Birjandi) also called, organized and chaired the session on GUI testing in the
Hawaii International Conference in Jan 1991, and made some useful comments on my
work. A number of USENET news group messages have assisted my research,
particularly ones from Tim Endres of Ice Engineering Inc. (MI 48189, USA), which
provided practical help on the JRR tool.

Acknowledgement is given to Symantec Corporation (Bedford, Massachusetts, USA)
for permission to use some of the GUI programs in their THINK Pascal package as test
objects in this thesis. Grants from the UK Science and Engineering Research Council
(SERC) and the British Telecom Laboratories (Martlesham Heath, Ipswich) are
gratefully acknowledged. Mr. Colin Archibald, Mr. Stuart Birchall, Mr. Ray Lewis and
Mr. Ray Watts of the BT Laboratories have given me support. Mr. Mike Cooper, Miss
Yvette Rooke and Miss Valerie Walker have helped to improve the English in this thesis.
The examiners' comments have led to the last and vital improvements to this thesis. I am
alone responsible for any remaining errors in the thesis, grammatical or technical. The

last word of thanks are taken from 1 Corinthians 4: 7, "What do I have that I have not
received" from the Lord, my late parents and so many who sojourn with me

concurrently at many of life's rendezvous.

3

Synopsis

This thesis describes the research that the author has undertaken for a PhD in Computer
Science. Chapter 1 begins with an introduction to graphical user interfaces (GUIs),
justifying their importance and the need for proper validation. Chapter 2 serves as an
overview of existing software testing techniques. The various problems in GUI

validation are analysed in Chapter 3. These problems are classified into 3 categories :
functional; structural; and environmental issues. The largest functional difficulty
identified is the lack of a formal specification method suitable for validation purposes.
The main structural problem is deciding on which of the software levels (i. e. window
systems, toolkits, user interface management system (UIMS) or applications) to target
tests. The environmental issues involve human testers, automation, input synthesis and

output visual verification.

Based on the findings of the problem analysis (Chapter 3) and knowledge of existing
testing techniques (Chapter 2), it was decided to develop a functional testing approach.
Chapter 4 details a literature survey of specification methods for user interfaces, as
functional tests are specification based. The literature survey reveals that none of the
existing specification methods are suitable for the derivation of functional test cases. In
Chapter 5, an original specification approach for graphical user interfaces is developed.
All display objects are enumerated in a special state diagram called WinSTD. Interaction
functions relating display objects are specified in a set of formal notations called
WinSpec. Chapters 6 and 7 give details of the test case derivation process. Chapter 6
deals with the selection and grouping of individual functions to form effective test

sequences, as testing budgets are limited. Chapter 7 addresses the actual mechanics of
generating tests from specifications. In essence the `Inputs' clauses in specifications of
functions provide the basis of test input generation. The other vital part of test cases, test
oracles for checking output of functions, is obtained from the state predicates.

Chapter 7 uses a small user interface, the Logon interface, to illustrate the derivation of
test cases. Chapters 8 and 9 together present the case study of ThinkEdit, a relatively
larger user interface. The two chapters cover the specification and testing of ThinkEdit

respectively. Specification for a number of other GUIs is discussed in Chapter 10.

Chapter 11 examines the issues of automating the proposed approach, and reports on
wider automation work on GUI validation being pursued in industry. Chapter 12

presents an analysis and review of the results of the case studies. Chapter 13 gives
conclusions and future directions. Specific and technical terms used in this thesis are

printed in italics at their first occurrence, and their respective meanings collected together
in a glossary in appendix A.

4

Contents

1 Introduction
1.1 The advent of graphical user interfaces
1.2 The need for proper validation
1.3 Importance of the subject matter
1.4 Originality and contribution of research
1.5 Criteria for success

2A Review of Software Testing
2.1 Testing strategies
2.2 Structural Testing (White Box) Techniques
2.3 Functional Testing (Black Box) Techniques
2.4 Module, Integration and System Testing
2.5 Summary

3

4

5

Problems confronting the validation of GUIs
3.1 Functional perspective
3.2 Code-based perspective
3.3 Architectural perspective
3.4 Testing Graphical User Interfaces
3.5 Structural Testing considerations
3.6 Functional Testing considerations
3.7 Tools for GUI testing
3.8 Review and Decision

Survey of specification methods for user interfaces
4.1 The use of State Transition Diagrams
4.2 The use of BNF-like grammars
4.3 Event Languages
4.4 Requirements of a user interface specification

A contribution to the specification of GUIs

5.1 WinSTD
5.2 An introduction to WinSpec
5.3 Basic theories

8
8
10
11
12
13

14
16
17
22
25
26

27

28
29
31
34
36
37
39
40

42
44
47
47
48

50
51
54
55

5

5.4 WinSpec notations 60
5.5 Specification of interaction functions 66
5.6 A formal definition of WinSpec 67
5.7 An example of specification: the Logon user interface 68
5.8 Review, assumptions and summary 72

6 Graph theory, postman problem and test sequences 74
6.1 Definition of terms used in graph theory 74
6.2 The Euler tour problem 75
6.3 The postman tour 76
6.4 Test sequences for the Logon user interface 78
6.5 Other work on state machines and testing 83

Case Study 1:
7 Testing the Logon user interface 84

7.1 Survey of testing approaches using formal specifications 85
7.2 Formal Functional Testing of the Logon interface 86
7.3 Listing of Test Cases 89
7.4 Results of testing 93
7.5 Screen prints of some visible symptoms 94
7.6 Summary 96

Case Study 2:
8 Specifications for ThinkEdit 97

8.1 Natural language description of ThinkEdit functions 97
8.2 Specification approaches for editors 101
8.3 Text formatting, destRect and viewRect 105

8.4 Specification of edit and display functions 107
8.5 Summary and directions 127

9 The testing of ThinkEdit 129

9.1 Test selection criteria 131
9.2 From specification to test sequences 132

9.3 Test sequences generated 132
9.4 Error seeding and debugging 139

9.5 Results of testing 141

10 Other specification case studies 146

10.1 The X-Mail user interface 146

10.2 The WinSTD editor 149

10.3 The JRR tool 153

10.4 Summary 157

6

11 Automation Issues 158
11.1 WinSTD editor 159
11.2 WinSpec Parser 159
11.3 The Test Case Generator (TCG) 161
11.4 Journal Record and Replay (JRR) tools 167
11.5 Software vendors' approaches 168
11.6 Summary 169

12 Review and Evaluation 170
12.1 Findings from the testing of the Logon interface 170
12.2 Analysis of undetected errors in ThinkEdit 171
12.3 Complementing functional testing with code coverage 174
12.4 Common errors in GUIs 176
12.5 Considerations on design, specification and testing 178
12.6 Justifications for the case studies 179

13 Conclusions 181
13.1 Assessment: Achievements 183

13.2 Assessment: Criticisms 184
13.3 Future directions 186

References 187

A Glossary 197

B Specification of menu functions 201

C Specification of scroll bar functions 223

D Specification of window management functions 227

E Bibliography 232

7

Chapter 1

Introduction

This thesis is the outcome of an investigation into the development of approaches to the
validation of graphical user interfaces (GUIs). It begins by introducing graphical user
interfaces.

1.1 The advent of graphical user interfaces

The concept of using windows, icons, pop-up menus and a mouse as a user interface

originated from Xerox PARC (Palo Alto Research Centre) in the late 1960s, in projects
such as SmallTalk and Star [Myers88]. The first use of icons was due to [Smith82] in

the design of the Star User Interface at Xerox. The graphical user interface concept was
developed as part of the preparation for and expectation of the shift from mainframe to
distributed computing. It was not until the mid to the late 1980s, when more powerful
CPUs in workstations and PCs coincided with the lower cost of memory and bitmap
displays, that window systems eventually became generally available to users of a wider
range of vendors' hardware. Since then, window user interfaces have become popular,
and now play an important role within many software packages. Surveys of artificial
intelligence applications, for example, report that 40% to 50% of the code and run time

memory are devoted to aspects of the user interface [Bobrow86]. Another survey
[Took90] reports that 50% to 80% of interactive systems are devoted to user interface

considerations.

Graphical user interfaces are sometimes called WIMPs, for Windows, Icons, Menus

and Pointers (or Window, Icon, Mouse and Pull-down/Pop-up menus). With the advent

8

of graphical user interfaces, a new style of user interaction called direct manipulation has
emerged [Shneiderman83]. Instead of using a command language to describe operations
on objects that are invisible, users perform (or request) operations by manipulating
objects that are visible on a computer screen. Alongside a new class of word processors
called WYSIWYG ("What You See Is What You Get", which require no embedded
formatting commands), users are given graphical visual feedback and a sense of control
over what is happening on a graphic display. From the direct manipulation of a
spacecraft in a video game, to the deletion of a file by placing its icon onto the trash-
can icon, the user interaction is direct, visible and graphical. However, as user
interfaces are becoming more graphical, interactive and easier to use, their development
costs are also higher. It is now recognized that user interface software is often large,

complex, and difficult to create, test and maintain [Myers89].

Over the last decade, research and development efforts towards a better or more
formalized design of user interface software have been making advances. Since the
Graphical Input Interaction Technique (GILT) Workshop at Seattle (1982) and the User
Interface Management Systems (UIMS) Workshop at Seeheim (Germany, Nov. 1983),

a number of models and specification methods have been published. The term User
Interface Management System (UIMS) was first coined at the Seattle workshop. Today,
in the early 1990s, implemented UIMSs have been emerging and they are promoting the
systematic and automatic creation of user interfaces [Lewis89T], [Lee90].

Graphical user interfaces have been promoted through vendor products. The first Apple
Macintosh systems, complete with their window user interfaces, were delivered in

1984. The Macintosh was the first of such systems commercially available to the public
and soon gained popularity [Crabb89]. Subsequently, the Sun workstation, with its

NeWs windowing system [Leler89] and user interfaces also became popular. By 1988,

the new IBM OS/2 systems were delivered with its native Presentation Manager

graphics. Whilst the existing PC DOS systems were enhanced with an additional layer

of software called Windows, to support graphical user interfaces. The X Window

System [Scheifler86] from MIT was first released in 1986, for a nominal charge similar
to the spread of Unix in its early days. It is based on the design of X, technically

speaking the name of a protocol for sending graphics around a computer network. With

the advantages of being device-independent and network-transparent, the X window

system emerged as the de facto standard window system [Anderson87]. An X

consortium and a company called the Open Software Foundation (OSF) were formed in

1988 to promote X and related software, such as the Motif user interface for Unix.

Members of OSF include IBM, DEC, Hewlett Packard and other leading manufacturers.
The idea of open software encourages the use of graphical user interfaces amongst

software producers. The portability of applications is enhanced, simply by virtue of user

interfaces being built on top of the de facto standard window system X [Malhortra89] .

9

1.2 The need for proper validation

In contrast to the effort made to develop user interfaces, very little effort has been
directed towards developing means for their systematic and automated testing.
Prototyping has become the only usability assessment practice [Myers89], in both the
industrial and academic worlds. The aim of prototyping is to allow users to try out
prototypes and to introduce modifications according to their comments [Ehrlich89].
Prototyping is useful as a means of testing the specification of user requirements. It is
designed to obtain feedback about the overall usability and acceptability of the user
interface. However, the final implementation could be quite different from the
prototype. Proper testing is needed to uncover bugs and to establish an acceptable level
of confidence in the conformance of the user interface to its specification. Conformance
testing is important, as an example, consider the user interface of a fly-by-wire aircraft.
An error in the user interface could cause the left engine to be shut down when the pilot
meant to give instruction to shut down the right engine! This is not just an imaginary

scenario. The simple fact is that a user interface works like a switch box in relaying user
requests to hardware functions. The "shutting down of the wrong engine" scenario
represents a common class of "cross-wired" faults in switch boxes.

Another example is a new cash dispenser system. During prototyping, users may find

the system "works" as it is fairly easy to use, and the right amounts of cash are given
during the trial runs. Yet the final system has to be tested systematically and thoroughly
to ensure that the correct amount of cash is dispensed at all possible request levels,

taking into account cash stocks. It should always produce accurate slip print outs, debit

accounts correctly, and cope with various possible user errors. In short, all functions

must be tested.

Until now, the testing of graphical user interfaces has usually been undertaken by

human testers to exercise the systems' functionality. Often these tests are managed in an

ad hoc manner [Winston9l]. When a symptom is observed, it may have arisen out of

previous interactions, and human testers easily forget such earlier events. Thus the exact

cause of the problem is very difficult to determine. It is not an interesting task for any
human tester to try to check through a large number of windows and menus. Therefore,

it is important that the problems of graphical user interface testing be investigated, with

the goal of finding ways towards systematic and automated testing.

10

1.3 Importance of the subject matter

The study of user interfaces, also known as Man-Machine Interfaces (MMI) or Human
Computer Interfaces (HCI), has been recognized as a significant research area in
information technology. This is evident in the Alvey program [Talbot85] which aimed to
stimulate advances in a number of identified key enabling areas :
" VLSI and CAD

" Man-Machine Interfaces
" Intelligent Knowledge Based Systems

" Software Engineering

Moreover, the validation of user interfaces also falls within the discipline of software
engineering, which is another key area in the above list.

Testing and Software Engineering
It is important to understand how software testing fits into the wider field of other
software engineering processes. This is best illustrated in the waterfall model
[Boehm88], [Royce70] of a software life cycle, reproduced with some simplification in
Figure 1.1.

It can be seen that some form of testing is necessary at all stages of the life cycle. The

terms "validation", "verification" and "revalidation" are defined fully in Chapter 2. For

now they can be looked at as various forms of testing.

This thesis develops an approach to testing that would be conducted after "integration",
but prior to software release. It would probably be nearest to the "Product verification"
phase in the waterfall model. It is worth noting that "specification" is also a major phase

within the life cycle. An important part of this thesis is in the development of a
specification approach for the validation of graphical user interfaces.

11

Figure 1.1 The waterfall model of software engineering life cycle

1.4 Originality and contribution of research

Although there has been a rapid growth in the use of window systems, there have been
few attempts to provide mechanisms for automating the testing of graphical user
interfaces, except the rerun of test suites. There are few (if any) published research

reports that actually deal with the root problem of software testing : approaches to

generating reliable and effective test cases. This thesis addresses the root problem of test
design and generation.

12

The contribution to knowledge is developed in three parts:
" An original investigation of the problems confronting GUI validation is presented

through an analysis of graphical user interfaces (Chapter 3), and surveys of existing
testing and specification approaches (Chapters 2 and 4). It also examines the practical
needs of validating GUIs in the software industry (Chapter 11).

" The main crux of this thesis is the proposed approach to validating GUIs by means of
test cases derived from formal specifications. The approach is substantiated by the
development of an original specification method, notation, criteria and algorithms for

test selection and test input generation.

" Case studies of actual testing experiments are conducted to assess the proposed testing

approach. Evaluations are carried out using both error seeding and code coverage

measures. The construction of a number of testing tools is explored to investigate

automation issues of the proposed approach.

1.5 Criteria for success

" The specification approach and notation should give a precise and comprehensible
description of GUI functions from the human tester's perspective.

" The approach should be applicable to a wide range of user interfaces, possibly on
different hardware platforms and window systems.

" The specification, once written, should lend itself to the systematic generation of test

cases.

" The capability of the specification approach to model GUI functions appropriately

would be reflected in the quality of test cases derived from the specification. A low

success rate in error detection, function or code coverage, should call for

improvements in the specification method and notations.

13

Chapter 2

A Review of Software Testing

This chapter aims to give an overview of software testing, rather than exhaustively
covering all available knowledge and references. It is intended to introduce and evaluate
techniques in software testing so that they can be used in later chapters for tackling the
problem of GUI validation. It is also important to give clear definitions of the terms

used in software testing.

"Software testing is the process of evaluating a program, with or

without execution, to verify that it satisfies specified

requirements. "

from ANSI/IEEE Std 729-1983,

Standard glossary of Software Engineering terminology.

"Testing is the process of executing a program with the intent of

finding errors. " from [Myers79]

An error is a mental mistake by a programmer or designer. It may

result in textual problem with the code called a fault. A failure

occurs when a program computes an incorrect output for an input in

the domain of the specification.
From [IEEE83] and [Morell87]

14

Software testing is defined in this thesis as the process of revealing the existence of
errors in computer programs, by exposing faults or differences in behaviour or code
structure from what is expected. Testing is usually carried out by executing the program
under test, or by examination and analysis of the program code and design. Debugging
is different from testing. Debugging is the process of locating and rectifying the textual
faults in the program, design or specification, after the existence of errors has been
indicated during testing. Research in software testing has largely been practically
oriented with few theoretical works published [Goodenough75], [Weyuker80].
[Tutoria1811. This thesis does not attempt to argue for or against the view that "program
testing can be used to show the presence of bugs, but never to show their absence"
[Dijkstra76]. Instead, this thesis subscribes to the pragmatic view that when testing
ceases to uncover some known classes of errors, the confidence in the correctness of a
program is increased [Morell87], [Ha1188].

The terms "verification" and "validation" are sometimes used confusingly. The ANSI
/IEEE Std 729-1983 gives clear definitions, and is used in this thesis. Verification is the
process of evaluating software during each life-cycle phase to ensure that it meets the

requirements set forth in the previous phase [IEEE83]. Validation is the process of
testing software or its specification at the end of the development effort to ensure that it

meets its requirements (that it does what it is supposed to do). [IEEE83]

Confusingly, verification is sometimes used to mean program proving, which is the

specific process of proving (mathematically) that an implementation agrees with its

specification.

A few other terms are often used in testing practices. Module testing or Unit testing is

the process of testing the individual subprograms, subroutines, or procedures in a

program. A test case is a detailed design, consisting of both the required input data for

program execution, and a precise description of the correct output of the program for

that set of input data. A test oracle is the name given to an external mechanism which

can be used to check test output for correctness. Test oracles can take on different

forms. They can consist of tables, hand calculated values, simulated results, or informal

design and requirement descriptions ([Howden78] in [Tutorial81]). An oracle can exist
in the form of a written specification or as a person who has the authority to decide if a

program is working correctly [Weyuker82].

Test tools are software tools that assist the testing of programs in different ways , such

as analysing program structure, generating test data and recording test execution.

15

2.1 Testing strategies

The software engineering life cycle (see Figure 1.1), shows that some form of testing
must be carried out throughout the life time of a software product. This is in accordance
with the belief that the later an error is discovered after it was made, the more expensive
it is to rectify. Hence it is very costly to fix a design error that is not discovered until the
maintenance phase. This partly accounts for the statistics that show software
maintenance is the most expensive phase of the life cycle, as revealed in the following
table [Roper87b].

Life Cycle Phase
Requirements/Specification
Design
Implementation
Testing
Maintenance

% Cost [Lientz80]
10
10
10
20
50

Error Fix Cost fGlass791
4.6
5.5
6.5
7.0

76.4

As soon as program specifications and design papers are available, they should be
reviewed by testers. These early reviews can help to detect errors made in the
requirements-analysis process. In order to ensure coordinated validation and verification
throughout all life cycle phases, it is vital to draw up a test plan at an early stage. A test
plan is the overall schedule covering all the different stages of testing, from design

reviews and module testing, to final regression testing. It may enlist many test cases
designed for individual modules and the program as a whole. Regression testing or
revalidation is the rerun of some existing tests after changes have been made to a
program which had previously been test-accepted. This is to determine if the changes
have regressed other aspects of the program.

When the first modules are coded and become available from the developers, module or

unit testing is carried out. These program units can then be executed according to some
previously designed test cases. Test design involves selecting a small subset of all

possible inputs to the module under test. This is because an exhaustive-input test is

often impossible [Myers79].

The process of test input selection should be based on all available factual information

rather than on coincidence, myth or guesswork. There are two main sources of
information about a software product. The source code, if it is available to the testers,

and the functional specification of the program. They give rise to two main streams of
testing approaches, structural testing and functional testing. Structural testing is also
known as white box testing. It is a testing strategy by which the testers, concerned with
the internal structure of the program, can derive test data according to their

understanding of the program's logic. The program code provides a precise, formal and

16

machine readable notation required for the systematic generation of test data. This is the
reason why research has concentrated on white box testing [Ince84].

Functional testing is also known as black box testing. It is a testing strategy in which the
testers are unconcerned about the internal behaviour and structure of the program under
test. They perform tests based on their understanding of the intended function of the
program. Unlike program source codes, proper functional specifications are often
unavailable, incomplete or mainly written in natural language descriptions.
Consequently, functional testing has been carried out in informal and unsystematic ways
for many years [Howden8l].

Another source of information is the expert knowledge of likely causes of errors
[Ostrand84]. This gives rise to an approach called error-based testing [Morell87]. It is a
testing strategy which seeks to demonstrate that certain classes of errors have not been

made in the programming process [Weyuker83]. Error classes may be derived from a
history of programmers' errors, measures of software complexity, knowledge of error-
prone syntactic constructs, or even error guessing [Myers79].

Once a strategy or a combination of strategies is decided, there are a number of

established techniques which can be followed to design test cases. Some of these

techniques require the execution of the program and some do not. This is why testing

techniques can also be classified as either dynamic or static. Static Analysis is any
testing technique that does not involve the execution of the program under test. Dynamic

analysis is any testing technique that requires the program to be executed. Generally, a

structural testing strategy can be performed with or without executing the program (i. e.

either dynamic or static). Although a functional testing strategy can either be static or
dynamic, it is often carried out by executing a program to test its functions (i. e. dynamic

techniques are used). A brief description of some structural and functional testing

techniques are given in the following sections.

2.2 Structural Testing (White Box) Techniques

Techniques of varying degrees of sophistication exist for the analysis of a program's

code structure. The simplest approach is visual inspection by human testers. Complexity

of techniques increases from code coverage measurements, anomaly detection, through

to tools for proving the correctness of programs.

" Code Inspection and Walkthrough (Static)
These are "human testing" methods, involving the reading or visual inspection of a

program or module by a small group of people, with the help of the program's author.

Questions and reasoning interjected by testers, in the presence of the author, are

effective in exposing faults and errors. It appears to be a more effective strategy than

17

code inspection by the author alone. Uses of code inspections by IBM have shown error
detection rates of approximately 80% [Myers79].

" Anomaly analysis (Static tool)
There are code analysers which will produce flow-graphs for programs and detect
anomalies such as unexecutable code (island code), array bounds, variable
initialization, unused variables and labels, jumps into and out of loops. Analysers are
automated tools and are therefore more efficient than code inspection by human testers.
However they are only sensitive to the raw mechanics of code structure. They are
incapable of detecting logic errors that are entirely proper constructs within the rules of
the programming language.

" Code coverage criteria (Dynamic)
These are a range of criteria requiring increasing code coverage of all program
statements, branches, conditions, combinations of conditions, and lastly, all program
paths. These criteria are well published [Myers79], [White87]. Brief but original
examples are used in the following descriptions.

Statement coverage requires the design of test cases to ensure that every
statement in the program / module is executed at least once. This can be seen in

the example of a statement such as :
IF hours >_ 25 THEN employed := "Full time" ;

A single test input of "hours=30" will satisfy statement coverage. Whilst it is a
useful and necessary criterion, statement coverage is by no means sufficient.
Consider a modification to the above IF statement by the addition of an ELSE

statement as given below :

IF hours >_ 25 THEN employed := "Full time" ELSE employed := "Part time";

The test input of "hours=30" will not cover the ELSE statement, which can only
be tested with an input of "hours<25".

Branch coverage requires enough test cases to be written so that each direction of
branch (or decision) in the program would have a true and false outcome at least

once. For the above program statement, there are two branches, THEN and
ELSE. The test inputs of "hours=20" and "hours=30" would test both branches,

thus satisfying the branch coverage criterion.

18

Consider a slightly different program statement :
IF (hours >_ 25) AND (salary>_ 2500) THEN employee := "Taxable"

ELSE employee := "Tax-free" ;

There are still two branches, THEN and ELSE. However the statement now
consists of two conditions, "hours >_ 25" and "salary > 2500". The inputs
according to branch coverage, ("hours=20" and "hours=30", with a fixed value
of "salary=3000"), would still exercise both of the branches. However, the
condition "salary < 2500" remains untested.

Condition coverage requires enough test cases to be written so that each condition
would be tested for a true and false outcome at least once. The test inputs
"hours=20" with "salary=2000", and "hours=30" with "salary=3000", would
now satisfy condition coverage as well as branch coverage.

The order of combination of conditions is important. If the test inputs "hours=20"

with "salary=3000", and "hours=30" with "salary=2000" were used instead,
condition coverage would still have been satisfied. However the THEN branch

would not have been tested.

Multiple condition coverage requires enough test cases to be written in order that
all possible combinations of conditions are tested. A multiple condition coverage
would always satisfy both branch and condition coverage. Four sets of test
inputs would be required to test the above program statement according to

multiple condition coverage :
"hours=20" with "salary=2000" ,
"hours=20" with "salary=3000" ,
"hours=30" with "salary=2000" , and
"hours=30" with "salary=3000" .

Finally, path coverage is the strongest code coverage testing technique. It simply
requires that all possible program paths be executed at least once. This effectively

satisfies all the above coverage criteria [Myers79]. However, there are a number
of shortcomings noticeable in code coverage strategies [Coward88a].

- Coverage criteria can assist test input design, but do not provide test oracles to
judge the correctness of the output.

- Exhaustive path testing cannot guarantee that the program matches its

specification.

- If some required functions of the program have been left unimplemented, code

coverage cannot detect the missing paths for these functions.

19

- Combinations of all conditions can easily result in a situation called path
explosion, in which the existence of huge numbers of program paths prevents
exhaustive coverage.

- Due to the existence of infeasible paths, coverage criteria cannot guarantee that
every path is tested. For example if the program statement used in the last
example is followed by :

IF (employee = "Taxable") THEN
... ;

IF (employee = "Tax-free") THEN
...;

Since a path through both of the THEN clauses cannot be satisfied with any
possible inputs, it is an infeasible path.

" Domain Testing (Dynamic)
Domain testing is a modified form of path coverage. It helps to select a finite set of
paths for analysis. Ranges of inputs are deduced from the program structure to establish
path domains. This technique reveals errors by picking test data on and slightly off the
borders of path domains. Again, using the program statement :

IF (hours >_ 25) AND (salary >_ 2500) THEN employee := "Taxable"
ELSE employee := "Tax-free";

The path domains have two borders, the two lines representing "hours=25" and
"salary=2500". Points on and slightly off the borders are :

hours=25 and salary=2500,
hours=26 and salary=2501,
hours=26 and salary=2499,
hours=24 and salary=2501,
hours=24 and salary=2299.

The ideal path test, which requires execution of all possible paths in a program, is

almost always impractical. Domain testing aims to overcome this problem by selecting a
limited number of test points. However, its application is restricted to linearly domained

programs, according to [White87]. Moreover, the presence of iteration loops in

programs may increase test points to an unacceptable number [White87].

" Symbolic execution (a test tool, Static)

Symbolic execution is a technique, also known as symbolic evaluation, which does not
execute a program in the traditional sense. Symbolic values of input data, instead of

actual values, are fed, together with the program, into a tool that carries out symbolic

execution. The outcome of symbolic execution is a set of expressions based on the

symbolic values of the data. These output expressions represent what the program

would have produced as output with the given data, based on the tool's analysis of the

20

program. The output expressions can then be compared with the expected result
[King76], [Howden77]. The main difficulties with symbolic execution are in program
loop control variables and array element access indexes that are dependent on values of
input variables. Module calls and infeasible paths are also problematic for symbolic
evaluators [Coward88b].

" Program proving (a test tool, Static) :
Program proving is a technique that goes one step beyond symbolic execution. It does

not simply analyse the program to see what it does; it is able to decide whether the
program is correct in trying to achieve what it is supposed to do. Mathematical

assertions are added at the beginning and end of all procedure blocks to specify the
inputs and oracles. By checking against the assertions, a program prover is able to
analyse the code and determine if it achieves its goals correctly [Hantler76]. Program
proving as described above, is related to the mathematical proof approach ([Hoare69],
[Floyd67]). Whilst assertions are handled by program proving tools, mathematical
proofs are largely carried out by hand. More recently, the mathematical proof approach
has been developed during the 1980s into an important part of the formal methods in

software engineering [Gehani86]. Mathematical proof approaches use self-contained
formal specifications written in well defined specification languages, which is different
from scattering assertions alongside source codes as in program proving approaches.
Mathematical proofs are often conducted on specifications against invariant statements
and on specification refinements [Jones90], or against axioms [Liskov75] to validate the

correctness of the design even before the implementation stage. Automation of

mathematical proofs is generally pursued through theorem prover tools. However,

mathematical proofs are not infallible. Errors can exist in the specification, and in the
deduction process of proving the conformance of specification and implementation

[Ha1191 a, b] .

" Mutation Analysis (Dynamic) :
Mutation analysis is a technique mainly performed by test tools. It requires the

production of many mutant programs , which are almost identical to the original, from

the original program under test. Mutants have very slight code variations, making them

subtly different from the original program. The idea is to establish a set of high quality

test data, by using these mutant programs to test the test data. If a given set of test data

always gave a different result in any mutant program, from the result of the test data on

the original program, this set of test data is shown to be of the highest quality. The

larger the number of live mutants (mutants that do not produce distinguished results),

the poorer the ability of that set of test data to reveal errors [Budd78]. This technique

lies between structural and error-based testing. The main difficulty of mutation testing is

the enormous number of mutant programs involved, even when a small number of

operators (e. g. =, <, !! ý, >, ?, and, or) are considered for mutation.

21

2.3 Functional Testing (Black Box) Techniques :

As discussed earlier, research has concentrated on white box testing. It is because the
program code provides a precise, formal and machine readable notation required for the
systematic generation of test data [Ince84]. Nevertheless functional testing techniques
are important, as higher error detection rates have been reported with functional testing
than with structural testing [Howden76], as illustrated in the following table.

Method
Path testing
Branch testing
Functional testing

Errors discovered
12
6

17

% of total errors
43
21
61

This section discusses a number of well known functional testing techniques, which are
extensively covered in [Myers79]. Brief but original examples of the use of these
techniques are given to show their strengths and weaknesses.

" Equivalence Partitioning (Dynamic) :
This is a technique which attempts to partition the input space, so as to select a small
subset of input data from the domain of all possible inputs, aiming to select the subset
with the highest probability of finding the most errors. The input domain of a program
is partitioned into a finite number of equivalence classes, so that one can reasonably
assume a test of a representative value of each class is equivalent to a test of any other
value. This approach comes from the fact that an exhaustive input test of a program is
ideal, but impossible. Equivalence partitioning helps to select a finite set of input data
for testing. The main difficulty is that the identification of equivalence classes is largely

a heuristic process. The following gives a small part of a program specification, from

which a simple example of equivalence partitioning is developed.

"... An integer no-of hrs can be inputted at this point of program execution,
representing the number of hours the employee is employed each week. A full-time

working week is 25 hours or more. No employee works for more than 70 hours, or less

than 7 hours a week. The program responds by printing one of the three possible

messages :
Employment is full time.
Employment is part time.
Invalid input for no-of-hrs. ... "

Following the concept of equivalence partitioning, four equivalent classes are identified.

no of hrs 25, but <_ 70 , this is the valid class of "full time workers".

no of hrs ? 7, but < 25 , this is the valid class of "part time workers".

no_of hrs <7, this is a class of invalid inputs.

22

no-of hrs > 70 , this is another class of invalid inputs.

A representative value from each of the four equivalence classes is chosen, producing
four different sets of test inputs :
noofhrs=40
noofhrs=10
noofhrs=5
noofhrs=90

" Boundary value analysis (Dynamic)
This technique can be seen as a special case of equivalence partitioning. Boundary value
analysis requires the selection of test data directly on, above and below the boundary of
equivalence classes. Thus it generates more test inputs than just one representative value
from each equivalence class. This approach can be used in the result space domain as
well as the input space, making boundary analysis different from equivalence
partitioning. Referring to the same example used for equivalence partitioning, 9 different

test inputs are required to cover the three boundary values (7,25 and 70) for the input

of no or hrs:

no-of hrs = 6,7,8,24,25,26,69,70,71.

Experience shows that test cases which explore boundary conditions have a higher

payoff. The drawback is that a degree of creativity is required in order to derive

boundary conditions from specifications [Myers79]. Another weakness, according to
[Myers79], is that only boundary conditions of individual input or output variables are

analysed, and no consideration is given to exploring the combination of different input

or output variables.

" Cause-Effect graphing
This technique relies on functional specifications for the identification of causes and

effects [Elmendorf73]. A cause is a distinct input condition. An effect is an output

condition or a system transformation, i. e. an effect that an input has on the state of the

program. Causes and effects are identified by reading the specification. Each cause and

effect is assigned an unique number. The semantic content of the specification is

analysed to link up causes and effects into a graph showing transitions from causes to

effects. The Boolean operators NOT, AND and OR are used to connect multiple causes.

For instance, the following may form part of a specification.

"... If an employee is employed for not less than 25 hours each week, the employee's

income will be taxed. If the employee's income exceeds 2500 pounds or if free full

board is given, income tax is applicable irrespective to the hours of employment.... "

Three causes are identified from the above part-specification :

23

Cl: hour >_ 25
C2: fullBoard = true
C3: salary > 2500

One effect is identified :
El: employee = "Taxable"

A simple cause-effect graph is then developed in Figure 2.1.

Figure 2.1 A cause-effect graph

Cause-effect graphing overcomes the weakness of boundary value analysis by

considering combinations of inputs. However, such complexity is costly and is
therefore considered by [Abbott86] as impractical. Cause-effect graphs are often
converted into decision tables for the purpose of test generation.

" Error Guessing (Dynamic, intuitive) :
The basic idea of error guessing is to enumerate a list of possible errors or error-prone
situations and then write test cases based on the list [Myers79]. This is largely an
intuitive, ad hoc technique that is often used effectively and subconsciously by

experienced programmers and testers. It should not be confused with the more
formalized error-based testing approach [Morel187] mentioned earlier.

" Random Testing (Dynamic) :
This is a technique used to test a program by selecting at random subsets of all possible
input values. Random testing was considered "probably the poorest methodology of all"
[Myers79]. An argument against this was published in [Duran84], justifying its

effectiveness in terms of the theory of probability. More recent empirical results
[Cronin87] indicate that random testing are useful with small programs requiring

numerical inputs. [Loo88] reveals that random testing works well on error-prone

programs and programs with expected outputs that can be known easily.

24

2.4 Module, Integration and System Testing

A tester normally chooses a small subset of the techniques discussed above. The
decision depends on the nature and properties of the program under test. It is necessary
to consider factors such as program size, structure, nature (e. g. real time), severity (e. g.
life critical), and the resources available for testing. For example, some very large

programs may have problems with symbolic evaluators [Coward88a].

In general, a reasonably rigorous test can be developed by using certain black box
orientated test-case-design techniques and then supplementing these test cases with an
examination of the program's logic (i. e. using white box techniques). Having
successfully tested all the individual modules, the next step in the test plan would be to
test the whole program by combining modules together, a process called integration
testing. Again, a combination of functional and structural testing can be applied. Here,
functional tests will be used to examine the overall external functions of the whole
program. Structural testing will be used to check the interactions between the component
modules (e. g. a 100% subroutine coverage may be used to make sure all subroutines are
invoked). Integration testing can be carried out in two alternative ways, incremental or
non-incremental.

Incremental integration is to add (or integrate) one module to the program at a time,
testing is performed before the integration of the next module. Incremental integration

generally results in more thorough testing and earlier detection of interface errors
between modules [Myers79]. Non-incremental integration is also called "big-bang"

integration. In this approach, modules are combined all at once to form an integrated

program, before testing is applied.

When the modules are successfully integrated and have gone through integration testing,

the complete program (or package) is then subjected to function testing, to see if it

performs all its required functions as stated in the product specification.

After integration and function testing, the program is relatively error free (by and large a
"working system") and can now be subjected to system testing, such as :

" Installation Testing

" Performance Testing

" Stress Testing

Change or correction of an error in a working program can introduce new errors

elsewhere in the program. Therefore, regression testing must be carried out at different

stages within bug-fixing cycles of function testing and system testing.

25

It is a common industrial practice to carry out a Beta-Test, before a program (or
package) is to be finally test-accepted and ready for release to customers. Beta testing
entails the use of the pre-released program in a normal production environment, at a
certain selected customer site for a period of time, with proper problem monitoring,
problem reporting, debugging and bug-fixing procedures arranged amongst developers,
testers and users.

2.5 Summary

Testing is necessary at all stages of the software life cycle. It begins with requirements
and design review. It then progresses to module, integration, function, system and
acceptance testing, leading to product release. Any subsequent changes during software
maintenance are then subject to regression testing, throughout the life time of the
software. The testing approach being developed in this thesis is for the testing of user
interface functions after integration. These functional tests can constitute part of the
acceptance test package, and will most likely form the core of any regression test suites.
The proposed new testing approach, named Formal Functional Testing (FFT), is

explained in later chapters. Three main points derived from the above survey on
software testing were useful in the development of the FFT approach.

"A test oracle is essential;
A program can only be tested properly if the tester knows precisely what the program

under test should and should not do. This justifies the requirement for a test oracle in all
test cases. Such information, used for deciding if a program is behaving correctly, can

generally be derived from the specification of the program.

" Functional testing is often informal and unsystematic;
This occurs because functional specifications are often unavailable, incomplete or

mainly written in natural languages that give rise to ambiguity.

" Structural and functional testing are complementary;
Existing testing techniques belonging to the two main strategies (structural and
functional) can be combined to create stronger techniques. For instance, equivalence

partitioning can be combined with statement coverage.

26

Chapter 3

Problems confronting the Validation of
Graphical User Interfaces

The previous chapter gave a brief review of existing software testing techniques. This

chapter aims to consider their application in the validation of graphical user interfaces.
Some fundamental questions are useful for a wider understanding of the problem areas.

Q1- Is a GUI sufficiently different from other types of software to require a separate
investigation ?

Q2 - What are the problems of applying existing software validation techniques to GUI ?
Q3 - Are there any theoretical, mathematical concepts or abstract models which could

help to reason about GUI software and its validation?

Answers to the above questions will be developed. This chapter begins with an analysis

of graphical user interfaces from three different perspectives. From the view of ordinary
users, it is a set of display objects (e. g. icons, menus, windows) which provide specific
interaction functions. To interface programmers it is a set of window system library

routines (e. g. to create windows and display objects). For system programmers, it is an

architecture for building application programs on top of window systems and other
support software. These three perspectives are discussed further in the following

sections.

27

3.1 Functional perspective

Users perceive a graphical user interface as a means of performing their work through
interactions with a set of display objects. Although GUIs are highly interactive and
mode-free' , so far only a few basic types of interaction components are in common use.
They are identified below :

" Windows - Text editing windows, terminal emulation windows, etc.
" Icons - For files, file folders, application programs, etc.
" Menus - Pop-up or pull-down menus, and variants such as command

buttons, radio buttons, and check boxes.

" Text boxes - Rectangular area where text can be entered.
" Scroll bars - Sliders, dials and other "control panel" component variants.
" Dialogue boxes - Combination of command buttons and text boxes, which may

block processing until the dialogue box is cleared.

The most distinctive feature of GUIs is the use of graphical objects to convey meanings
and conduct communications between users and their computers. Previously, textual
messages, prompts and commands were the main media of user interactions. Lines of
text were simply rolled off the top of the screen in the traditional line mode input /

output. GUIs use windows and scroll bars to better manage text display. GUIs also
entail the organization of the screen layout of windows and other display objects, a
process called window management. Most window systems seem to offer a similar set

of window management functions [Myers88]. A list of the basic ones are given below :

" Create and destroy display objects (e. g. open and close windows).
" Move display objects around the screen.

" Hide and raise overlapping display objects.
" Resize display objects.
" Iconize windows.

The general functions of user interfaces are portrayed in a number of well known

models such as the Seeheim Model [Pfaff85], and SmallTalk's model-view-controller

paradigm [Goldberg83]. The Seeheim Model is shown in the following diagram.

This means the user has many choices at every point [Myers89]. See section 3.4.

28

Presentation

User

Dialogue
Control

Application
Interface
Model

Bypass

Figure 3.1 The Seeheim Model of User Interface

Application

In the Seeheim Model, the presentation component is responsible for the physical
appearance of the user interface, including all device interactions. The dialogue control
component manages the dialogue with the user. The application interface model holds
the communication between the user interface and the other parts of the application
program. The lines and arrows indicate directions of communications. The small box at
the bottom is intended for emergency use, to allow messages (e. g. alarms) to be sent to
the user rapidly, bypassing normal communication overheads.

3.2 Code-based perspective

A graphical user interface is generally accomplished by a large number of routine calls

to an underlying window systems library. The skeleton of a typical OS/2 PM

[Petzold89] user interface program is given in Figure 3.2. Another example of an X

Windows program can be seen in Figure 3.5.

Before the advent of GUIs, terminal I/Os were performed by the traditional line mode

character input / output. I/O interfaces had a very small number of system I/O routines

as part of the operating system. The introduction of GUIs has brought additional code

complexity. An application program could have a significant increase in code size, when

employing a window user interface [Yip91b]. To substantiate this point, consider the
"hello world" program using the X Window System [MIT89]. It occupies about 2 to 3

pages of code and comments. In contrast, a typical C program with the conventional

character I/O, would only require a couple of lines to print the "hello world" string. The

X Windows "hello world" program basically creates a window on the screen and writes

the "hello world" string onto the window. Additional lines of code are required to set up

the event handling and various attributes for the window. Extra codes are also used to

program the desired font, position, size and colour for the character string.

29

/* WELCOME. C -- Skeleton of a typical window user interface program that has an icon,
it opens a window and undertakes processing according to input events. */

#define
... #include <os2. h>

int main (void)
{ static ULONG flFrameFlags = FCF_TITLEBAR I

FCF_SIZEBORDER
static CHAR szText [] _ "Welcome";
HAB hab;
HMQ hmq;
HW ND hwndFrame;
QMSG gmsg;

hab = Winlnitialize (0) ;
hmq = WinCreateMsgQueue (hab, 0) ;
hwndFrame = WinCreateStdWindow

HWND_DESKTOP,
WS_VISIBLE,
&flFrameFlags,

...)

FCF SYSMENU

// Parent window handle
Window style

// Pointer to control data

WinSendMsg (hwndFrame, WM_SECTION,
WinQuerySysPointer (HWND_DESKTOP, SPTR_APPICON, FALSE),
NULL) ;

while (WinGetMsg (hab, &qmsg, NULL, 0,0))
{ switch (msg)

case WM_CREATE:
[do initialization]

case WM PAINT:
[paint the window]
WinDrawText (hps, -1, szText, ...);

case WM CHAR:
[process keyboard messages]

case WM_MOUSEMOVE:
[process mouse movement messages]

case WM-
DESTROY-[clean up] }

}
WinDestroyWindow (hwndFrame) ;
WinDestroyMsgQueue (hmq) ;
WinTerminate (hab) ;
return 0;

Figure 3.2 Skeleton of a typical window user interface program

A distinctive feature of GUIs is the existence of a main program loop awaiting the next

event or user input, as can be seen in the "While (WinGetMsg(...))" statement in Figure

3.2. Another distinctive feature is the existence of call back routines. Call back routines

are part of the user interface code, for handling certain pre-declared I/O events

30

associated with interaction objects of the GUI. These call back routines would be given
control of processing by the event manager as the 110 events occur. The mode-free
nature of GUI user interfaces is generally implemented by asynchronous events and call
back routines.

3.3 Architectural perspective

There exist a number of different software levels on which a graphical user interface can
be built. They are window systems, toolkits and User Interface Management Systems
(UIMS). Figure 3.4 illustrates how they are related to the user interface.

3.3.1 Window systems
A window system consists of a program library that supports the display of objects for
user interfaces. It is also the run time system which enables interactions or input/outputs
to be performed through display objects.

A well known example is the X Windows System from MIT. (Its structure is illustrated
in Figure 3.3.) The X Window System has a library of routines called XLIB, providing
more than 200 different routines to be called by window applications.

The X Windows System incorporates a client - server model. Application programs that
make calls to XLIB are clients. I/O requests from clients are processed and passed to
server programs that carry out these I/O requests on workstations. The library (XLIB)

and servers communicate in the X Protocol, over a network if necessary. The library

and the server can both, of course, be running in the same workstation. The
introduction of the X Protocol between the library and the server is how the X Windows
System achieves one of its two main claims, that X is network transparent. The quality
of being network transparent is of major significance. Consider a configuration where
a heavy cpu-bound application is working out the weather map on a CRAY

supercomputer; the user interactions and graphics displays can take place on a number
of workstations connected to the supercomputer over a local area network.

In addition to being network-transparent, the X Window System is also claimed to be

device-independent. It can be observed in Figure 3.3 that aX Server consists largely of

a device-independent part that understands the X Protocol. New devices or workstations

can be added to support X simply by creating a new backend of the X Server for that
device. Once this is done, all existing applications that use X can be ported to run on

this new workstation, without modifications.

31

the
indow
(stem

-*-

Figure 3.3 The structure of the X Window System

3.3.2 Toolkits and User Interface Management Systems (UIMS)
A window system library can be tedious to use, as it generally provides a programming
interface of low level routines. To encourage programmers to use windows, low level

routines are built together to form a higher level programming interface generally called

a toolkit [Myers89], [Hall87]. Toolkits make life easier for programmers, by taking care
of small details. They provide a higher level abstraction of display objects called

widgets [MIT89]. Thus fewer routine calls are required. Toolkits automatically supply
default values to some parameters in window library calls. This is why toolkits tend to
dictate the "look and feel" of user interfaces. Examples are the X intrinsic toolkit and
the Interview toolkit [Linton89], which both exist on top of the X Window Systems.

The MacApp framework [Shmucker86] on the Macintosh is another example of a
toolkit. Toolkits have become popular through the success of underlying window

systems. This can be seen in Figure 3.4 which shows that GUIs can be constructed on
top of UIMSs, toolkits or window systems; and UIMSs can themselves be built on top

of toolkits or window systems.

32

U IM S

lkits

Window systems

Figure 3.4 A diagram showing the different levels of software and usage

User Interface Management Systems (UIMS) provide a new approach to solving the
user interface problem. A UIMS can be perceived as an integrated set of tools that help

user interface developers to create and manage many aspects of interfaces. [Myers89]

suggests that it is preferable to call them User Interface Development Systems (UIDS)
instead of UIMS. The name UIMS will be used in this thesis.

One main function of a UIMS is to support the execution of the user interface at run
time. In reality, a UIMS is both a user interface design tool and an underlying window
system. For example, the WINDLIB in the University of Alberta UIMS [Green85] is a

window-based graphics library package. This explains why a user interface is both

closely adhered to and dependent on the UIMS at run time, where the window graphics
library of the UIMS can be looked at as part of the run time system.

Some UIMSs support automatic code generation of interfaces, which can then be

connected into the main body of the application program ([Gray88], [OSU89]). UIMSs

encourage the idea of dialogue separation [Cockton86]; that is the dialogue component
(i. e. the user interface) should be separated from other components of the application

program.

3.3.3 Dialogue Separation
When a user interface is designed as a separate program module, distinct from other

components of the application program, dialogue independence is achieved. Dialogue

independence [Hartson89] means that design decisions which affect only the user
interface are isolated from those which affect the other components of the application

program. This concept is illustrated in the Seeheim model in Figure 3.1, where the user

33

interface communicates with the application program through an application interface.

Dialogue independence is crucial for easy modification and maintenance of the user
interface. For example, if a more meaningful name is invented for an existing menu
option, it would only require code changes in the user interface module. However,
dialogue separation is difficult to achieve. In a survey of designer practices published
in 1987, it was found that 50% of all designers indicated that the user interface had not
been considered distinct from the rest of the system during design [Rosson87].

One important feature of a ULMS is that dialogue separation is encouraged and enforced.
Often the first step in the process of transforming a monolithic application package to
exploit a UIMS is to separate out user interface code (i. e. the dialogue component) from
the computation components [Prime88]. Dialogue separation is a popular area of
research amongst developers and researchers in user interface management control and
communication [Myers89]. An important question to ask at this point is how much
processing power should be included in the dialogue component? Where the dialogue
component is given processing power, the communication between the dialogue

component and the computation component is performed at a higher level, thus the name
"macro-communication" [Hartson89]. This is because the dialogue component is able
to interpret raw input from the user and communicate interpreted commands and
parameters to the computation component. For example, the dialogue component can
include the ability to provide the visual feedback locally, simplifying the large

communication overhead. Without processing power, the dialogue component has to

send all input events to the computation component. This lower level of communication
is called "Micro-communication" [Hartson89].

3.4 Testing Graphical User Interfaces

The above analysis has highlighted the need to target tests, since code structure varies at
different levels. It was decided that this thesis should concentrate on the testing of

application user interfaces. One reason for this is that there are a large number of

application programs making use of a relatively small number of window systems,

toolkits and UIMS. Vendors of window systems, toolkits and UIMS are better

equipped to test their respective products.

As GUIs are highly interactive, the validation of GUIs is difficult to automate. The old

automation practice of running a long script in batch mode to exercise programs

thoroughly is not applicable to GUIs. The need to generate interactive, position- and

timing-dependent test inputs, and to inspect output displays has ruled out batch mode

testing. There is also the usual testing need for test case selection and test oracles.

34

GUIs are interactive and mode free
GUIs are similar to communication programs or other interactive programs, in which an
input produces an output (or a change of state). GUIs differ from this class of programs
principally in that both the input and output are voluminous and graphical; useful
validation can be done by abstracting away some details, and extracting the significant
features of the I/O.

Like other highly interactive systems, GUIs are largely mode-free [Myers89]. This
means the user has many choices at every point. The partitioning of the screen into
different windows and display objects has made it possible for users to change quickly
from one mode of interaction to another by moving onto another object or window, thus
reducing the restriction of modes. However, this functional requirement of mode-free
interactions could easily lead the user interface into a state that has not been foreseen by
the designers. This level of complexity can be better handled if interactive functions of
user interfaces are clearly written down in a precise and unambiguous manner. It calls
for a formal specification of user interfaces.

Visual inspections are essential
A basic I/O function that is vital to GUIs is the movement of the mouse pointer on the
screen. Although the tracking of the mouse pointer is mainly achieved by hardware, this
basic function is important as most interactions (e. g. selecting a menu option) rely on
the accurate mapping between screen positions and the internal (x, y) coordinate
representation used in the software. This is one of the main functional differences

between GUIs and other interactive programs. Effectively, a GUI has extended the one
dimensional input space of command line interfaces to a two dimensional input space,
by utilizing the capability of modern display hardware.

The main difficulty in validating this new, position-dependent I/O function is that it

requires visual inspection of screen objects. Visual inspection can be time-consuming,

tiring and prone to human errors. There are questions concerning whether all locations

within the screen map (e. g. 512 x 512 points) should be checked. More importantly,

testers need to know the correct shape, size and position of display objects (i. e.
presentation attributes) for the purpose of verification.

Window Management Functions

Window managers are usually part of the underlying window system and not part of the

user interface. However, in most window management operations, the window

manager only makes decisions and draws the window frames. It is up to the application

programs to redisplay the window contents upon notifications from the window

manager, concerning changes in position, size, overlapping orders and other attributes.
Therefore, the testing of window management functions of user interfaces must not be

overlooked.

35

3.5 Structural Testing considerations

The structure of the GUI code varies according to the underlying software: window
systems, toolkits or UIMSs. It is vital to determine the right level at which to target
tests. It is also important that tests are designed to be reusable.

Static Structural Testing
Most GUI software contains a large number of library calls to the underlying window
system. The correctness of window application programs has now become dependent
on the parameters and sequences of these routine calls. Information (or rules) about the
correct use of parameters and routine sequences are external to the application program.
On some occasions this information (or collection of rules) is not always precisely or
clearly stated in reference manuals. Since these routines are external to the application
packages, it gives rise to difficulties with some structural testing techniques such as
code inspection and source analysis. There is also the complication in testing the
asynchronous event handling of call back routines. As call back routines are called
asynchronously by the window system, they do not fit in the main control flow of the
user interface code. The simplest program that uses the X Window System is shown in
Figure 3.5 .

Xrefresh - Refresh the Screen.

The following program (xrefresh) is the simplest X application :

%include <X/Xlib. h>
%include <stdio. h>
1*

Copyright 1985, MIT

*ý

main (argc, argv)
int argc;
char **argv;
{

Window w;
if (XOpenDisplay(argc ? argv[1 NULL)

fprintf (stderr, "Could not open Display! O);
w= XCreateWindow (RootWindow, 0,0, DisplayWidth(),

DisplayHeight(), 0, (Pixmap) 0, (Pixmap) 0);
XMapWindow(w); /' put it up on the screen
XDestroyWindow(w); /* throw it away `/
XFlush(; /* and make sure the server sees it

}

Figure 3.5 An example application program [MIT89]

This program consists of nothing but routine calls to the window system. Existing code

analysers are designed for standard programming language constructs and would not be

able to validate these external routine calls. To build a tool that would understand the

36

syntax and semantics of all these routine calls in order to validate them, could require an
effort that is comparable to the development of the window system itself. Also, UIMSs
and window systems have different program interfaces. A comparison of a small subset
of routine names used in three common window systems, namely X [MIT89], OS/2 PM
[Petzold89] and the Macintosh Toolbox [Apple85] is shown in Figure 3.6. This
exemplifies the fact that variations in routine names in different window systems would
hinder the reuse of any general purpose structural analysers, across different platforms.
However, these routines from different window systems are seen to provide similar
functions.

Dynamic Structural Testing
It is possible to take a dynamic approach (rather than the static code analyser approach)
to the structural testing of GUIs. For instance, a statement coverage criterion may be
used to ensure code coverage during testing. This may require the tester to validate the
behaviour of the user interface at each window library call. This is different from the
structural testing of programs that consist largely of arithmetic and logical operations,
which tend to give an accumulated result (or output) at the end of execution. User
interface programs consist mainly of interactive inputs and outputs which need to be
examined during their execution. Since the user interface code consists of many routine
calls to the window system, this again requires the detailed understanding of the
window system functions.

3.6 Functional Testing Considerations

Structural testing tools and techniques, such as code analysers, are more developed
because they are reusable for testing different programs (written in the languages for

which the tools are designed). For GUIs, functional testing appears to have the benefit

of being generally applicable to different window user interfaces. This is due to the
observation [Yip9ld] that features and basic interaction components provided by
different window systems are very similar even across different hardware platforms.

Ideally, a user interface should provide the same functions, irrespective of the structure
of underlying software. A functional specification at the highest level (i. e. at the level of
user interactions) encompasses all the required functions of lower level software. For

example, when a user interface is ported onto a different window system or hardware,

the functional specification of a menu with four options would remain the same, whilst
the names and number of routine calls and arguments to set up the menu may change.

37

OS/2 PM X Window Macintosh

#include <os2. h> #include <X11/Xlib. h> interface. lib
WinInitialize Xinit InitWindows
WinCreateWindow XCreateWindow NewWindow
WinCreateStdWindow XCreateSimpleWindow - WinDrawText XDrawText DrawText
WinGetMsg XNextEvent GetNextEvent
WinQueryPointerPos XQueryPointer GetMouse
GpiMove XDrawPoint MoveTo
GpiLine XDrawLine LineTo
GpiPolyLine XDrawSegments -
GpiBox XDrawRectangle FrameRect
WinFillRect XFillRectangle FillRect
GpiSetColor XCreateColormap ColorBit
GpiSetCharSet XLoadFont TextFont
GpiSetPattern XFiilStyle BackPat
GpiErase XClearArea, XClearWindow EraseRgn
Gpilmage XPutlmage DrawPicture
WinDrawBitmap XCreatePixmapFromBitmap CopyBits
WinShowWindow XMapWindow ShowWindow
WinSetActiveWindow XConfigureWindow SelectWindow
WinSetFocus XSetlnputFocus -
WinDestroyWindow XDestroyWindow DisposeWindow
WinTerminate XCloseDisplay -

Figure 3.6 A Comparison of window library routine names of three window systems

Another reason why research has concentrated on structural testing is that the program
code actually provides a precise notation required for the generation of test data
[Ince84]. Functional descriptions of programs are often informal and hence unsuitable
for the automation of the testing process. However, the advent of formal specifications
has now provided a concrete basis for systematic functional testing. Only a very small
number of publications, such as [Choquet86], [Ha1188], [Roper90], advocate the
derivation of test cases from formal specifications. (None of these published works
addresses the testing of GUIs.) In this thesis, the name Formal Functional Testing

(FFT) is used for this approach.

38

Display objects and interaction functions
In graphical user interfaces, display objects are given interaction functions. For
example, if the mouse pointer is moved inside an icon of a certain program, the clicking
of the mouse button at this point would invoke the interaction function to execute that
program. To ensure a systematic and thorough testing of GUIs, it is vital that all display
objects and interaction functions are identified so that none would escape testing.
[Shooman83] has shown that a proper enumeration of program paths is not a trivial
problem and is vital to structural (code based) testing.

A specification notation for the enumeration of objects and functions is developed in
Chapter 5. The identification and breaking down of a GUI into basic interaction
components is a process of functional decomposition [Howden87] for validation
purposes. This transforms the testing of the user interface into smaller, more
manageable pieces. Interaction objects that are instances of the same basic component
are expected to behave in similar (or even identical) manners.

3.7 Tools for GUI testing

One of the early attempts to address the problem of testing interactive systems was the
AutoTester project at Wang Laboratories [Leach83]. It pioneered the use of a "record

and playback" mechanism to record and replay user inputs for the automation of
interactive system testing. Other investigations [Casey82], [Maurer83], [Lewis89R]

also proposed the use of Journal Record and Replay (JRR) for testing. However none
of the above address the testing of GUIs. There are a small number of commercial JRR

products available for recording GUI interactions, such as "Auto Mac" [Microsoft88],

"Evaluator" [Elverex89] and "CAPBAK-X" [CAPBAK90] for specific hardware

platforms.

3.7.1 Limitations of the JRR approach
A JRR mechanism would only repeat the tests (or interactions) that a human tester had

previously carried out by hand. JRR does not help to solve the problem of test case
design. Technically there are four problems that are mixed together :

P1 - The design of test cases (i. e. identifying and selecting items to be tested).
P2 - Translating test design into the appropriate format of input sequences.
P3 - The execution of the test cases (e. g. by hand or JRR).

P4 - Evaluation of the results of test case execution (i. e. test oracles).

A JRR tool only provides an answer to the third problem listed above. This thesis

proposes a solution to P1 in the use of a formal specification that will identify all items

to be tested for test case generation purposes. This approach would also answer part of

P4, as test oracles can be obtained from specifications.

39

3.7.2 Visual verification
In practice, visual inspection by human testers has so far been the approach to P4. Some
research [Johnson87], [Islam89] has made attempts to validate GUI screen outputs by
comparison with previously recorded bitmaps. This approach is often called visual
verification. It has a number of difficulties:

" In deciding suitable check points where snapshots of screens have to be taken.
" Large storage space requirement for bitmap files.
" Screen images are sometimes shifted by a small number of pixels, and transient

displays such as time and date can also cause problems during bitmap comparison.
" Minor changes in layout of display objects would invalidate test cases.

This thesis proposes that the actual visual appearance of display objects be included in

specifications to form a special kind of state transition diagram called WinSTD. A
WinSTD would be used by human testers for checking the visual appearance of objects,
as well as for identifying interaction objects and functions for testing.

3.7.3 Input synthesis
A solution to P2 is emerging, called input synthesis. Input synthesis is an approach
which simulates keyboard and mouse inputs, so as to relieve human testers from having

to execute tests in generating inputs by hand. The journal file of a JRR mechanism can
provide the first step towards input synthesis. New interaction sequences or changes to

the recorded sequences can be produced by providing editing facilities on the content of
the journal file [Johnson87]. Another step forward would be to generate the contents of

the journal file by other means than recording, such as derivation of test cases from

specifications. Release 4 of the X Window System [MIT89] contains an "Input

Synthesis Extension Proposal" to allow the client program to generate user input actions

without the user. It will also allow the client program to control server actions in

handling user inputs. This proposal gives a programming interface to simulate user
inputs. However, there are synchronization problems with input synthesis that is no

easy task to resolve [Islam89], [Jamison90], [Coutu90].

3.8 Review and Decision

In this problem analysis, graphical user interfaces have been examined from various

perspectives. GUIs are found to be different from other software. Functionally, a GUI

pioneers the graphical communication between humans and computers. It has

transformed the traditional line mode character I/O into a new two dimensional, position

dependent, mode free, graphical and textual I/O. Structurally, GUIs are distinctive in

having event-wait loops and call-back routines. The software levels of window

systems, toolkits and UIMS have presented interface designers and testers with difficult

40

choices. This thesis will concentrate on the testing of user interfaces. A functional
testing approach is preferred to a structural testing approach. The following summarizes
the reasons for the decision;

" Routine calls to window library and call-back routines can give rise to difficulties with
some structural testing techniques, as information external to the application packages
is required.

" Variations in programming interfaces and routine names of window systems, toolkits
and DIMS hinder the development of a general, reusable structural testing approach.

" Program code used to be the only source of the precise notation required for test data
generation. The advent of formal specifications has provided an alternative.

"A functional specification at the highest level (i. e. at the level of user interactions)

would encompass functions of lower level software (i. e. window system, toolkit or
UIMS).

" Functional tests can be reusable, since features and basic interaction components
provided by different window systems are very similar even across different hardware

platforms.

" Functional testing has the advantage over structural testing in that test oracles can be
derived from specifications.

" Higher error detection rates have been reported under functional testing than under
structural testing [Howden76] (see Section 2.3).

41

Chapter 4

Survey of Specification Methods
for User Interfaces

The previous chapter established that a functional testing approach for graphical user
interfaces is the goal of this research. A functional testing approach is dependent on
specifications, preferably formal ones, for derivation of test inputs and oracles. This

chapter surveys existing specification methods, in order to evaluate whether any of them
can be used for test case generation. It presents a broad overview of a number of
published user interface specifications in this section. Discussion is then focused on
three main representative approaches in the following sections.

There are a number of published works on the application of formal specification

methods to user interfaces, graphics, or interactive programs. Confusion often arises
from the languages and interfaces associated with interactive systems .A working group

at the Seillac II workshop addressed this issue [Mallgren82] :

"In the interactive world, we distinguish two interfaces to the

computer. The first between the user or operator and the computer is

called the User Interface. The second between the programmer of the

system and the computer is called the Program Interface. Each

interface needs a Specification Language. In addition, the User

Interface provides a means to communicate with the computer by using

the Dialogue Language. The Dialogue Language is handled by its

counterpart on the programmer side: the Programming Language. "

In this definition, the research work of [Mallgren82] and [Duce86] is on specifications

42

for program interfaces. [Mallgren82] presents a formal specification of interactive

graphics programming languages. [Duce86] discusses the formal specification of GKS'
output primitives. More recently [Purvis90] reports an investigation, and poses the
question : "Is the specification of GKS feasible using LOTOS2 ? ". This investigation
explores the details of specifying interactions such as mouse operations, in terms of
concurrent processes and communication channels. Whilst it is an elegant approach to
modelling mouse interaction, it is on a level of abstraction that encompasses too much
detail for the purpose of test data generation.

There are a number of published works on dialogue specification. [Hekmatpour88]
addresses the prototyping of user interfaces from formal specifications. [Harrison90]

gives a collection of papers on the formal specification and analysis of user interfaces,
from design, human factors and technical perspectives. [Arthur87] examines menu-
based systems. The formal specification of text editing is discussed in [Sufrin82] and
[Chi85].

[Parnas69] first suggested the use of state transition diagrams (STD) to describe
interactions between the user and the computer. The use of STD, BNF-like grammar
and event languages are detailed in [Jacob86] and [Green86]. [Alexander86] proposes
the use of CSP [Hoare85] embedded in a functional programming language called "me-

too", for the prototyping of user interfaces. This can be seen as a form of an event
language approach. [Marshall86] discussed the use of VDM [Jones90] together with a
form of STD called State Charts [Harel88] for the formal description of user interfaces.

Marshall's work aims to show that user interactions can be specified in a formal

language like VDM. It gives a highly mathematical account and achieves some formal

proofs. However, it does not go beyond the simplest academic study of a logon user
interface. Neither [Alexander86] nor [Marshall86] deal with the graphical, or testing

aspects of user interfaces.

[Abowd9O] and [Harrison9l] describe a "constructive approach" together with a general

survey of existing formal methods for HCI. This approach uses the "Agent Model",

which is less abstract and more constructive than other specification approaches. It is

intended to aid the design and implementation of interactive systems, but not for testing.

K stands for the Graphics Kernel System, it is the international standard for 2D

graphics.
2 LOTOS has recently been approved by the International Standards Organization (ISO)

for the description of Open Systems Interconnection.

43

4.1 The use of State Transition Diagram

For some time research effort has concentrated on specification of the dialogue control
component. (See the Seeheim model in Figure 3.1

.) Jacob, in 1983, investigated two
formal specification methods: transition diagrams and a grammar similar to BNF.
[Jacob83] concludes that specifications based on state transition diagrams are preferable,
as they can show an explicit time sequence more clearly than grammar specifications.
An Example of Jacob's specification for a scroll bar interaction is shown in Figure 4.1.
It illustrates that it is possible to produce formal specifications for interactive user
interfaces.

Referring to Figure 4.1, the input tokens are listed first. The TENTER token represents
the input action of the mouse pointer entering the scroll bar area. This is the initiating

point of the scroll bar interaction. All scroll bar interactions must begin with the
iENTER input. The simplest example of an interaction would be an iENTER followed
by an iEXIT, without the mouse button being pressed. This can be seen in Figure 4.1.
The outcome is no display changes in either the scroll bar or the text associated with the
scroll bar.

The next example of a user input is that the iENTER token is followed by the
iMOUSEDN input token. The expected outcome is an output token called
oSHOWBAR, which displays the scroll bar at the pointer location where the mouse
button is pressed down. When the mouse button is released, the associated text will be

scrolled.

Jacob's specification approach appears to be viable for test case generation. The

interactions described above can be written down to form test sequences listed as
follows :

1 TENTER <followed by> iEXIT

expected outcome : none

2 TENTER <followed by> iMOUSEDN

expected outcome : oSHOWBAR

3 TENTER <followed by> iMOUSEDN <followed by> iMOVE

expected outcome : oSHOWBAR

4 TENTER <followed by> iMOUSEDN <followed by> MOVE <followed by> iMOUSEUP

expected outcome : oSHOWBAR <followed by> oSCROLLTEXT

44

INTERACTION_OBJECT ScrollBar is

TOKENS:

TENTER { --Mouse enters scroll bar area-- }
iEXIT { --Mouse leaves scroll bar area-- }
iMOUSEDN { --Mouse button pressed down,

-- sets ScrollOffset := scaled X coord of mouse-- }
iMOUSEUP { --Mouse button released-- }
iMOVE { --Any mouse motion within boundaries of scroll bar area,

--return scaled X coordinate of mouse in ScrollOffset-- }
oSHOWBAR { --Fills or erase bar up to location corresponding to ScrollOffset--}

SYNTAX:

end INTERACTION_OBJECT;

Figure 4.1 Specification of a scroll bar according to Jacob's method [Jacob86]

Test case generation from Jacob's STD, in terms of states, inputs and outputs, is similar
to the functional testing technique called cause-effect graphing (see Chapter 2). They

both attempt to describe input events (or causes) and the corresponding state transition

and outputs (or effects).

The cause-effect graphing approach was considered by [Abbott86] as impractical. The
STD approach was described [Myers89] as a maze of wires easily running outside the

45

Act: ScrollDisplayEntries (ScrollOffset)

boundary of the drawing paper when used for complex systems. In view of the
increasing emphasis on modular programming [Wirth71 a] and dialogue separation, the
augmented STD approach would be practical when used for manageable pieces of
individual interaction components. It was for these reasons that Jacob later modified his
model [Jacob86].

The main limitation of Jacob's STD approach is the lack of description of the physical
visual appearance of interface objects for validation purposes. So far as the functions of
a scroll bar are concerned, the specification does not show, for example, how the scroll
bar looks and where its control regions are. It also becomes apparent that a state diagram
(of nodes, arcs and labels) cannot convey all the necessary information for a
specification. In Figure 4.1 textual declaration of input and output tokens are prefixed
to the state diagram, where comments are used to convey the semantic meaning (i. e.
operations) associated with these tokens. It is vital that semantics should also be
specified formally (e. g. with pre- and post- conditions) for specifications to be usable as
test oracles. For instance, it is important to state the number of lines which are to be

scrolled. This can be expressed in terms of an integer variable being assigned a value
proportional to the movement of the scroll bar slider. This movement should be

measured from the first location of the mouse pointer, where the mouse button is

pressed, to the second location where the button is released. The distance moved should
then be divided by the full length of the scroll bar, and multiplied by the total number of
lines of text to give the number of lines to be scrolled. A picture of the scroll bar

undoubtedly assists the above description, and the use of pictures is advocated in this

thesis as an essential part of a GUI specification. Figure 4.2 shows the visual
appearance of a scroll bar, as part of an editing window.

thesisD3.2
se d, to the second location v here button is released. distance

e divided by the full length of the scroll bar, and multiplied by the total n

give the number of lines to be scrolled. A picture of the scroll bar vo

Bove description, and is advocated in this thesis as an essential part of

Figure 4.2 shovs the visual appearance of a scroll bar, as part of an

e of BNF like grammars

-Naur Form) grammars are conventionally used for defining the s

Figure 4.2 Visual appearance of a scroll bar as part of an editing window

slider

length of

scroll bar

46

4.2 The use of BNF-like grammars

BNF (Backus-Naur Form) grammars are conventionally used for defining the syntax of
programming languages. BNF is limited to the provision of rules for recognizing input
strings (i. e. the syntax). It is not able to indicate the executable actions (or semantics)
for the recognized input. Often a BNF grammar is augmented with notations to specify
actions to be taken when a phrase or sentence of the input language is recognized, as
used in compiler-compilers such as YACC [Johnson81]. This kind of extension has also
made BNF usable for specifying user interfaces, where a dialogue consists of both user
inputs and actions (or outputs) from the computer.

A simple specification example of a logon dialogue [Alexander86) is given to illustrate
the use of BNF

<logon> :: = LOGON (1) <user-id>
<user-id> <bad-user> I <good-user>
<bad-user> %USER (2)

<good-user> :: _ %USER (3)

where (1) output: "user name? "
(2) condition: not REGISTERED-USER (%USER)

output: "invalid user name, try again"
(3) condition: REGISTERED-USER (%USER)

A more extensive example of BNF specifications for a non trivial interface can be found
in [Jacob86], where it is also shown that an STD specification can be generated from a
BNF specification of the same interface. As a BNF specification is machine readable, it
is more usable for test case generation, than an STD. However, an STD can display

sequences of interactions to software engineers, more perspicuously than BNF
[Jacob83]. This argument is echoed in [Marsha1186], which uses a special form of STD

to visualize interactions formally specified in VDM.

4.3 Event Languages

In July 1986, Green published "A Survey of Three Dialogue Models", investigating

transition networks, grammars and events. [Green86] concludes that the events model
has the greatest descriptive power, as it is suitable for handling both sequential and

asynchronous dialogue control. The use of callback routines is the most popular

method for handling asynchronous input events [Green85,86].

47

The specification of the Event
Handler for the login sequence shown
here, is as used in the University of
Alberta UIMS. The event language
used for the specification looks
similar to aC program. According to
Green, the expressive power of
event languages is greater than that
of transition networks or BNF-like
grammars.

An event specification like this one
can be understood and checked by
interface designers with no more
difficulties than BNF-like grammars.
This method of specification gives
precise and complete information for
testing the user interface specified.
It also allows the possibility of
getting tokens from the event
language compiler for automating
test data generation.

Figure 4.4 Event handler for the login sequence in the Alberta UIMS [Green85]

From the view of testing, an executable event language is a weakness. One of the
desirable properties of a formal specification language is to be independent of any
specific implementation, so that an implementation can be validated by checking it

against the specification. More importantly, Green's event language does not cater for

the graphical aspects of user interfaces.

4.4 Requirements of a user interface specification

This chapter has surveyed specification methods used in a number of user interface

systems, leading to the conclusion that no one single method is satisfactory in providing

all the necessary information for test case generation. A user interface specification

suitable for testing and software engineering purposes should include detailed and

precise information covering three areas :

" Presentation (attributes of display objects)
It is important for human testers to know the visual appearance of objects for

verification.

48

" Syntax (rules governing interaction sequences or dialogue)
It is helpful for testers to be able to see clearly the control flow of interactions.

" Semantics (specification of operations or functions)
It is vital that functions are specified in a precise and unambiguous notation.

Perhaps one of the main problems facing testers is that such an ideal specification does

not normally exist. A formal specification approach aimed at satisfying all of the above
requirements is developed in the following chapter.

49

Chapter 5

A contribution to the Specification of
Graphical User interfaces

"A specification is formal if it is written entirely in a language

with an explicitly and precisely defined syntax and semantics.

Examples of suitable formal languages are first order predicate

calculus and a programming language for which the semantics has been

defined ... However, a program should not be its own specification,

because this eliminates the redundancy need to make verification

meaningful. An independent description of desired behaviour is always

required. "

From [Liskov79] in [Gehani86]

The previous chapter gave a survey of existing specification methods for user interfaces,
leading to the observation that a new formal specification approach is needed to aid the
testing of graphical user interfaces. This chapter presents an original contribution to
GUI specification in terms of a special form of state diagram called WinSTD, in

conjunction with a language called WinSpec. The example of a logon user interface is

used. The application of this specification approach in the generation of test cases (for

50

the logon user interface) is given in Chapter 7.

This specification approach was developed to describe the required inputs and expected
outputs of the functions of a graphical user interface. A set of notations with precise and
unambiguous meaning is clearly an advantage over a natural language description of a
function. The most obvious feature of WinSpec is the use of primitives to describe
visual output. In this chapter, section 5.1 and 5.2 introduce WinSTD and WinSpec.
Section 5.3 describes the notations and constructs of WinSpec. Section 5.4 attempts to
introduce WinSpec in a more formal manner. It explains how the language is based on
set theory and predicate logic, and shows that WinSpec has well defined syntax and
semantics, and thus is formal. Considering the classification of formal specification
approaches as discussed in [Liskov79], the WinSpec specification language is nearest
to the category of "Input / Output Specifications" within the class of "Procedural
Abstractions" [Liskov79] .

5.1 WinSTD

For graphical user interfaces, as mentioned earlier, there is one additional requirement in

the specification of presentation attributes of display objects. As revealed by the recent
interest in visual languages [Harel90], [Shu89], visual information, like the appearance
of a menu or an icon need not be specified in yet another textual language (e. g.
{ATTRIBUTES; ...;

label_text: "OK"; width: 50; height: 20; x: 160; y: 75; METHODS:

...
} as used in the Serpent UIMS [CMU89]).

A WinSTD is a special State Transition Diagram which shows the visual appearance of
display objects linked together by arcs that represent the interaction functions.

Effectively, the display objects or components are the nodes (embracing states) in the

user interface specification, and the interaction functions (arcs) indicate state transitions.
In a WinSTD, every display object (and components), as well as functions (arcs), are

enumerated with a unique name. Although similar, a WinSTD is strictly speaking not a
finite state diagram. A WinSTD does not expose all the possible states and transitions.
Consider an object OBJx which is an editable text box. Strictly speaking, OBJx is in

different (visual) states when there are different texts inside the text box. For example :
State1 : text(OBJx) = "abcde"

State2 : text(OBJx) = "xyz"

are two different states. It would be impossible for a WinSTD to capture all states.

A WinSTD illustrates the main control flow of a GUI and thus aids the

comprehensibility of the corresponding WinSpec. A WinSTD also provides the initial

placement (i. e. xy coordinates) of display objects. It assists the enumeration and

identification of all display objects for testing purposes. Considering the complexity and

51

flexibility of window user interfaces in real practice, it is confusing (if not impossible)
to include all feasible combinations of interactions in one or more diagrams [Myers89].

However, at least one state for each object must be included in the WinSTD. The
specification of window management functions (such as moving a window by
dragging) are not illustrated in a WinSTD as they are mostly provided by the underlying
window system and not part of the application user interface. The use of WinSTDs is
illustrated with the example of a logon user interface as shown in Figure 5.1. In this
WinSTD for the Logon interface, all display objects are shown. This includes an icon
for the Logon interface, a dialogue box for entering username and password, a dialogue
box to inform about logon failure, and a terminal window for successful logons. The
interaction functions associated with each of the objects are identified, such as :

F1 - Invoke the Logon interface
F2 - Keyboard inputs in the username text box
F3 - Keyboard inputs in the password text box
F4 - Mouse input to select the "OK" command button
F5 - Display of "Logon Failure" dialogue box
F6 - Mouse input to select the "Reset" command button

F7 - Display of a terminal window
F8 - Mouse input to close a terminal window

Interaction sequences can be expressed in this notation, e. g. :
FloF2oF3
(Function Fl then F2 then F3)

The notation used in this WinSTD example is further explained in the next section,

which introduces the WinSpec notations. An exploratory version of a tool called the

WinSTD editor, for the construction of WinSTDs, is described in Chapter 10.

52

Figure 5.1 A WinSTD for the logon user interface

53

5.2 An introduction to WinSpec

The WinSpec language is a set of notations designed for the formal specification of
interaction functions. It employs predicate calculus and set theory to minimize ambiguity
and misinterpretation. WinSpec is a model-based specification approach, similar to Z
[Spivey89] and VDM [Jones90]. States and state predicates are used for the implicit
specification [Jones90] of interaction functions, to allow the behaviour of a user
interface implementation to be checked. WinSpec has special constructs for abstracting
GUI interactions in a comprehensible manner.

The version of WinSpec presented in this thesis is the outcome of reiterations of
modification and improvement. The first version [Yip91 a] was an original attempt to
specify the functions of GUIs by stating pre- and post-conditions in a small set of
notations. In this early version, display objects and interaction functions were identified

and each assigned a unique numeric name (e. g. OBJ01, F123).

The second version emerged during the implementation of the Test Case Generator
(TCG) which turns the specification of a GUI into required inputs to test the GUI. The
Test Case Generator includes a parser [Schreiner86] constructed using lex [Leek81] and
yacc [Johnson8l] for lexical and syntactical analysis of the WinSpec notations.
Modifications were introduced to make the notations acceptable to the syntax parser. For

example, the "A" symbol is changed to "and".

As a consequence of the refereeing process of [Yip9la] and other reviews, further

changes were made. The final version of the specification notation uses visual state

predicates. Some symbols are replaced by more comprehensible notations (e. g. "-

OBJxx" is changed to "is_not_visible(OBJxx)"). Furthermore, enumerations of
objects and functions are replaced by more meaningful generic type names. (For

example cBtn_'Reset' instead of OBJ21 1, where cBtn_ is the generic type name for

"command Buttons".) The specification approach can now be completely described in

terms of logic, sets and mappings (see Section 5.6). More development is required to

update the parser (built on lex and yacc) and the TCG for this new version of WinSpec

for test case generation. This work will be left as a future extension beyond this PhD

thesis. The main idea of Formal Functional Testing (FFT) for GUIs can largely be

explored without a full implementation of these tools.

54

5.3 Basic theories

Before introducing the WinSpec specification language, it is necessary to give a brief
definition of the notations to be used.

5.3.1 Set Notations

A set is an unordered collection of distinct objects [Jones90]; set values are marked by
braces. For example, {a, b} is a set, and {a, b} = {b, a}.

In this example, the set has two distinct elements, namely a and b. The number of
elements of the set, denoted as I{a, b }I, is 2. There is no concept of the number of

occurrence of an element in a set. Elements are either present (E) or absent (f). Thus:

aE {a, b} ,co {a, b}.

Consider three sets A, B and C. Where, A={ a, b }, B={ a, b }, and C= { a, b, c }.

A is said to be a proper subset of C, denoted as ACC. (Obviously, BCC as well.)

Furthermore, the denotation ACB can be used to indicate that A is either a subset of B,

or A is equal to B. (In this case, it is true that BCA too, as A=B.)

The set denoted by {} is the empty set. Apart from simple enumeration of their

elements, sets can also be defined by "set comprehension". This is to define a set which
contains all elements satisfying some property. For example:

{iEZ11 <_ i <_ 3}=11,2,3 }, where Z is the set of integers.

Another example, of the set of even numbers, can be denoted as:

{e I e=2*n "nE N1 } where N1 =11,2,3, ... }.

Here N1 is the set of natural numbers starting from 1 (i. e. excluding 0).

The set of prime numbers can be denoted as :

{pe N1 Ipmodn#0 . Vn E N1- {1, p} }

Here "mod" is the modulus operator. "p mod n" gives the remainder in dividing p by n.

(V is the universal quantifier of predicate logic, see section 5.3.3.) "p mod n# 0" states

the property of p, that p is indivisible by any natural numbers, other than 1 and p itself

(V nE N1 -{l, p}). The notation for "set difference" as in N1 -{l, p}, states that n is

any element from the set N1, except the two elements 1 and p.

55

5.3.2 Propositional logic

A proposition is a statement of some alleged fact which must be either true or false
[Woodcock88]. For example, the statement : "1 is an even number", is false. However,
the proposition : "2 is an even number", is true.

A number of operators are available in propositional logic for the construction of
compound statements. The logical operators commonly used are :
" Logical and (denoted as A)

" Logical or (denoted as V)

" Negation (denoted as --n)
" Implication (denoted as =>)
" Equivalence (denoted as 4)

For instance, consider the two propositions :
P1: "1 is an even number", and
P2: "2 is an even number".
The "logical and" of these two propositions is denoted as P1 A P2. The definition of
logical operators, and their associated truth tables, are widely available in the literature
([Woodcock88], [Jones90], [Alagar89]). They are not discussed further here.

5.3.3 Predicate logic

Predicate logic is similar to propositional logic. Propositions, such as P1: "1 is an even
number" , and P2: "2 is an even number", are restrictive. Predicates allow flexibility in

the choice of the objects in the proposition. For example, is-even(x) , is a predicate.
Free variables or place holders [Woodcock88] are used in predicates, x in this case,
which can be filled in by the names of suitable objects to create propositions. Thus, the
proposition is-even(l) is formed by substituting 1 for x. If x=2 is used, it gives the

proposition is_even(2).

A predicate itself is not truth valued, it expresses a property or relation using variables.
Predicates can give rise to propositions in two ways. First, as we have already seen, by

substantiating variables with names of objects. The second way is the use of a technique

called quantification. Quantification introduces two symbols, 3 the existential quantifier,

and V the universal quantifier.

For a unary predicate, P(x), with free variable x, both

3x " P(x) and Vx" P(x)

are propositions. The variable x is now said to be bound by the quantification, and can

56

no longer be instantiated.

3x " P(x) asserts that there is at least one value, in the domain of interest, for which the

predicate P(x) is true. For example, 3xeN1" is-even(x) , states that there exist at least

one element, in the set of natural numbers N1, which is an even number.

`dx " P(x) is interpreted as the proposition "x can be substantiated by the name of any
objects, in the domain of interest, and the resulting proposition will be true. " For

instance, `dx EN1" is-positive(x)
, propose that it is true that any member from the set

N1 is a positive number.

In general, the logical operators used in propositional logic :
V, A, _>, = and -,
are also used in predicate logic.

5.3.4 Cartesian products

Let A and B be two sets. The Cartesian product set AxB (read as "A cross B" or "A

times B") is defined to be :AxB={ <a, b> IaEA, bEB1.

The elements <a, b> of AxB are called ordered pairs. For <a, b> and <c, d> EAxB,

<a, b> = <c, d> if and only if a=c, and b=d. In general, AxB#BxA.

This concept can be generalized to n sets :
IAn

and <a1, a2, ... an> is called an ordered n-tuple.

For ordered pairs of the form (a, b) with aeA, bEB; IAI denotes the number of

members of the set A, and IBI the number of members of B. It is easy to see [Brady77]

that : IA x BI = IAI * IBI, where * is the arithmetic multiplication operator.

5.3.5 Relations

A relation is a subset of a product set. An n-ary relation is a subset of a product set of n

sets. If n=2, the relation is called a binary relation. If R is a subset of AxB for some

sets A and B, R is called a relation from A to B, and is denoted as R: AHB.

Whenever <a, b> E R, it can be denoted as aRb.

57

The set C={aEAI for some bEB, <a, b> E R) is called the domain of R, and the

set D={bEBI for some aEA, <a, b> E RI is called the range of R.

Consequently, C9A and D9B. For a binary relation R: A t--> A,

R is reflexive if

R is irreflexive if

R is symmetric if

R is antisymmetric if

R is transitive if

5.3.6 Functions

aRa `d a(=- A.

a, a V aE A.

aRb =>bRa V a, bE A

(a Rb and bR a) _> a=b `d a, b EA

(aRb and b Re) => a Re IV a, b, c c- A

A total function from a set A to a set B is an association or pairing of a member of B

with each element of A. Several members of A may be paired with the same member of
B, but no single member of A may be paired with more than one member of B. If f is

such a total function, we write
f : A-B,

and if bEB, f (a) is used to denote the unique member of B paired with a. A is called

the domain off , and f (A) C Bis called the range. The range off is the set :

f(A)={bE BIb=f (a), aE Al.

A total function is usually called a function or a mapping. When there is no necessity for

all the members of A to be mapped to members of B (i. e. the function is defined on only

a subset of A), f is called a partial function, and denoted as f: A -++- B.

A function f: A -> B is called onto or surjective if f (A)=B; that is, for every

element bEB, there is at least one element aEA with f (a)=b.

For example, the function f: R -4 R defined by f (x)=x3 is onto; where R is the set of

real numbers.

A function f: A --3 B is called one to one or infective if ap a2 E A, f (al)=f (a2)

implies a, =a2; that is, every element in the range of f is the image of exactly one

element from the domain.

58

5.3.7 Finite State Machine (FSM)

A finite-state machine (FSM) is an abstract model of control mechanism found within
any deterministic input/output device (e. g. a digital computer). A FSM has only a finite
number of internal states that have the capacity to remember certain information and
behave in an expected manner for valid input data. The machine as a whole will
recognize some input and produce an expected output. There are four equivalent
methods of describing a FSM :
(1) as a labelled digraph
(2) as a matrix
(3) as a regular expression
(4) as an algebraic system

A formal definition of a finite-state machine [Alagar89] with semantics is
M=<S, So, A, B, f, g> where

S={ SO, S 1, S2, ... '
Sm} is a finite set of states, and So is the unique initial state.

A= {a1, a2, ..., an} is a finite set of input symbols.
B={ bl, b2, ..., bp } is a finite set of output symbols.

f is a transition map f: SxA-S

where f(S i, aj) = Sk means that if aj is the input symbol encountered by the

machine in state Si, the machine transits to state Sk

g defines the output, g: SxA-B

where g(Si, aj) = bk means that the machine produces the output bk if the input

symbol aj is encountered at its state Si.

59

5.4 WinSpec notation

In addition to symbols normally used in predicate calculus, a number of special
notations have been introduced in the WinSpec language developed to abstract vital I/O
details of user interactions.

5.4.1 Notations for display objects
The particular GUI being specified would have a finite set of display objects, denoted as
gui_objects. The syntax for representing elements of the set gui_objects is :
obj_type "_" identifier ["#" instance-no] }, where :

" [#instance_no] indicates that the appearance of instance-no is optional; it is only
necessary when there is more than one occurrence of objects of the same type and
identifier. When used, instance_no is a natural number, and is preceded by a "#". (See

examples on the next page.)

" _identifier
is of the form

_string or _'string'.
When bound by quotation marks,

string is the actual name (or label) that appears on the screen. For example, cBtn_'OK'
indicates that the command button can be seen by the user as labelled 'OK. When

quotation marks are not used, string represents an internal name by which the display

object is known to the user interface. This is the case where an object is displayed on the

screen without a label.

" obj_type indicates the kind of display object being denoted. An example can be any

member of the set of objects given below;
{wind , menu , mOpt, icon, diaB , cBtn , chkB , texB , cloB , sizB, zomB, tBar, sBar,
hBar, vBar }, where

wind indicates that the display object is a window,
menu indicates that the display object is a menu,
mOpt indicates that the display object is a menu Option,

icon indicates that the display object is an icon,

diaB indicates that the display object is a dialogue Box,

cBtn indicates that the display object is a command Button,

chkB indicates that the display object is a check Box,

texB indicates that the display object is a text Box,

cloB indicates that the display object is a close Box for closing a window,

sizB indicates that the display object is a size Box for resizing a window,

zomB indicates that the display object is a zoom Box for zooming a window,

Bar indicates that the object is a title Bar displaying the title of a window,

sBar indicates that the object is a scroll Bar for scrolling text within a window,

hBar indicates that the object is a horizontal scroll Bar,

vBar indicates that the object is a vertical scroll Bar.

60

Some examples of elements of the gui_objects set are given below;

diaB_openFile A dialogue box that is identified as the "openFile dialogue box" .
The identifier

_openFile
is not in quotation marks because that is

not the actual wording in the title field of the dialogue box, or the
dialogue box does not have a title field.

wind_'ReadMe' The identifier
_'ReadMe' represents the actual characters in the title

of the window, since quotation marks are used round ReadMe.

wind editor#2 This denotes the 2nd instance of the "editor window". The suffix
#instance_no is used only when there is more than one instance of
the same object.

The set state-primitives is the finite set that contains all the state primitives for
describing visual states of display objects. For example, the following may be the

state primitives set for a certain user interface :

state_primitives ={ is-visible ,
is-not-visible ,

is_hiLit , is_not_hiLit , has-kb-focus,
is-modal, is-disabled, is_at_front, is_next_behind, is-inside, rect, text }

Elements of the state primitives set (e. g. is_hiLit), are useful for describing elements of

the gui_objects set (e. g. wind_folder#3), in statements such as
is_hiLit(wind folder#3). This gives rise to visual state predicates. A formal definition of

visual state predicates is given in section 5.6.

5.4.2 Notations for visual state predicates (primitives describing display
objects) :

is_visible(wind_x) A predicate stating that wind_x is visible on screen (see
WinSTD for visual appearance).

is_not_visible(wind_x) A predicate stating that wind_x is not visible.

is_hiLit(cBtn_'OK') A predicate stating that the border of command button 'OK'
is highlighted (thicken).

isnot_hiLit(cBtn_'OK') A predicate stating that the command button 'OK' is not
highlighted.

61

is_at_front(wind_x) A predicate stating that window wind_x is the front
window.

is_next_behind(wind_y, wind_x)
A predicate stating the stacking order of two windows,
winder is behind wind_x .

is_inside(mp?, icon_x)
A predicate stating that the hot spot of the mouse pointer
lies within the borders of icon_x. (This primitive is
useful for specifying interactions such as dragging a file
icon onto the trash-can.)

has_kb_focus(texB_x) A predicate stating that texB_x has keyboard focus (i. e.
ready for keyboard inputs).

is_disabled(mOpt_'Save') A predicate stating that menu option 'Save' is disabled (or
dimmed).

is_enabled(mOpt_'Save') A predicate stating that menu option 'Save' is not disabled.

is_modal(diaB_warn) A predicate stating that dialogue box diaB_warn is a modal
dialogue (i. e. blocks all inputs until dialogue is cleared).

rect(wind_'Editor') = (y1, xl, y2, x2)
A predicate stating that the window titled 'Editor' is
bounded by the rectangle of coordinates (xl, yl) and
(x2, y2) representing the positions of the top-left and
bottom-right corners.

Loc(mp?) = (x, y) A predicate stating that the location of the mouse pointer
is at (x, y).

text(texB_'Username') = "demo"
A predicate stating that the text (character string) in text
box titled 'Username' is "demo".

The semantics of visual state predicates are given informally in the above list. The
development of formal semantics, if necessary, will have to be based on the formal

specification of display objects (such as points, lines, regions and pictures). There are a
number of published research work :

" Formal specification of a straight line [Marshall85].
" Formal specification of GKS output primitives [Duce86].

62

" Formal Specification of bitmap4 images [Fiume89].
" Formal specification of a "Look Manager" [Narayana90].

The work in this area can be traced further back to [Mallgren82], who pioneered the
formal specification of the graphics data type. [Mallgren82] gave definitions for four
general graphics concepts, two of which (i. e. region and picture) are useful here. A
region corresponds to an area in two dimensions, defined as a set of points in some
universe U, typically the real plane for a two-dimensional area. A picture is modelled by
a partial function P, whose domain (the points contained in the picture) is a subset of the
set of points in the universe, and the range represents grey scales or colours. Some of
the predicate operations discussed by [Mallgren82] are :

" coincident picture X picture -* boolean

9 contains picture X picture -> boolean

" disjoint picture X picture - boolean

" visible picture X region -f boolean

" bounded picture X region -* boolean

These will be useful for constructing formal semantics of constructs in WinSpec. The
level of details about, for example, points and lines does not facilitate the testing of
interaction functions. These details may be useful to research areas such as validating
screen images by bitmap comparison (sometimes called visual verification), which is

outside the scope of this thesis.

A bitmap is a collection of picture elements (pixels). Computer graphics are often
divided into two categories : raster graphics and vector graphics. They refer to the
graphics output devices and the way that application programs draw graphics objects
on these devices. Raster output devices (e. g. video displays, dot-matrix printers, laser
printers) display images that are made up of dots called pixels (picture elements).
Vector output devices, such as plotters, display images made up of lines and filled

areas. Graphics programming interfaces of most window systems (e. g. Macintosh
QuickDraw, OS/2 GPI) are basically vector graphics systems. They provide vector
drawing commands in terms of lines and filled areas. However, these drawing
commands are translated by the device driver into the appropriate format for the
particular device, vectors or pixels.

63

5.4.3 Notations for GUI inputs :

kb? denotes keyboard inputs.
kb? can be viewed as a character string variable.
For example kb? = "abcdef" is a logical statement (a predicate) stating
that the content of the keyboard input buffer is the string "abcdef". There

are 4 special cases :

" kb? =<cr> is a carriage-return input.

" kb? =<tab> is an input of the tab key.

" kb? = is an input of the delete key.

" kb? =<cmd-? > is the input of a single key together with the command key
(often used instead of menu options, see chapter 8 for

details).

mb? denotes mouse button inputs.

For example mb? =<click> is a predicate stating that there is a click at
the mouse button input device. Four different kinds of mouse button inputs

are usually distinguished in user interfaces.

" mb? =<down> means mouse button is pressed down.

" mb? =<up> means mouse button is released.

" mb? =<click> means mouse button is pressed down and then released

quickly. A <click> is a <up> followed by a <down> within

a certain pre-defined time limit.

" mb? =<dClick> means mouse button is given a double click input.

A <dClick> is a <click> followed by another <click>

within a certain pre-defined time limit.

mp? denotes mouse pointer inputs.
For examples :
is_inside(mp?, icon_x) is a predicate stating that (the hot spot part of)

the mouse pointer is inside icon-x.

Loc(mp?) = (x, y) is a predicate stating that the location of the hot

spot (i. e. the arrow tip) of the mouse pointer is

at (x, y).

64

5.4.4 Notations for messages

In addition to the visible output in display objects, the GUI communicates with the main
body of the application by sending (and receiving) messages. GUI validation is to check
these application messages together with display objects (shown in WinSTDs). An
example of a message predicate is :

app_msg_sent = , abc... 123"

This is a predicate that will become true when a message "abc... 123" has been sent.
Another example is :

app_msg_sent = text(texB_user)
stating that the text in texB_user has been sent as a message to the application. Another
example :

app_msg_recv = "logon failure"
is a predicate stating that a message of "logon failure" has been received from the
application.

5.4.5 Notations for logical operators

or logical or

and logical and

Tand Temporal logical and. It is a "non-commutative and" for showing a time

sequence, requiring that the predicate on its left must be satisfied before

the predicate on its right. For example :

is_inside(mp?, cmdB_'OK') Tand mb? =<click>

will become true when the mouse pointer is first located inside cmdB_'OK'

"and then" there is a mouse button click input.

"predicate-A Tand predicate-B" has the semantic :

First predicate-A becomes true, then predicate-B becomes true whilst no

other input predicates have become true in the meantime.

5.4.6 Notations for comments
Comments can be inserted after

For example :
text(texB_1) = "userl "! Text box texB_1 now holds string "userl".

65

5.5 Specification of interaction functions

In WinSpec, an interaction function represents a basic step of user interaction with the
user interface. Each interaction function of a GUI is given a unique name. The
specification of an interaction function is the basic building block of a WinSpec
specification for a GUI. The following is an example of the specification of an
interaction function Fl. (A complete specification, including declaration of all display
objects and states, is given in section 5.7.)

Specification for function F1 :
From-state : Start ! "Start" is the initial state
F_ state-predicate : is_visible(icon_Iogon)
Inputs : is_inside(mp?, icon_logon) Tand mb? =<dClick>
To state : PostF1 I It transits to state "PostFl ".
T_state_predicate : is_visible (diaB_Iogon) and has_kb_focus(texB_user)

I Logon dialogue box appears, and username entry field has input
I focus, <dClick> is the same as <doubleClick>

Output_msg : none

The specification of an interaction function consists of 7 different parts. The first line

gives the name of the interaction function being specified. The "From-state"' clause
specifies the state of the user interface before the execution of the function. The
"F-state-predicate" describes the vital properties of the state (i. e. the "From-state") of
the GUI. This predicate, on the visual state of display object(s), must be true, for the

execution of the function to take place. The "Inputs" clause specifies the required inputs

to invoke this interaction function. The "To-state" clause specifies the state of the user
interface following the execution of the function. Finally, the "T-state-predicate"

specifies the vital properties of the "To-state" of the GUI, after the execution of the
function. The "T_ state-predicate" becomes true as a consequence of the function

executed. No output messages are specified in F1, and comments can be added
following "! ".

The above is an example of part of a WinSpec specification, which can be represented as

part of a State Transition Diagram (STD).

icon_logon diaB_Iogon

Start F1 PostF1

Figure 5.2 Part of a STD showing function Fl

The associated WinSTD has already been given in Figure 5.1 (section 5.1),

covering Fl and other functions of the Logon interface. The complete WinSpec

specification for the Logon interface is presented in section 5.7, following section

5.6 which attempts to define WinSpec formally.

66

5.6 A Formal Definition of WinSpec

In essence, the specification approach is to model user interactions as transitions in a
state diagram. Following the definition of a finite state machine, as given in section
5.3.7, a WinSpec specification W is formally defined as :

W= <S, So, A, B, f, 0, P, G, h> where

S={ SO, S 1, S2,
..., Sm} is a finite set of states, and So is the unique initial state.

A= {a1, a2, ..., an} is a finite set of inputs.
B={ b1, b2,

..., bp } is a finite set of outputs.

f is a transition map (i. e. a function as described in section 5.3)

f: SxA->SxB

where f(Si, aj) _ (Sk, bl) means that if aj is the input encountered by the machine in
state Si, the machine generates the output bl and transits to state Sk

0= 10 1,02, ..., Oq } is a finite set of display objects.
P= {P1, P2, ..., Pr} is a finite set of visual primitives to describe display objects.

G is a relation, G: S <---> Px0
where St G <Pu, Ov> means that if the machine is in state St , object Ov is
described by the primitive Pu (Since G is a relation, it is also possible that
St G <Pu, Ow>

, where w#v .
See section 5.3 for the definition of a relation.)

Finally, h is a function, h: Px 0-* Boolean

where h(Pu Ov) = True or h(Pu Ov) = False, but not both.
For h(Pu Ov) = True, it is also written as Pu (Ov) = True, or simply Pu (Ov).

The form Pu (Ov) is called a visual state predicate in this thesis. In conjunction with
the definition of relation G above, the visual state predicate Pu (Ov) is used to
describe the state St .

"0", the set of display objects, is necessarily a finite set for the GUI being specified (as

described in section 5.4 earlier). "P" is the set of visual state primitives for display

objects (described in 5.4.2). When state primitives are used in a WinSpec to describe

display objects, visual state predicates (in the form of Pu(Ov), e. g.
is_visible(icon_'Logon')) are formed. "S" is the finite set of states of the GUI captured

in the specification. These states are represented as nodes in state diagrams. Each state

can be described by visual state predicates. "A" is the set of inputs specified for the

GUI, including keyboard, mouse and message inputs. "B" is the set of outputs, which
is used in a WinSpec to specify messages that the GUI can send to the underlying

application. The visual output of display objects is captured in the states and visual state

predicates, and not included in the output set B.

67

5.7 An example of specification : the logon user interface

The logon user interface interacts with the user by displaying a dialogue box prompting
the input of a username and password. The visual appearance of display objects and
control flow of interaction functions can be seen in the WinSTD in Figure 5.1. Text
boxes are provided for the username and password entry. If the user inputs a mouse
click at the "OK" command button or types the carriage-return key, the existing contents
of the username and password text boxes will be checked for authorization. If the
username and password are valid, a terminal window will be displayed for user access.
Otherwise a "Logon failure" dialogue box will appear to inform the user, which must be

cleared by selecting the "reset" command button. The WinSpec specification for the
logon user interface is given in the following listing.

WinSpec_begin logon

logon_objects = {icon_logon, diaB_logon, cBtn_'OK', texB_user, texB_pass,
diaB_'Logon Failure', cBtn_'Reset', wind-term, cloB_term}

logon_states = {Start, postFl, postF2.2, postF4, postF5, postF7}
state-primitives = {is_visible, is-not-visible, is-inside, has_kb_focus, text, is_hiLit}

Specification for function F1 :
From state : Start I "Start" is the initial state
F_state predicate : is_visible(icon_logon)
Inputs : is_inside(mp?, icon_logon) Tand mb? =<dClick>
To-state : PostF1 I It transits to state "PostFl ".
T_state_predicate : is_visible (diaB_Iogon) and has_kb_focus(texB_user)

I Logon dialogue box appears, and username entry field has
I input focus, <dClick> is the same as <doubleClick>

Output msg : none

Specification for function F2
From state : PostF1
F_state predicate : is_visible (diaB_Iogon) and has_kb_focus(texB_user)

Inputs : kb? 0 {<cr>, <tab>, {} }! Keyboard input, except
To-state : PostF1 ! <cr>, <tab> or empty i/p.

T_state_predicate : text(texB_user)=kb? ! Content of text box reflects key i/p.

Output_msg : none

Specification for function F2.1
From-state : PostF1
F_state_predicate : is_visible (diaB_Iogon) and has_kb_focus(texB_user)

Inputs : kb? = <cr> IA <cr> keyboard input.

To-state : PostF4
T_state_predicate : is_hiLit(cBtn_'OK')

I The OK command button (cBtn_'OK') is highlighted, and
!a message is sent.

Output_msg app_msg_sent= ("user=",
text(texB_pass))

text(texB_user), "pass=",

68

Specification for function F2.2
From state : PostFl
r_btdiepreaicate : is_visible(diaB_Iogon) and has_kb_focus(texB_user)
Inputs : kb? =<tab> IA <tab> keyboard input.
10

- state : PostF2.2
T_state predicate : has_kb_focus(texBpass)
Output_msg : none

Specification for function F2.3
From-state : PostFl
F_state-predicate : is_visible(diaB_Iogon) and
Inputs : is_inside(mp?, diaB_pass)
To state PostF2.2
T_statejredicate : has_kb_focus(texB_pass)
Output_msg : none

! Password field now has input focus

has_kb_focus(texB_u se r)
Tand mb? =<click>

! Password field now has input focus

Specification for function F3:
From-state : PostF2.2
F_state_predicate : has_kb_focus(texB_pass) ! Password field now has input focus
Inputs : kb? 0 {<cr>, <tab>, {} }! Keyboard input, except
To_state : PostF2.2 ! <cr>, <tab> or empty i/p.
T_state_predicate : text(texB_pass)=kb? and is_not_visible(text(texB_pass))

! Password entry has no echo
Output_msg : none

Specification for function F3.1
From-state : PostF2.2
F_ state-predicate : has_kb_focus(texB_pass) ! Password field now has input focus
Inputs : kb? = <cr>
To state PostF4
T_state_predicate : is_hiLit(cBtn_'OK')

! The OK command button is highlighted, and then logon dialogue
I box (diaB_logon) disappears, and a message is sent.

Output_msg app_msg_sent= ("user=", text(texB_user), "pass=",
text(texB_pass))

Specification for function F3.2
From-state : PostF2.2
F_ state-predicate : has_kb_focus(texB_pass)
Inputs : kb? =<tab>
To-state PostFl
T_state_predicate : has_kb_focus(texB_user)
Output_msg : none

Specification for function F3.3
From_state : PostF2.2
F_state_predicate : has_kb_focus(texB_pass)
Inputs : is_inside(mp?, texB_user)
To-state : PostFl
T_state_predicate : has_kb_focus(texB_user)
Output msg : none

! Password field now has input focus

! Input focus back to texB_user

! Password field now has input focus
Tand mb? =<click>

! Input focus back to texB_user

69

Specification for function F4
From_state : PostF1
F_ state-predicate : is_visible(diaB_Iogon)
Inputs : is_inside(mp?, cBtn_'OK') Tand mb? =<click> To_state : PostF4
T_state_predicate : is_hiLit(cBtn_'OK')

I The OK command button is highlighted, and a message is sent.
Output_msg : app_msg_sent= ("user=", text(texB_user), "pass=",

text(texB_pass))

Specification for function F5
From-state : PostF4
F_ state-predicate : is_hiLit(cBtn_'OK')
Inputs : app_msg_recv= "Logon failure"
To state PostF5
T_state_predicate : is_not_visible(diaB_Iogon) and

is_visible(diaB_'Logon Failure') and is_hiLit(cBtn_'Reset')
I Logon failure dialogue box appears and reset command button
I is highlighted.

Output_msg : none

Specification for function F6
From-state : PostF5
F_ state-predicate : is_visible(diaB_'Logon Failure') and is_hiLit(cBtn_'Reset')
Inputs : kb? =<cr> or

(is_inside(mp?, cBtn_'Reset') Tand mb? =<click>)
To state : Start
T_state_predicate : is_not_visible(diaB_'Logon Failure')

Ia <cr> input or a click on the reset button (cBtn_'Reset')
1 clears logon failure dialogue box (diaB_'Logon Failure')

Output_msg : none

Specification for f
From-state :
F_ state-predicate
Inputs :
To state
T_state_predicate

)n F7 :
PostF4
is_hiLit(cBtn_'OK')
app_msg_recv= "Logon ok"
PostF7
is_not_visible(diaB_Iogon) and
is_visible(wind_term) and has_kb_focus(wind_term)
I Logon success, terminal window (wind_term) appears and
! has input focus.

Output_msg : none

Specification for function F8
From-state : PostF7
F_state_predicate : is_visible(wind_term) and has_kb_focus(wind_term)
Inputs : is_inside(mp?, cloB_term) Tand mb? =<click>

!A click on the close box makes the terminal window to disappear.

To state : Start
T_state_predicate : is_not_visible(wind_term)
Output_msg : none

WinSpec_end

70

The following STD gives a graphical representation of the above WinSpec

specification for Logon. There are two main differences between this STD and the
WinSTD given in Figure 5.1 earlier. The first difference is that a WinSTD uses
display objects instead of circles to represent nodes. Secondly, a WinSTD does
not show all the functions specified in the corresponding WinSpec, for reasons of
space and clarity.

I

Figure 5.3 An STD for the Logon interface

71

5.8 Review, assumptions and summary

The above specification precisely and unambiguously states the functions of the logon
user interface for the purposes of test input generation and output checking. More
statements can be added to the state predicates, if desired, to expose other properties of
the user interface. This illustrates the power of abstraction in a specification approach,
by revealing important features and hiding unnecessary details. For instance, in the
specification of the function F2 for entering text to the username field (texB_user), no
definite text length restrictions are stated. This is to keep the specification abstract and
not to dictate implementation issues unnecessarily. Moreover, F2 does not explicitly
indicate any text editing capabilities that texB_user might have. This exemplifies the use
of functional decomposition, where a simple text entry function within a text box can be
expanded into detailed text editing functions, similar to those of a text editor specified in

chapter 8. One reason for not presenting such functional decomposition in the
specification of Logon is that these editing functions are, strictly speaking, part of the

underlying window system library, not the Logon interface. There are a number of
"common sense" conditions that can be, but are not, included in the state predicates of
functions in order to keep the specification concise and readable. The following are
some examples.

" When the system is still busy handling the previous input, a different shape for the

mouse pointer (e. g. of the shape of a watch or clock, denoted as icon_wait) is
displayed, instead of the arrow shape normally used for the mouse pointer. This signals

users to wait, and inputs are blocked (queued or discarded). This is a way of serialising
inputs in order to regulate "type ahead" and "mouse ahead". It is necessary because the

second input might be directed at some objects that are part of the output responding to

the first input, which is still not ready. There is an assumption in all the above
F_state_predicates that the system is ready to receive input, which can be explicitly

specified to expose this feature of a real time system: is-not visible(icon_wait).

" There is a hidden, unspecified means of determining that a new input (or message) has

just been received. In a real time system, an input predicate (e. g. kb? = "abc... 123")

always refers to the new input that has just arrived. This can be explicitly expressed, if

necessary, by additional predicates (e. g. kb? ={ }) to indicate that input buffers are

cleared after the last input.

" Another feature which is hidden in the above specification is that of concurrency.

There might be other user interfaces running in a time-sharing manner with the logon

interface in a single processor workstation environment. (Multi-processor and parallel

systems are outside the scope of this thesis.) It is not possible to specify effects of other

user interfaces that may become concurrent with the logon interface. For example, it is

not possible to specify the changes made, by another user interface, to the content of the

72

global clipboard. (The global clipboard allows text transfer amongst concurrent user
interfaces.)

" Another hidden assumption in WinSpec is that predicates in the T_ state-predicate will
only state display object changes as consequences of a specified function. Other display

objects are assumed to remain unchanged by the execution of this function. Any
unspecified visual changes on the screen (e. g. time clock) are considered irrelevant.
This assumption helps the tester to focus on the testing of one GUI, whilst there may be
other GUIs running concurrently.

" Although the mouse input device (pointer and button) is used exclusively in

specifications in this thesis, it does not imply other devices cannot be used in graphical
user interfaces. There are a number of existing devices, such as thumb wheels,
crosshair, joysticks, tablet styluses, physical buttons and dials. There are also mouse
devices that support more than one mouse button. Despite the physical differences in

these devices, similar logical inputs can be achieved. The two main classes of logical
inputs, locator (a screen location pointer) and button (entry of a single bit information),

can be achieved by a number of devices [Hopgood86]. WinSpec specifications are
designed for logical inputs and would be suitable for use with devices other than mouse

pointers and buttons.

In this chapter, an original specification approach for graphical user interfaces has been

presented, in terms of a state diagram called WinSTD and a language called WinSpec.

A WinSpec specification of a user interface is formed by defining interaction functions

with precise statements about the required inputs and expected outputs. An example

specification of a logon interface has been given. The specification method developed

will be used as the basis for test case generation, as revealed in the following chapters.

73

Chapter 6

Graph theory, postman problem
and test sequences

In Chapter 5, specification for the Logon interface was developed in terms of WinSpec

notations and state transition diagrams (STDs). In order to derive test sequences from
these specifications, it is necessary to study some graph theoretic algorithms applicable
to STDs. In this chapter, some algorithms and results of graph theory are used without
extensive formal derivation or justifications, since the study of graph theory is

secondary to the main theme of testing user interfaces in this thesis. Furthermore, graph
theory terms are only defined here if they are useful to the application of test sequence
generation. Graph theoretic terms used in this chapter are not included in the glossary in

appendix A.

The first paper on graphs was written by the Swiss mathematician Leonhard Euler
(1707-1783) and was published in 1736 by the Academy of Science in St. Petersburg.
Euler's study of graphs was motivated by the so-called Konisberg bridge problem
[Minieka7 8]

.

6.1 Definition of terms used in graph theory

Formally, a graph G=(V, E) consists of a finite set V of vertices (nodes or points) and a
set E of edges (or arcs) joining pairs of vertices. If V={vl, v2, ..., vn} and E={e 1, e2,

..., em}, then each ek is an unordered pair (vi, vj). The vertices (vi, vj) are the end

vertices of ek and are adjacent to each other. We also say that ek is incident with vi and

vj. The total number of edges incident to a vertex is called the degree of vertex vi and is

denoted by d(vi). If all vertices in graph G have even degrees (i. e. d(vi) is even for all

vi), then graph G is said to be even .

74

Let vo and vm be the two vertices of a graph G. The sequence (vo, v 1, ..., vm) is called
a walk joining vo and vm if each vj is adjacent to vj_ 1,1 <_ j <_ m. Two vertices vi and
vj in G are said to be reachable from each other if there is a walk joining vi and vj in G.

When the set E consists of ordered pairs <vi, vj> of vertices, then ECVxV, and G is a
digraph (a directed graph). For vertices of a digraph, reachability is directional. In a
digraph, the number of arcs directed into vertex vi is called the inner degree of vertex vi

and is denoted by din(vi). The number of arcs directed away from vertex vi is called the

outer degree of vertex vi and is denoted by dout(vi) If din(vi) = dout(vi) for all vertices
vi in graph G, then G is called a symmetric graph. A graph 01=(V1, E 1) is a subgraph
of a graph G=(V, E) if V 19: V and E1CE.

6.2 The Euler tour problem

In 1736, Euler developed the concept of an Euler tour, in connection with the
Konisberg bridge problem. The city of Konisberg (later called Kaliningrad) in East
Prussia was built at the junction of two rivers and two islands (see Figure 6.1). In all,
there were seven bridges connecting the islands to each other and to the rest of the city
along the river banks.

A

'0000V

Figure 6.1 The Konisberg bridge problem

The Konisberg bridge problem was : could a Konigsberger start from his home and

cross each bridge exactly once and return home? (Such a walk was later called an Euler

tour in graph theory.) Euler proved that the answer was no. Avoiding the detailed

mathematical proofs, a simple explanation is given here. The first step is to redraw the

picture in Figure 6.1 as a graph in Figure 6.2.

75

Figure 6.2 The Konisberg bridge problem represented as a graph

The Konisberg bridge problem is represented by a graph consisting of 4 vertices (or

nodes) and 7 edges (or arcs). It is evident that a Konisberger who arrives at a node via
one bridge must leave that node by a different bridge, in order that each bridge is

crossed exactly (and not more than) once. This means that there must be an even number
of edges (i. e. bridges) connected to each of the nodes. In graph theoretic terms, the

graph must contain an even degree at all vertices. This requirement is not satisfied by the
graph in Figure 6.2, as the vertices have an odd number of edges connected to them.
Therefore, the answer to the Konisberg bridge problem is no.

A walk through a graph in which each edge is traversed exactly once is called an Euler

tour. An Euler tour for a graph G exists only if G is an even undirected graph, or if G

is a symmetric directed graph [Minieka78]. There are standard techniques for deriving

the list of edges of an Euler tour from an even undirected or a directed symmetric graph.

6.3 The Postman tour

M. K. Kuan first developed the postman problem in 1962. Consider a graph G=(V, E), in

which each edge represents a street in the postman's route and each vertex represents a
junction between two or more streets. The postman problem is that of finding the

shortest route by which the postman can traverse each edge at least once and return to
his starting vertex. The first publication of this problem appeared in a Chinese journal

[Kuan62] and is often referred to as the Rural Chinese Postman Tour (RCPT).

A postman tour allows repeated traverses of some edges, if necessary, so that the

shortest route which covers all edges can be taken, thereby differing from an Euler tour.

76

In any postman route, the number of times that the postman enters a vertex equals the
number of times that the postman leaves that vertex. Recall that an undirected graph G is
even, if all vertices in graph G have an even degree (i. e. even number of edges
connected to all vertices). For an undirected even graph G, an optimal solution to the
postman problem is an Euler tour. The postman does not have to repeat visits to any
edges.

For a directed graph, the number of arcs entering a vertex Vi is denoted as dm(Vi). The

number of arcs leaving vertex Vi is denoted as dout(Vi) If G is symmetric (that is

din(i) = dout(Vi) for all vertices vi), then it is possible for the postman to perform his

route without repeating any arcs. Thus, an Euler tour provides an optimal solution to a
postman problem if that problem can be represented by a directed symmetric graph.

If the graph G representing the postman problem is not even or symmetric, it is first
transformed into an even or symmetric graph G* by the addition of a minimum number
of edges (which are replicas of some existing edges in G).

If Vi has more arcs leaving than entering it (that is dm(VV) < dout(Vi)), the postman
must repeat some of the arcs entering into Vi. In other words, the transformation from G

to G* is effectively the process of finding the edges to be repeated, resulting in the
minimum total route length for the postman.

Let f(Vi, Vi) denote the number of times that the postman repeats arc (Vi, Vj-) and
c(Vi, Vi.) be the cost for traversing the arc. The postman wants to select non-negative
values for f(Vi, Vi) so as to minimize :
Y.

c(VV) f(Vi, Vi), so that for all vertices Vi

din(V1) +f (Vj, VI) = dolt(i) +f (V1, Vj)

According to [Minieka78], this minimization is a minimum cost flow problem. Because

of space and time limits, a general introduction to the minimum cost flow problem is not
described in this thesis. Instead, a worked example using the STD of the Logon interface

is given in the following section. In essence, it is to balance the flow (or degrees) at

vertices, at minimum cost. Vertices with more incoming arcs than outgoing arcs are

called sources. Vertices with more outgoing arcs than incoming ones are called sinks. A

supersource and a supersink are appended to the graph, connecting the supersource to all

sources, and connecting the supersink to all sinks. The problem is solved by deriving a

minimum repetition of edges (i. e. optimal value of f(Vi, Vi)) that satisfies all source and

sink requirements. Consequently, the number of incoming and outgoing arcs are
balanced at all vertices.

77

6.4 Test sequences for the Logon user interface

For the purpose of testing graphical user interfaces, the graphs involved are directed

graphs, as the arcs of STDs are directed. Since the interaction functions of a GUI are
represented in the arcs of the STD, a test coverage of the functions of a GUI requires
coverage of all the arcs, and is a postman problem. The following outlines how a
solution to the postman problem is used to select the optimal test sequences for GUIs.

The STD for the Logon user interface (Figure 5.3) is reproduced in Figure 6.3, with
simplified names of vertices. In Figure 6.3, the names A, B, ..., E and F are used for

the vertices. Since the graph G in Figure 6.3 is not symmetric, the minimum cost flow

approach is used to transform G into a symmetric graph. The basic idea is to equalize the

dm(vi) and dout(vi) for all vertices, by the minimum repetition of existing edges.

Figure 6.3 The Logon interface represented as an STD, named as graph G.

From Figure 6.3, the degrees of incoming and outgoing edges are calculated for all the

vertices:
dm(A)=2, dout(A)=1; vertex A is a source with 2-1=1 unit supply.

dm(B)=4, dout(B)=5; vertex B is a sink with 5-4=1 unit demand.

78

dm(C)=3, dout(C)=4; vertex C is a sink with 4-3=1 unit demand.

din(D)=3, dout(D)_2; vertex D is a source with 3-2=1 unit supply.
din(E)=1, dout(E)=1; vertex E is intermediate vertex.

dm(F)=1, dout(F)=1; vertex F is intermediate vertex.

Having identified the sources and sinks of the graph G in Figure 6.3, it is necessary to
decide which edges are to be replicated to satisfy the flow requirement. The following

steps are taken :

" Create a supersource S and join S to source vertices A and D by arcs (S, A) and (S, D),
each of 1 unit. (See Figure 6.4.)

" Create a supersink T and join T to sink vertices B and C by arcs (B, T) and (C, T), each
of 1 unit.

Figure 6.4 An illustration of the minimum cost flow approach

In order to balance the flow requirements, at most two flow units can be sent from S to

T. One unit must leave S by way of vertex A, and another unit must leave S by way of

vertex D. One unit must arrive at T by way of vertex B, and another unit must arrive at T

by way of vertex C. The paths taken by these flow units as they travel from S to T

correspond to the arcs which the postman must repeat.

79

From close inspection of Figure 6.4, it is obvious that one flow unit occurs along the
path (S, A), (A, B) and (B, T). This is clearly the shortest path from S to T, via vertices
A and B. This means the postman has to repeat the edge (A, B, F1) once.

Another flow unit is along the path (S, D), (D, E), (E, A), (A, B), (B, C) and (C, T). It
is obvious, by inspection, that this is the shortest path from S to T, via vertices D and C.
(It can be seen in Figure 6.4 that there is an alternative path from S to T, by way of
vertices in the order S, D, F, A, B, C and T. This is of an equal length with the path
chosen above. Mathematical proofs for these shortest paths are not given in this thesis,
in order not to diverge too much from the main theme of testing.)

The second flow unit requires the postman to repeat each of the arcs joining vertices (D,
E), (E, A), (A, B) and (B, C) once. There are two different edges which connect vertex
B to vertex C. A replica of the edge (B, C, F2.2) is used here. (Alternatively, the edge
(B, C, F2.3) can be used instead. This makes no difference to the testing process, as the
unit cost for testing an edge (i. e. an interaction function) is assumed to be the same for

all edges.)

In combining the requirements of the two flow units, the edges to be added are :

2 replicas of the edge (A, B, F1)
1 replica of (B, C, F2.2)
1 replica of (D, E, F5) and
1 replica of (E, A, F6).

These additional edges are augmented to G, shown as dotted lines, to form the

symmetric graph G* as shown in Figure 6.5.

80

6

Figure 6.5 G*
,a symmetric graph.

The graph G in Figure 6.3 has now been transformed into the graph G* in Figure 6.5.
The dotted edges in Figure 6.5 represent replicas of existing edges, making G*

symmetric. Since G* is a symmetric graph, it is possible to have an Euler tour of G*.
An Euler tour of graph G* will provide an optimal postman tour for graph G.

A technique called splicing, useful for developing an Euler tour for an even undirected or
a symmetric directed graph, is described as follows. Beginning at the starting vertex A,

traverse the edges along their directions without reusing any edge until one returns to

vertex A. This traces out a circuit Ctl. Next, starting at any unused edge, trace out
another circuit, Ct2, using only unused edges. Repeat this procedure until all edges have

been used. Lastly, splice together all the circuits into one large circuit CT. Circuit CT

contains each edge exactly once and constitutes an optimal solution to the postman

problem. This technique is demonstrated in the following paragraphs.

Applying the splicing technique, a circuit is recognized by following unused edges in

Figure 6.5, starting from A and returning to A:

Ctl : (A, B, Fl), (B, C, F2.2), (C, D, F3.1), (D, F, F7), (F, A, F8)

Repeat the process of forming circuits, starting from any unused edge, using unused

edges only. (A circuit is a walk which starts from a vertex and returns to the same

vertex, without traversing any edges more than once.) The following circuits can be seen

as walks starting and finishing at vertex B:

81

r- ---------------- 'I

Ct2: (B, B, F2)
CO : replica of (B, C, F2.2), (C, B, F3.2)
Ct4: (B, C, F2.3), (C, B, F3.3)

Again referring to Figure 6.5, the following circuit starts and finishes at vertex C:
Ct5 : (C, C, F3)

Remember that the augmented edges (dotted lines) are edges in their own right and have
to be covered as well. So far, the remaining (i. e. unused) edges in G* are :
2 replica copies of (A, B, F1), (B, D, F2.1), (B, D, F4), (D, E, F5), replica of (D, E, F5),
(E, A, F6) and a replica of (E, A, F6). These edges form two circuits. One circuit is :

Ct6 : replica of (A, B, F1), (B, D, F4), (D, E, F5), (E, A, F6).

The other circuit consists of :
CO : replica of (A, B, F1), (B, D, F2.1), replica of (D, E, F5) and replica of (E, A, F6).

Now it can be verified that all edges in Figure 6.5 are covered exactly once in the circuits
Ctl to CO. Note that each of these circuits, when treated individually, is an Euler tour.
The technique of splicing is used to join these circuits together to form a larger Euler
tour.

Splicing Ct2 to Ct5 as detours during the tour of Ctl, results in a larger Euler tour :
(A, B, Fl),
(B, B, F2),

... First part of Ctl

...
Ct2, a detour from Ct 1 at vertex B

(B, C, F2.2), (C, B, F3.2),
(B, C, F2.3), (C, B, F3.3),
(B, C, F2.2),
(C, C, F3),
(C, D, F3.1), (D, F, F7), (F, A, F8)

... CO, a detour from Ctl at vertex B

... Ct4, a detour from Ctl at vertex B

... part of Ctl

... Ct5, a detour from Ctl at vertex C

.. Last part of Ctl

In the Logon interface STD, the labels on the arcs are the names of interaction functions
to be tested. The larger Euler tour developed above is represented in the following

sequence, using the names of edges (i. e. interaction functions) only. This gives the test
sequence :
TS1 : F1 o F2 o F2.2 o F3.2 o F2.3 o F3.3 o F2.2 o F3 o F3.1 oF7oF8.

In Chapter 5, it was shown that the execution of the Logon interface begins with the
interaction function Fl. The two circuits Ct6 and Ct7, as listed above, both start with the
edge Fl. They are therefore, treated as individual test sequences. This gives the two test
sequences :

TS2: F1oF4oF5oF6, and

82

TS 3: Fl o F2.1 o F5 o F6.

Used together, the three test sequences, TS 1, TS2 and TS3 provide optimal coverage of
all the edges in G*. These test sequences are used in Chapter 7, which examines the
testing of the Logon interface.

6.5 Other work on state machines and testing

If the test criterion is to cover all nodes rather than all edges, a Hamilton circuit of the
STD is required. (A closed walk in a graph that includes all the vertices of the graph just

once is a Hamilton circuit.) If it is necessary to traverse some vertices more than once
(i. e. a Hamilton circuit does not exist), a solution to the travelling salesman problem will
provide optimal node coverage [Minieka78]. There is one main difference between the
travelling salesman problem and the postman problem. The postman needs to cover all
roads (i. e. edges in a graph), whereas the salesman only wants to call at client locations
(i. e. nodes in a graph). There are standard solution techniques for producing path
sequences for Hamilton circuits and the travelling salesman problem. Examples can be
found in pages 617-621 of [Alagar88], and pages 277-283 of [Minieka78]. These

standard solution techniques are lengthy; they are applicable, but not specific to the
testing of GUIs. Since an Euler tour that traverses all edges of a graph would, in any
case, cover all nodes as well, the study of a Hamilton circuit is not pursed in this thesis.

E. P. Hsieh, in [Hsieh7l], developed the concept of UIOs (Unique Input/Outputs). This

is useful for testing FSMs where the states are not physically visible (or distinctive) to

the tester. The UIO test sequences are designed to visualize the state transitions, by

observing the distinctive (or unique) output as a consequence of the test input applied to

the particular state, during the process of testing.

[Aho88] presents an approach to protocol testing, based on RCPT and UIOs. The graph

of an FSM (i. e. the specification) is augmented with additional edges representing the

UIOs. An optimal test coverage is, according to [Aho88], a RCPT problem of covering

all edges at least once. The RCPT problem is solved by adding replica edges, chosen on

a minimum cost flow basis, to produce a symmetric graph. Since the graph is

symmetric, an Euler tour exists and gives the required test sequence.

83

Chapter 7

Testing the Logon user interface

"The subject of test case design is considered to be the crux of
software testing. ... There are no known tools that can automatically
design test cases ... " from [Myers79]

As revealed earlier in Chapter 2 and 3, the design of test cases is probably the most
technically demanding task in the testing process. The scarcity of tools to generate test
data is echoed in a number of seminars [Wolverhampton90] and workshops
[Durham9l]. A comprehensive report on "Computer Aided Software Testing"
[Graham9O], lists only one tool [PEI90] as being commercially available in Europe that
attempts to generate test cases automatically. This tool appears to be primitive and does

not cater for user interfaces.

The reasons for the lack of automated test case generation are twofold. As discussed in
Chapter 2, functional testing has not been formalized or automated, as functions are
largely specified in natural languages. On the other hand, structural testing strategies can

assist the selection of test inputs, but do not provide test oracles to check outputs.
Considering the phases of the software engineering life cycle, the proper source for

deriving test oracles is the specification. The specification is the global reference point
for communications amongst designers, programmers, testers and users. For the
derivation of expected results in test cases, a formal specification is preferable .

84

7.1 Survey of testing approaches using formal specifications

Despite the potential for widespread use of formal specification languages, little has
been published about deriving test data from such specification [More1188], [Jones85],
[Richardson89]. There was one earlier exploration on the relationship between predicate
calculus specifications and path testing [Gourlay8l]. A small number of published
works, proposing the generation of test cases from formal specifications, exist. An
investigation to identify test domains through the partitioning of input and output (sets
and states) is presented in [Ha1188]. It uses Z to specify a part of the temporary storage
(queues) system under IBM CICS. Another report [North90] uses the triangle program
as a basis of comparison to contrast the feasibilities of automatic test data generation
with specifications made in a number of formal specification languages, including
VDM, Miranda and Prolog. The triangle program is concerned with whether inputs
consisting of three numbers (or integers) would form the three sides of a triangle.
Techniques of equivalence partitioning (into valid and invalid inputs), boundary value
analysis and error guessing are used for test data generation. These ideas are not directly
applicable to the testing of GUIs, which does not often deal with a range of numbers (or
integers) as inputs. Instead, GUIs deal with inputs according to different ranges of
positions on the screen. The borders of display objects naturally provide the partitions
of inputs according to screen positions.

A tool, presented in [Roper90], attempts to generate test cases by identifying functions

and conditions from a test specification for commercial data processing programs. The

specification language resembles that of a programming language, thus blemishing the
desirable property of a specification as an implementation independent oracle.
Moreover, the specification language is so restrictive that it can only be used for very

simple problems [Roper90].

Apart from model based specifications, there exists the work of Choquet, Bouge and
Gaudel in generating test data sets from algebraic data type specifications implemented

in extended versions of Prolog [Choquet86]. However this approach is unsuitable for

capturing the input / output features of graphical user interfaces.

There is also the DAISTS (Data-Abstraction Implementation, Specification, and Testing

System), which combines a data abstraction implementation language with algebraic

axioms in specifications [Gannon8l]. In this system, the user writes specification

axioms, the implementation, and the test data. The system furnishes the testing process

with the test driver and the evaluation of correctness. The axioms are used as test

oracles. Verification is carried out between the axioms and the implementation.

Structural testing is applied to both the axioms and the implementation to evaluate the

test data. The DAISTS system was applied to a practical example of a record-oriented

85

text editor with good results [McMullin83]. However, both the specification and testing
of the user interface were omitted in this case study, by assuming that input / output
were carried out by side effect.

The evaluation of test cases generated from formal specifications for interactive
graphical user interfaces is the main experimental work of this thesis. The direction of
test case generation from formal specifications was first inspired by [Hall88], and is
coined Formal Functional Testing (FFT) in this thesis. The behaviour of GUIs
necessitated the development of a new specification approach and notations, as argued
in preceding chapters. The concepts of test domains appear to be very different as
functions of GUIs are largely associated with display objects, rather than ranges of
numerical values in conventional test domains, as illustrated in [Ha]188] or [Choquet86].

7.2 Formal Functional Testing of the Logon interface

[Liskov86] has advocated that specifications should be precise, unambiguous and
should be reasonably easy to understand. A WinSpec gives the precise information for

test case derivation. Comprehension of the user interface specification is improved

when the control flow is presented in a WinSTD. The most natural way to visualise the
flow of interaction, is by linking display objects in a state diagram as shown in a
WinSTD. The human tester can see clearly the expected visual appearance of objects,
together with their respective interaction functions which are to be tested. A WinSTD is

useful for detecting any missing objects or functions in the design or implementation.

Apart from their use in testing, pictures of display objects (e. g. icons, menus) often
have to be made available in documents like user manuals. A WinSTD could also be

useful for users to receive early training and for evaluation of the interface. With a
WinSTD, human testers would be able to cope with minor changes in layouts of display

objects, which may invalidate a whole suite of test cases previously recorded with a

playback mechanism. A WinSTD can be easily constructed as most window systems

can produce screen dumps on paper. The tester has to add the arcs joining objects, and
then identify and enumerate all objects and functions for testing. Alternatively, there are

tools (e. g. [OSU89]) which aim to assist the user interface designer to produce design

drawings of display objects and to define interaction sequences.

In the first instance, testing experiments were conducted with the Logon user interface,

to derive test cases according to four different criteria :
TC1 - 100% coverage of objects
TC2 - 100% coverage of messages
TO - 100% coverage of functions

TC4 - 100% coverage of interaction sequences (all possible combinations of functions)

86

For functional testing, as surveyed in Chapter 2 (section 2.3), the conventional test
coverage are conducted in terms of ranges of inputs and outputs. Equivalence
partitioning and boundary value analysis are such examples. For graphical user interfaces, inputs are directed towards specific display objects. Outputs, from the GUI
software, are the display of objects and the dispatch of messages to the underlying
application program.

"Object coverage" (TCl) is used in the testing process to mean :
" Inputs are given to the GUI so that each display object should appear at least once

during the interactions performed in the test sequence.
" These display objects are inspected visually to ensure the correct visual appearance.
" At least one interaction function is carried out with each of these display objects to

check that these objects are alive (responding to the input correctly).

Since display objects are outputs of GUIs, TCl can be related to the output partitioning
as used in conventional test coverage.

"Message coverage" (TC2) requires the testing of those functions that have
app_msg_sent or app_msg_recv specified in their WinSpec specifications. In WinSpec,
an app_msg_recv is regarded as an input to the interface, and an app_msg_sent as an
output. Thus, TC2 can be viewed as input and output partitioning, when related to
conventional test coverage.

"Function coverage" (TC3) requires the testing of all the interaction functions for the
GUI, as specified in WinSpec. Clearly, TO embraces both TC 1 and TC2, as all display
objects and messages are captured in the specification of functions. TO is stronger than
both TC1 and TC2 combined, because many display objects have more than one
associated interaction function. As ranges of acceptable user inputs are clearly specified
for each function, function coverage effectively provides the equivalence partitioning
used in conventional test coverage.

"Interaction sequence coverage" (TC4) requires the testing of all combinations of
interaction functions. This is not always possible or practical, due to the large number of
possible combinations of interaction sequences. This is similar to the path explosion

situation mentioned in section 2.2, when examining the path coverage criterion used in

structural testing.

It soon becomes apparent that test cases for object coverage and function coverage are

relatively similar. This is because the interactions necessary to test all objects are likely

to cover a large number of functions as well. Message coverage is found to be the

weakest criterion, as many interaction functions are achieved entirely within the GUI

without any communications with the corresponding application. The number of

87

application messages is dependent on the model of dialogue separation used, such as
"Macro-communication" and "Micro-Communication", as discussed in Chapter 3. It is
found that a 100% functional coverage is the strongest of the first three criteria listed
above (i. e. exposes more errors). There are cases where a 100% coverage of objects
and messages might not guarantee a 100% coverage of functions. For instance, two
objects being tested (text boxes texB_user and texB_pass) seem to pass the object
coverage as they have the right visual appearance in accepting and echoing keyboard
inputs. The error is only uncovered when keyboard inputs kb? =<tab> and kb? =<cr>
are identified as having special functions according to the specification. This example is
taken from error E7 listed in Section 7.4.

Another perspective of the coverage criteria can be gained by referring to the theoretical
foundation of FSMs on which the specification is based. The 100% object coverage is
related to the traverse of all the nodes (or vertices) in the STD for the user interface. A
100% function coverage requires the traversal of all edges at least once. A 100%
coverage of interaction sequences requires the testing of all possible paths in the STD.

Chapter 6 has given the detailed development of the procedure for the derivation of test
sequences for TO (i. e. a 100% function coverage). This is based on the graph theory of
Euler tour and a solution of the postman tour. This will also satisfy TC1, as a coverage
of all edges will inevitably cover all the nodes in the STD as well.

There is no attempt to generate all alpha-numeric keys for input testing, because the
ability to accept keyboard inputs belongs to the underlying window system and device
driver. What is being tested is the GUI's ability to pass keyboard inputs correctly to
other parts of the application program. It does not aim to test the other part of the

application that actually undertakes the authorization check of the username and
password against the authorization database. There is one element of information

necessary for test generation but not available in the specification, and that is pairs of

valid and invalid "username - password". Since the list of valid usernames and

passwords varies from system to system, it is assumed that the tester has knowledge of

such information from other sources.

In order to evaluate the test selection criteria, code changes to seed ten errors were
introduced. The 100% functional coverage approach actually generated test cases that

uncovered 9 out of the 10 errors injected in the logon GUI. The 100% object coverage
found less than 8 of the 10 errors. This approach of generating functional tests from a
formal specification appears to be successful for the logon user interface. Though

academically interesting and not too time consuming to follow through, the Logon GUI

is a very small program. Case studies of other more complex GUIs are given in later

chapters.

88

7.3 Listing of Test Cases

A total of 14 functions have been specified for the Logon interface, in section 5.7.
F_Logon = {F1, F2, F2.1, F2.2, F2.3, F3, F3.1, F3.2, F3.3, F4, F5, F6, F7, F81

Three test sequences, as listed in the following sections, are found to be necessary to
cover all 14 functions. These test sequences are developed in Chapter 6, using the graph
theoretic algorithms of the Euler tour and the postman tour. As mentioned earlier, the
required inputs are taken from the "Inputs" clauses, and the expected outputs (oracles)
from the T_state_predicates. Functions are exercised one after another in a sequence, as
the To_ and From-states permit. The test selection criterion is a 100% coverage of all
functions (at least once). It can be seen that once functions are specified in a WinSpec,
test cases of interaction sequences can be represented in very concise and unambiguous
notations, such as : F1 o F2 o F2.2 o F3.2 o F2.3 o F3.3 o F2.2 o F3 o F3.1 o F7 o F8.

Test case (A) test sequence TS1:
F1 o F2 o F2.2 o F3.2 o F2.3 o F3.3 o F2.2 o F3 o F3.1 o F7 o F8

Required input Function Expected O/P Comments

is-inside (mp?, F1 is_visible(diaB_'Logon') Invoke Logon icon,

icon_'Logon') and ! dialogue box appears,

Tand mb? =<dClick> has_kb_focus(texB_user) ! username text box

has input focus.

kb? = "god" F2 text(texB_user)=kb? Input to username

"oduser" text box.

kb? =<tab> F2.2 has_kb_focus(texB_pass) Password text box

has input focus.

kb? =<tab> F3.2 has_kb_focus(texB_user) Return key focus to

username text box

is-inside (mp?, F2.3 has_kb_focus(texB_pass) Password text box

texB_pass) has input focus.

Tand mb? =<click>

89

Required ink

is-inside (mp?,
texB_user)

Tand mb? =<click>

kb? =<tab>

kb? ="goodpasw"

"sword"

kb? =<cr>

app_msg_recv

= "Logon ok"

is-inside (mp?,

clo6_term)
Tand mb? =<ciick>

Function Expected O/P Comments

F3.3 has_kb_focus(texB_user) ! Return key focus to

username field.

F2.2 has_kb_focus(texB_pass) ! Password text box

has input focus.

F3 is-not-visible (! Text in password
text(texB_pass)=kb?) ! field is not echoed.

F3.1 is_hiLit(cBtn_'OK') ! Ok button is highlighted

app_msg_sent =(! Message of
"user=", text(texB_user), ! username and
"pass=", text(texB_pass)) ! password sent.

F7 is_not_visible(diaB_'Logon') diaB disappears,

is_visible(wind_term) terminal window
is_hiLit(wind_term) appears as active.

F8 is_not_visible(wind_term) ! Click at close box of
terminal window,

! window disappears

90

Test case (B)

Rye uired input

is-inside (mp'>,

icon_'Logon')

Tand mb? =<dClick>

is-inside (mp?,

cBtn_'OK')
Tand mb? =<click>

app_msg_recv

= "Logon failure"

test sequence TS2: Fl o F4 o F5 o F6

Function Expected O/P Comments

F1 is_visible(diaB_'Logon') Invoke Logon icon,

and dialogue box appears,
has_kb_focus(texB_user) ! username text box

has input focus.

F4 is_hiLit(cBtn_'OK') Tand Ok button is highlighted

app_msg_sent =(! Message of
"user=", text(texB_user), ! username and
"pass=", text(texB_pass))! password sent.

F5 is_not_visible(diaB_'Logon') diaB disappears,

is_visible(diaB_'Logon Failure') ! Logon failure dialogue

is_hiLit(diaB_'Logon Failure') ! box appears as active.

is-inside (mp?, F6 is-not-visible ! Click at reset command

cBtn_'Reset') (diaB_'Logon Failure') ! causes Logon Failure

Tand mb? =<click> ! dialogue box to

disappear.

91

Test case (C) test sequence TS3: Flo F2.1 o F5 o F6

Required input Function Expected O/P Comments

is-inside (mp?, F1 is_visible(diaB_'Logon') ! Invoke Logon icon,
icon_'Logon') and ! dialogue box appears,

Tand mb? =<dClick> has_kb_focus(texB_user) username text box

has input focus.

kb? =<cr> F2.1 is_hiLit(cBtn_'OK') Tand ! Ok button is highlighted

app_msg_sent=(Message of
"user=", text(texB_user), ! username and
"pass=", text(texB pass))! password sent.

app_msg_recv F5 is_not_visible(diaB_'Logon') ! diaB disappears,

_ "Logon failure" is visible(diaB_'Logon Failure') ! Logon failure dialogue

is_hiLit(diaB_'Logon Failure') box appears as active.

is-inside (mp?, F6 is_not_visible ! Click at reset command

cBtn_'Reset') (diaB_'Logon Failure') ! button causes Logon

Tand mb? =<click> ! Failure dialogue box

to disappear.

In order to check that all interaction functions for the Logon interface have indeed been

covered by these three test sequences, an analysis is made as follows. The set of all
functions in the Logon interface is denoted as F_Logon. From the WinSTD and
WinSpec developed for the Logon interface in chapter 5, it is established that :
F_Logon ={F1, F2, F2.1, F2.2, F2.3, F3, F3.1, F3.2, F3.3, F4, F5, F6, F7, F81

From the three test cases listed above, it can be seen that :
Functions covered by sequence TS 1, F_TS 1={ F1, F2, F2.2, F3.2, F2.3, F3.3, F3,

F3.1, F7, F8}

Functions covered by sequence TS2, F_TS2 =JR, F4, F5, F6)

Functions covered by sequence TS3, F_TS3 = (Fl, F2.1, F5, F6 }

The set of functions covered by the three test sequences is the union of the three sets :

F TS 1U F_TS 2U F_TS 3

_ {F1, F2, F2.1, F2.2, F2.3, F3, F3.1, F3.2, F3.3, F4, F5, F6, F7, F8)

=F Logon
This confirms that all interaction functions of the Logon interface have been tested.

92

7.4 Results of testing

The following table presents the results of this testing experiment with the logon user
interface. Nine out of the ten errors seeded were detected by the functional coverage
criterion that requires each interaction function be invoked at least once. The undetected
error was that of a very small shift in the screen position of the username textBox. Even
in this case the textBox functioned normally, as the defect was purely visual. The reason
why only 10 errors were injected is because the logon user interface is too small to
warrant any more meaningful errors. Screen dumps of some visible symptoms caused
by injected errors are given in section 7.5. An analysis of common error types in GUIs
is presented in Chapter 12.

Error Brief description Object coverage Function coverage
(Visual inspection (Test sequences
of all objects) from WinSpec)

E1 "Ok" button detected detected
at wrong location

E2 Text box (texB_user) detected undetected
misplaced (see section 12.1)

E3 labels "username" and detected detected
"password" swapped (logon failure)

E4 texB_user missing detected detected

E5 "Reset" command button detected detected
has no function

E6 "Ok" command button detected detected
has no function

E7 <tab> & <cr> has no undetected detected
function at texB_user
and texB_pass

E8 wind_term is displayed detected detected

at logon failure (not always)

E9 diaB_'Logon Failure' is detected detected
displayed at logon success (not always)

E10 text(texB_user) and undetected detected
text(texB_pass) swapped
in app_msg_sent

93

7.5 Screen prints of some visible symptoms

Error E1 : Command Button "OK" (cBtn_'OK') dislocated

44 Logon File Q

`10

21:

Logon ...

OK

E1 Username : gooduser

Password : """"""""""ý

R

Error E2 : Text box (texB_user) misplaced

94

A* Logon File 0 10: 42:

Error E3 : Labels "Username" and "password" swapped

Logon File

Logon ...

E3

R

Password:

10: 52

OK

Username:

Error E4 : Username entry field (texB_user) missing

95

0
D

Logon File Q 11: 00:

7.6 Summary

This chapter has presented a case study of user interface testing. It has shown that the
WinSpec specification is useful for test case derivation. The results are encouraging as
the specification notation has formalized and assisted the reasoning and selection of
interaction functions and sequences for testing. Only three interaction sequences are
found to be necessary to cover the testing of all functions. Moreover, the quality of the
selected test cases are shown to be high, in detecting 9 out of the 10 errors seeded in the
Logon interface.

96

Chapter 8

Specifications for ThinkEdit

Window-based text editing is often an important part of graphical user interfaces. In

previous chapters, the specification model and notations were applied to a simple GUI.
An investigation of the same approach to text editing is presented here, following the
usual steps of scientific development : observation, modelling and experiments. The
investigation begins with the observation of the behaviour (functions) of existing
window-based text editors. The modelling process is an attempt to describe the editing
functions with the WinSpec notations, extending the notations as necessary. Once these

editing functions are expressed in WinSpec, test cases will be derived from the

specification. The success of such a functional testing approach is then judged by its

ability to find errors in editors during the testing experiments.

8.1 Natural language description of ThinkEdit functions

The editor being used in this case study is called ThinkEdit, which runs in the
Macintosh environment. It is part of an object-oriented programming tutorial set
included in THINK Pascal, a commercially available software package [Symantec90].

The source code of this editing GUI occupies a total of about 40 pages, approximately

two to three thousand lines of Pascal. There is no user manual for this editor. The

following is an informal specification (or description) of its functions. It is mainly
drawn from comments in the Pascal source code, and modified to improve coherence

97

and to include the user's perspective. This informal specification can be seen as
ambiguous, imprecise and incomplete, exemplifying the weaknesses of an informal
natural language specification. A number of vital functions are missing in this
specification, probably due to the assumption that readers are familiar with mouse and
menu driven editors. The informal specification begins by describing the functions of
the two main menus ("File" and "Edit") of ThinkEdit, together with the various menu
options within these menus. The "Apple" menu is unrelated to ThinkEdit functions and
too specific to the Macintosh environment to warrant a general discussion.

8.1.1 The "File" menu

The "File" menu has menu options for the "New"
, "Open"

, "Close", "Save" , "Save
As... " , "Quit" commands, described as following :

" The "New" command opens an empty window with an "UntitledX" name (where X is

an integer starting from 1, to a maximum of 5).
" The "Open" command prompts the user to enter the name of a file to edit with the Open

File dialog box. If the name is the same as a file that is already open, the user is
prompted to open the file with an "UntitledX" name. If ReadFile is successful, the
new window is opened after any existing windows are updated.

" The "Save" command simply writes the file to the disk and resets various flags.
" The "Save As" command puts up the Save File dialog box to prompt the user to enter

a filename in which to save the editing. For "Save As", the window title and
associated "Windows" menu item are changed.

" When the user attempts to "Quit", or "Close" a file; the "textDirty" flag is tested. If the
text is dirty (i. e. content changed since last "Save"), the user is prompted with a
dialog box to Save, Discard, or Cancel the save operation. In the exceptional case of
quitting after running out of memory, the only options are Save and Discard.

" Upon invocation of the "Close" option on the "File" menu, or when the close box on
the front window is clicked. Actions are taken according to three possibilities :
(a) The window is a user interface window, in which case it is hidden.

(b) The window is the Clipboard, in which case it is restored to normal size if it is

zoomed, and hidden.

(c) The window is an Edit window, in which case an attempt is made to save the

associated file, and if successful, before the window is closed it is first restored to

normal size if it is zoomed. (Note that a natural language description allows

undefined terms, e. g. "zoomed", to be used ambiguously.)

98

" When the "Quit" command is invoked, or if the program runs out of memory, an
attempt is made to save all open files, and if successful, the global variable "Done" is
set to TRUE.

8.1.2 The "Edit" menu

The menu option provides the edit commands : "Cut", "Copy", "Paste", "Select All";
commands that affect the scrap and text selection (highlighted, selected through mouse
interactions).

" The "Cut" command deletes the selection and places its content onto the scrap.
" The "Copy" command copies the selection onto the scrap without deleting it.

" The "Paste" command first tests if the text length would exceed 32767 before doing
the paste. This is the maximum text length that the editor can deal with.

8.1.3 Mouse pointer and button inputs

The editor employs the mouse as one of its main input devices, with functions as
follows :
" Mouse-downs in a scroll bar : all parts of the control other than the thumb are handled

in a uniform manner. (This exemplifies how unclear a natural language specification
can be.)

" Mouse-downs in the up-line, down-line, up-page, or down-page regions of the scroll
bar : it first determines which scroll bar the mouse was clicked in so that the proper
page size is used. The value of the associated control is then updated and the text is

scrolled if necessary. The actions are described in the Control Manager section of
"Inside Macintosh".

" AutoScroll is as described in the TextEdit Programmer's Guide in Inside Macintosh.
After the mouse was first clicked in the text window, for as long as the user holds

down the mouse button, the text in the window is scrolled up or down repeatedly,
depending upon whether the mouse is above or below the text.

" SignalZoom signals that the current front Edit window is zoomed by inverting the

grow icon. It must validate the grow icon after inverting it so that it will not be drawn

over when updating the window.

" HandleGrow grows the current front window when the user drags on the grow icon,

or zooms the window by double-clicking on the title bar of the window. The two

parameters "hSize" and "vSize" are the new height and width of the window with

respect to the top-left corner of the window. The window, scroll bars, and text in view

are first resized. It then validates any remaining uncovered portion of the window's

99

text if the text was not scrolled. This makes for a much cleaner update.

" ZoomWindow zooms the current front window in or out when the user double-clicks
on the title bar. When zooming out, the original size of the window is stored and the
window is resized to fill the entire screen. When zooming in, the window is restored to
its original size even if it was resized while it was zoomed. The "show" parameter is
used to hide and unzoom a window, typically the Clipboard, when the window is
closed.

" Mouse clicks in the title bar of a given window : if the user double clicks and the
window is not the front window, it is brought to the front. If it is the front window, it
is zoomed. Otherwise, the window is dragged to a new location.

" Mouse-downs in the text or scroll bars of the current front window are dealt with
accordingly. Note that mouse-downs in the text of non-Edit windows are ignored.

" If the mouse was clicked in the content or controls of an Editor created window that is
not the current front window, the window is first activated as per Macintosh User
Interface guide-lines.

8.1.4 Keyboard Inputs

The keyboard is the other main input device of the editor. It first tests if the key is a
menu key equivalent. If so, control is dispatched to the menu handler. Otherwise, it

must test if an Edit window is the current front window. If so, it tests if :
" the key is a printing character, a <Cr>, or a <BS>, and if

" there is enough room in the text buffer to insert the character. If so, the character is
inserted and various flags are updated.

8.1.5 Housekeeping

Various housekeeping functions exist (upon Activate/Deactivate events) to set flags and

menu items as appropriate:
" Initially as the editor is launched, to create the Clipboard window, and prompt the user

to open a file. The main event loop is then executed repeatedly until the user quits.
Note that the Desktop scrap is updated when exiting the program.

" It changes the cursor to an I-Beam if it is over the text of an active Edit window. The
insertion point in the text is also flashed on and off here. Otherwise, the cursor is

changed to the Arrow. The previous status of the cursor has to be kept (by means of a

global variable "InWindow").

100

Apart from the main editing and display functions that will be specified and discussed in
detail in the following sections, other common features of editors are :
" justification of the text display (flush left, centred or flush right).
" word wrapping.
" search (or find) and replace (or change).
" cursor movement by arrow keys.
" select word, line, all.
" right-delete, that is delete forwards as different from the normal delete key that deletes

the last character (i. e. delete backwards).

" delete word, line.

" undelete.

These functions do not exist in ThinkEdit, and are not included in the following
discussion on specification.

8.2 Specification approaches for editors

There are a few published papers on the formal specification of text editors, such as
[Sufrin82], [Took90]. Some of these specifications are highly abstract and
mathematical. They are intended for mathematical proofs rather than for derivation of
test data. These specifications have concentrated on abstract models of the internal data

types. Often, little explicit description is given to display functions, which provide
visual feedback of interactions to users and testers. This is partly due to varying levels

of abstraction, and also to the fact that some of these specifications were produced
before the advent of GUIs.

The main difference in the specification approach presented in this thesis is in its explicit

statements on inputs (required as test data) and outputs (for visual checks). It tells the
tester what inputs to generate and what outputs to expect, as stated in the "Inputs" and
"T-state-predicate" clauses. It also assists the understanding and testing of interaction

sequences, by allowing functions of matching To_ and From states to be considered for

execution in sequences.

WinSpec notations are adequate for specifying inputs to a text editing GUI. The three
basic input sources remain as : keyboard, mouse pointer and mouse button. But

WinSpec constructs for describing visual outputs were found to be inadequate and had

to be extended. Following the specification approach developed in Chapter 5, the first

step was to identify all display objects and draw up the WinSTDs for ThinkEdit, as

given in the following section. The second step is to specify interaction functions in

WinSpec notations, which is presented in section 8.4.

V

1 01

8.2.1 A WinSTD for ThinkEdit

In order to construct the WinSTDs for ThinkEdit, all display objects must be identified.
The following WinSTD shows only the high level objects and functions, as detailed
specification of interaction functions are being developed in the following sections.

it File Edit Windows QQ

_i nvoke_Thi nkEdi

New XN
Open 390
Close

..

Save

F-quit

Saue As ..
..

¬r nt...

Transfer...
Quit Q

_to_me n u_f u
F_new_fi 1e

tf. 1
li ne 1: abcdefghi j kl mnopqrstuvwxyz 123456*
line 2: abcdefghi j kl mnopgrstuvwxyz 123456'
line 3: abcdefghi j kl mnopgrstuvwxyz 123456'
line 4: abcdefghij kl mnopqrstuvwxyz 123456'
li ne 5: a bcdefg hi j kl mnopgrstuvwxyz 123456'
li ne 6: a bcdefg hi j kl m no pq rst uvwx yz 12 3 45 6'
17: a bcdefg hi j kl m no pq rst uvwx yz 12345678
line 8: a bcdefg hi j kl m no pq rst uvwx yz 123456"
line No. 9: abcdefghi j kl mnopgrstuvwxyz 12 31i

ne 1 0: a bcdefg hi j kl m no pq rst uvwx yz 12 3 45
li ne 1 1: 8 bcdefg hi j kl m no pq rst uvwx yz 123 45
1

: abcdefghi j kl mnopgrstuvwxyz 1234567890
line 1 3: e bcdefg hi j kl m no pq rst uvwx yz 123 45
line 1 4: a bcdefg hi j kl m no pq rst uvwx yz 123 45
line 15: a bcdefg hi j kl m no pq rst uvwx yz 123 45
li ne 1 6: e bcdefg hi j kl m no pq rst uvwx yz 123451
1 7: abcdefghij kl mnopgrstuvwxyz 12345678
118: abcdefghi j kl mnopgrstuvwxyz 1234567E
li ne 1 9: a bcdefg hi j kl m no pq rst uvwx yz 123 45

Do 111)

'X C'
¬'¬)s1 e , 11
i: 1 ?1r

Select All MA

FG-edi tali 3 p1 a

Figure 8.1 A WinSTD for ThinkEdit

102

The above WinSTD shows the visual appearance of the "File" and "Edit" menu,
together with an editing window, which are the top level display objects in ThinkEdit.
The lower level display objects are identified and listed in section 8.2.2.

The WinSTD visualizes the control flow in ThinkEdit, where arcs and arrows are used
to represent state transitions. The labels on arcs are either names of interaction functions
or names of function groups. For instance, FG_edit_display is the name of the group of
edit display functions.

The WinSTD (in Figure 8.1) gives a simplified overview of interaction in invoking
ThinkEdit with the function F_invoke_ThinkEdit, creating an editing window with
F_new_file, performing editing with function group FG_edit_display, and leaving
ThinkEdit with F_quit. The simplification is necessary for space reasons. However,
detailed state diagrams are given in Figure 8.3, Figure 9.1 and in the Appendices.

8.2.2 Display objects for ThinkEdit

In the following table, display objects in ThinkEdit are identified; the hierarchy is shown
by indentation (e. g. viewRect is part of wind-editor) :

menu 'File'
mOpt_'New'
mOpt_'Open'
mOpt_'Close'
mOpt_'Save'
mOpt_'SaveAs'
mOpt_'Quit'

I The "File" menu
! The "New" menu option in "File" menu

The "Open" menu option
The "Close" menu option
The "Save" menu option

I The "SaveAs" menu option
I The "Quit" menu options

menu 'Edit'

wind editor

mOpt_'Cut'
mOpt_'Copy'
mOpt_'Paste'
mOpt_'Clear'
mOpt_'Select All'

! The "Edit" menu
I The "Cut" option in the "Edit" menu
I The "Copy" menu option
! The "Paste" menu option

The "Clear" menu option
The "Select All" menu option

! The editing window, its title is not "editor"
tBar strips I It has strips on its title bar,

cloB I It has a close box, and
title !a title of the name of the file being edited.

The Page Setup, Print, Transfer and Undo options are either unsupported or irrelevant.

103

destRect
destRect(1,1)

destRect(x, y)

destRect(destL

! The editor window has a destination
rectangle of (destLen X destWidth) chars.
i. e. total no of lines = destLen, with

! no. of chars along each line = destWidth.
I Char y in line x is denoted destRect(x, y).

en, destWidth)

viewRect I The editor window has a view rectangle
viewRect(offset +l, 1)
... I of length viewLen and width viewWidth,
viewRect(offset+viewLen, viewWidth)

! at an offset from the destRect.

vBar I The window has a vertical scroll bar
sBar_upArrow I The up arrow shape on the scroll bar
sBarpgUpRect ! The page up region on the scroll bar
sBar_SlideBox ! The slider box on the scroll bar
sBar_pgDnRect ! The page down region on the scroll bar
sBar_dnArrow I The down arrow shape on the scroll bar

hBar ! The window has a horizontal scroll bar
sBar_ItArrow I The left arrow shape on the scroll bar
sBar pgLtRect ! The page left region on the scroll bar
sBar_hSliderB I The slider box on the scroll bar
sBar pgRtRect I The page right region on the scroll bar
sBar_rtArrow ! The right arrow shape on the scroll bar

sizB ! It has a resize box.

Table 8.1 Display objects of ThinkEdit

The above table and WinSTD have identified the basic display objects of ThinkEdit.
ThinkEdit

_obj_types ={ menu, mOpt, wind, tBar, destRect, viewRect, sBar, sizB }

These generic object types have already been introduced in section 5.4.2, except for
destRect and viewRect which are introduced for the specification of ThinkEdit, as
described in the following section (8.3). Moreover, it can be seen in the above table, a
vertical scroll bar consists of a number of lower level display objects :

vBar ={ sBar_upArrow, sBar_pgUpRect, sBar_slideBox, sBar_pgDnRect,
sB ar dnArrow }

Functions of horizontal scroll bars are similar to those of the vertical ones. In the
following specifications, horizontal scroll bars are not used by assuming viewWidth =
destWidth. The above denotation of display objects permits the smallest components to
be identified precisely. For instance, the down arrow in the scroll bar of the third editing

104

window can be unambiguously specified as :
wind_editor#3. vBar. sBar dnArrow .

The user interaction to scroll the text display downwards by a line can be denoted as :
is-inside (mp?, wind_editor#3. vBar. sBar_dnArrow) Tand mb? = <click>

When there is no risk of ambiguity in identifying the display object being referred to in a
specification, the above can be simplified to :
is-inside (mp?, sBar_dnArrow) Tand mb? = <click>

8.3 Text formatting, destRect and viewRect

An interactive editor provides visual feedback by allowing the user to see the text

entries and changes on a display screen. Since there can be more text in the file than can
be displayed on screen, two terms are used: destination rectangle (destRect) and view
rectangle (viewRect). Both rectangles are expressed in the same coordinate system, with
the origin (of (x, y) coordinates) fixed at the top left corner of the destRect. The x
coordinate increases positively from the origin towards the right, and the y coordinate
increases positively from the origin downwards. The destination rectangle marks the
boundaries within which the text will be set. The view rectangle defines the portion of
the window in which the text will actually be displayed [Chernicoff88]. The general

principle is to keep in view the region of the document where changes are being made.
The two rectangles need not coincide, and in general they do not. Scrolling is performed
by shifting the destRect while holding the viewRect fixed.

Figure 8.2 illustrates the relationship between destRect and viewRect. The coordinates

used to specify character positions in the viewRect refer to the same origin (i. e. the top

left corner of the destRect), as the viewRect always lies within the borders of the

destRect. When the text reaches the right edge of the destRect, it is automatically

wrapped to the next line. The destRect is actually bottomless; only its top and sides are

significant.

The basic functions of any text editor are the entry of new text, modification of existing

text, and eventually saving the edited text to a disk file. An editor normally keeps a

working copy of the text file being edited in temporary storage denoted as
"text(record)" here. This working copy, text(record), is usually more up to date than the

disk file which is denoted as "text(file)". When a "save" command is selected by the

user during editing, text(file) becomes the same as text(record).

The relationship between viewRect, destRect, text(record) and text(file) are further

105

explained as follows :

" The viewRect is all that the user can see on the screen. Effectively, the viewRect
captures the text that is in view in the editing window at the time. The user can choose
to view a different part of the text by scrolling. The viewRect always lies within the
destRect, to expose part or all of the text in the destRect. One can image that the
viewRect is being moved around to allow the user to see other parts of the text within
the destRect.

" The destRect captures all the text, formatted within rectangular borders, ready for
screen display. Normally, only a portion of the destRect is actually visible to the user,
through the opening that is called the viewRect. Effectively, the text that is seen in the
viewRect is actually part of the text in the destRect.

" The text in temporary storage, text(record), is different from the contents of destRect
in that the text in text(record) is sequential and not formatted for display as in a
rectangular window. It is necessary to introduce text(record), as the content of
destRect is subjected to formatting constraints such as line folding at carriage-returns.

" The notion of "text(file)" to represent the content of the disk file, as different from the
temporary storage (i. e. text(record)), is purely for the sake of completeness. The
specification for ThinkEdit, as given in the following section, does not actually refer to
text(file). The task to update the disk file belongs to the underlying application, and
not the user interface. The ThinkEdit user interface only sends a message to the
underlying application, requesting the content of text(record) to be saved.

The destination rectanal e marks the boundaries within which
the
The
the
The
doc

_Q Untitled2

le defines the ortion of view rectan g p
: ext will actually be displayed.
general principle is to keep in view tr

:.:.:

```'`` 
*1 1231 

window in which 

e, gi on of the 
two rectangles 

need not of nci de, and in general they do not. Scrolling is 
perform by shifting the destRect while holding the 

vi ewRect fixed. 

View (clipping) rectangle 
area in which text is 
actually displayed 

Destination (wrapping) 
rectangle, area to which 
text is formatted 

Figure 8.2 destRect and viewRect 

106 



8.4 Specification of edit and display functions 

When the mouse pointer is inside the editing rectangle (i. e. viewRect), its shape is 
changed from that of an arrow pointer to that of a marker (a vertical bar resembling a 
book marker). A variant of the pointer (mp? ) notation is used here to represent the 
marker (mk? ) input. With mp? inputs, locations can be represented in the smallest 
display unit of the screen (i. e. pixels). With mk? inputs, it is necessary to model the 
viewRect (and the destRect) with coordinates that are effectively represented in terms of 
line numbers (lineNo) within the text, and character numbers (charNo) within a line. 
Therefore when the mouse pointer is inside a text editing rectangle, instead of 
Loc(mp? ) = (x, y) , the notations are changed to : 
Loc(mk? ) = (lineNo, charNo) 
where 1 <_ lineNo <_ destLen and 1< charNo 5 destWidth. 

As described in section 8.2, the number of lines (destLen) in a destRect is increased as 
new text entries are made. The length (destLen) of a destRect is itself a variable. 
However, the width of a destRect or the maximum number of characters per line 
(destWidth) is fixed. Text entries longer than destWidth are folded to the next line. 
Effectively, a character entered at location (lineX, destWidth+l) is placed as 
(lineX+1,1). Whenever a carriage-return (<cr>) is entered, character positions in the 
current line are left empty, from where the cursor was located to the last character 
position (i. e. destWidth), and a new line is created to hold the text entered following the 
carriage-return. 

It is also necessary to introduce the notation of the insertion point (sometimes called the 

cursor) where a new text may be inserted. An insertion point appears as a blinking 

vertical bar between characters (in the Macintosh environment). The symbol is simply 
"cursor". The cursor position is denoted as : 
Loc(cursor) = (lineNo, charNo) 

where 1 <_ charNo <_ destWidth, is the position of the character to the right of the 

cursor. The cursor itself does not occupy any character position. It is placed between 

two characters. 

8.4.1 Set Insertion point 

One of the most frequently used interactions in an editing GUI is to use the marker to set 

the insertion point at a certain location. First move the marker to a location (lineNo, 

charNo), then 'click' the mouse button, as specified in F_set_insertion_pt. 

107 



----- Specification_for_function F_set_insertion_pt(IineNo, charNo) 

Variables : lineNo, charNo : integer , where 
1 <_ lineNo <_ destLen and 1 <_ charNo <_ destWidth. 

From-state : post 
- 

insert or post-select 
F_state_predicate: true 

Inputs : Loc(mk? ) = (IineNo, charNo) Tand mb? =<click> 

To_state : post 
- 

insert 
T_state_predicate: Loc(cursor') = (lineNo, charNo) and 

text(destRect')=text(destRect((1,1), (Iine, char-1))) 
cursor' // text(destRect((Iine, char), (destLen, destWidth))) 

and text(record')=text(destRect((1,1), (IineNo, charNo-1))) 
<insPt> // text(destRect((IineNo, charNo), (destLen, destWidth))) 

Explanations : 

" ThinkEdit has a much larger number of interaction functions than Logon. ThinkEdit 
functions are given meaningful names (e. g. F_set_insertion_pt) rather than numeric 
identifications (e. g. F4) as used in the specifications for Logon. 

" As can be seen in the above specification for F_ set_insertion_pt, the actual WinSpec 

statements are presented inside a rectangle bordered by a vertical line on the left and a 
horizontal line at the bottom. This is different from the layout of the Logon 

specifications (section 5.5). The difference is purely cosmetic so that lines of 

specification belonging to the same function appear to reside together within a 

rectangle. 

" Variables are introduced in order to model some of the internal states of ThinkEdit. 

Variables have not been used in the specifications of the Logon interface. This is 

because all Logon functions are adequately modelled with the display objects and their 

states. 

" The ThinkEdit GUI performs very little communication with its underlying application 

program. For this reason, the "Output_msg" clause is only included in specifications 

when it is necessary to do so. 

" The cursor appears as a blinking vertical bar between characters. It is also called the 

insertion point where a new text may be inserted within the editing rectangle. 

" The notation cursor' is used to represent the new cursor after the execution of the 

function. 

108 



" "Loc(mk? ) = (lineNo, charNo)" denotes an input with the mouse pointer (or marker) 
which is moved to the location (lineNo, charNo). 

" "Tand" is the notation for "temporal logical and" as defined in Chapter 5. 
" "mb? =<click>" denotes an input of a mouse button click . 

" As a consequence of F_set_insertion_pt, destRect' is displayed with cursor' at 
(lineNo, charNo). 

"A temporary copy of the file being edited text(record) is also updated to text(record') 
in which the insertion point, denoted as <insPt> , is positioned accordingly. 

" An instance of the execution of the F_set_insertion_pt function, as used in a test case, 
is denoted by substituting integer values for "lineNo" and "charNo" , such as : 
F_set_insertion pt(3,1) 
which will move the blinking insertion point onto the 3rd line at a position just before 
the first character. 

8.4.2 Insert text 

Once an insertion point is moved to or set at a desired location, a text can be inserted 

through keyboard inputs (kb? ). 

----- Specification_for_function F_insert_text(aString) 

Variable : aString : string 
line, char : integer , where 
1< line <_ destLen and 1 <_ char <_ destWidth. 

From-state : 
F_state_predicate: 

post-insert 
Loc(cursor)=(Iine, char) 

Inputs : kb? =aString and aStringý<cr> 

To_state : post-insert 
T_state_predicate: text(destRect')=text(destRect((1,1), (Iine, char-1))) 

aString // cursor' 
text(destRect((Iine, char), (destLen, destWidth))) 

text(record')=text(destRect') 
and T_state_predicate(F_update) 

109 



Explanations 

" Initially the cursor is located at (line, char) within the existing text. A non-empty 
keyboard input is denoted by kb? =aString, where aString: #<cr>. 

" An arbitrary piece of text is represented by specifying the begin and end points. The 
coordinates of points being used are of the form (line, char). For example, 
text(destRect((3,1), (5,30))) represents a section of text from the beginning (char--l) of 
the third line to somewhere in the middle (char=30) of the 5th line. This is a piece of 
text stretching about two and a half lines. 

The entire text in the destRect is expressed in coordinates as text(destRect((1,1), 
(destLen, destWidth))) where (1,1) represents the position of the first character on the 
first line, and (destLen, destWidth) represents the last character on the last line. 

" The outcome (in T_state predicate) is that the new keyboard inputs are inserted in the 
text at the point where the cursor was (i. e. (line, char) ). 

9 For text formatting reasons, the input kb? =<cr> is treated as a separate function in 
F_insert_cr. This can be seen in the first line of the T_state predicate. 

" The symbol // indicates text concatenation. 

" The cursor is moved to its new position following the text insertion. It is moved to the 

position next to the last character inserted. 

"A temporary copy of the file being edited, record', is updated according to the text in 

destRect'. 

" An example of inserting a piece of text such as "This is new" at the beginning of the 
3rd line will be denoted as : 
F_set_insertion_pt(3,1) o F_insert text("This is new") 

" "T_state_predicate(F_update)" is an abbreviation of : all the predicates in the 
T_state_predicate of function F_update are included here. F_update can be looked at 

as an internal housekeeping function, and is specified below. 

110 



----- Specification_for_function F_u pdate : 

Variables : dirtFlag : boolean 

From-state : post-insert 
F_state_predicate : F_state_predicate(F_insert_text or F_insert_cr or F_cut 

or F_paste or F_paste_replace or F_clear) 

To-state : post-insert 
T_state_predicate: dirtFlag'=true 

and is_enabled(mOpt_'Save') 

Explanations : 

" "F_state_predicate(insert_text)" is shorthand for : all the predicates in the 
F_state_predicate of function F_insert_text are included here. 

" It is stated that any of the F_state_predicate of the 'updating' functions, 

F_insert_text, F_insertcr, F_cut, F_paste, F_paste_replace, F_clear , 
can satisfy the F_state_predicate required for function F_update. These are functions 

that change the content of text being edited, in contrast to other functions that only 

affect the display of the text. (Specifications for these functions will appear in the 

following sections. ) 

9 Function F_update is designed so that its T_state_predicate can be used in any of the 

'updating' functions, to save repetition. 

" As a kind of housekeeping, after the execution of any of the 'updating' functions, the 

dirtFlag is set. This is to indicate that a temporary copy of the file being edited is not 

the same as the copy on disk, text(record) # text(file). (See section 8.3. ) Consequently 

the menu option 'Save' should be enabled. This will allow the user to save the updates 

to the disk file. 

111 



----- Specification_for_function 

Variables 

From-state 
F_state_predicate: 

Inputs 

To-state 
T_state_predicate: 

-------------- 
Explanations : 

F insert cr : 

line, char : integer , where 
1 <_ line <_ destLen and 1 

_< char <_ destWidth. 

post_insert 
Loc(cursor)=(line, char) 

kb? =<cr> 

post_insert 
text(destRect'((1,1), (line, char-1))) _ 

text(destRect((1,1), (line, char-1))) 
and text(destRect'((Iine, char), (line, destWidth))) = <cr>//() 
and text(destRect'((line+l, 1), (destLen', destWidth))) = 

cursor' // text(destRect((line, char), (line, destWidth))) 
// text(destRect((Iine+1,1), (destLen, destWidth))) 

and Loc(cursor')=(line + 1,1) 
text (record')=text(destRect((1,1), (line, char-1))) 

// <cr> // <insPt> 
text(destRect((Iine, char), (destLen, destWidth))) 

and T_state_predicate(F_update) 

" F_insert cr can be seen as a special case of F_insert_text, where the keyboard input is 

a carriage-return. 

" The T_state_predicates give the changes in content in terms of text(record'), and the 
changes in visual appearance in terms of text(destRect'). 

" The content is changed by the insertion of a <cr> code at the cursor location where an 
input of kb? =<cr> is generated. 

" The visual change is that a split of the text occurs at location destRect(line, char). The 

text from that location to the end of that line will form a new line of text. 

" The cursor is moved to the beginning of the new line, Loc(cursor')=(line+l, 1). 

" Again <insPt> denotes the insertion point (or cursor) in text(record'). 

112 



8.4.3 Text scrolling 

Automatic scrolling takes place when there is a keyboard input at the first line or the last 
line in viewRect . Generally, the line where new keyboard inputs are being inserted is 
scrolled to the middle of the viewRect. It is called function F_insert_scroll in the 
following specification. 

----- Specification_ for_function F insert scroll: 

Variables: char : integer, where 1 <_ char < destWidth 
offset : integer, 
where 0 <_ offset < (destLen - viewLen) 

From-state : post_insert 
F_state_predicate: Loc(cursor)=(offset+1, char) 

or Loc(cursor)=(offset+viewLen, char) 

Inputs: kb? =aString and aString#<cr> 

To-state : post_insert 
T_state_predicate: if Loc(cursor)=(offset+l, char) 

then offset' = offset - viewLen div 2 
else offset' = offset + viewLen div 2 

and T_state_predicate(F_insert_text) 

Explanations : 

" The viewing rectangle (viewRect) contains a total number of lines represented by an 
integer viewLen. Each line consists of a number of character positions. The maximum 
number of characters allowed on each line is represented by an integer, viewWidth. It 
is assumed that viewWidth=destWidth. Typical values are : 
viewLen = 20 (20 lines in viewRect, from 1 to 20) 

viewWidth = 60 (60 characters along each line in viewRect, from 1 to 60) 

" Recall that a viewRect is like a window exposing only part of the destRect. (See 

Figure 8.2. ) The value of the integer variable "offset" represents the offset between the 
first line in destRect and the first line in viewRect. Section 8.3.1 shows that the first 

line of text in destRect is denoted as : 
text(destRect((1,1), (l, destWidth)) 

Using the same coordinate system, the first line and the last line of text in viewRect are 
denoted as : 
text(viewRect((offset+ 1,1), (offset+l, viewWidth))) 

text(viewRect((offset+viewLen, l), (offset+viewLen, viewWidth))) 

113 



" When there is a keyboard input at the first line or the last line in viewRect , automatic 
scrolling takes place. Generally, the line where new keyboard inputs are being inserted 
is scrolled to the middle of the viewRect. The new offset between the destRect and the 
viewRect is decreased or increased by half the number of lines that the viewRect can 
hold. 

" The notation T_ statepredicate(F insert text) means that the T_state predicate of 
F_insert_text is included here. (See section 8.4.2. for the specification of 
F_insert text. ) 

" There is another form of automatic scrolling called F_scroll_select, that is carried out 
when a piece of text is being selected (highlighted) by mouse interactions. The 
specification for F_scroll_select will be given following the next section on 
F select text . 

8.4.4 Select text 

A user selects a piece of text by producing pointer and button inputs with the mouse. 
When a mouse-down event occurs inside the text rectangle (i. e. the view rectangle), 
mouse tracking keeps control until the mouse button is released. The text is highlighted 

as the mouse is dragged through it. When the user finalizes the selection by releasing the 
mouse button, the selected text remains highlighted and is ready for further 

manipulation, such as 'cut and paste'. 

A selection range is a piece of text selected for editing operations such as delete, cut or 
copy. The selection range is defined by two variables of coordinate points: selStart and 
selEnd. They denote character positions at points between characters, not the characters 
themselves. The text between the two character positions is the selection, and appears 
highlighted when displayed on the screen. For example, selStart = (1,2) and selEnd = 
(3,4) implies that the text from the 2nd character on the first line (lineNo=1, charNo=2) 
to the 3rd character on the 3rd line (lineNo=3, charNo=4-1) is selected inclusively. Note 

that the 4th character (charNo=4) is not included in the selection. This is because 

selStart and selEnd denote character positions at points between characters, not the 

characters themselves. A left to right convention is used; the location of charNo=4 is the 

point to the left of the 4th character (as the user sees), lying between the 3rd and the 4th 

character. 

The left to right and top-down convention is assumed to be the normal way of selecting 

a piece of text. If a user has used a right to left or bottom-up movement instead, the 

values of selStart and selEnd are simply swapped to fit in with the existing coordinate 

system. This can be seen in the following specification for F_select_text. 

114 



A zero-length selection (selStart = selEnd) is called an insertion point (or cursor), as 
described earlier. Conversely : 
Loc(cursor) = (line, char) => selStart = selEnd = (line, char) 

When a new, empty file is opened for editing, both selStart and selEnd are initialized to 
(1,1). The interaction to make a text selection is F select text. 

--- Specification_for_function F_select_text((linel 
, charl), (line2, char2)): 

Variables : linel, charl, line2, char2 : integer, where 
offset+l <_ linel <_ viewLen, offset+l <_ line2 <_ viewLen 
15 charl <_ viewWidth, 1! 5 char2 <_ viewWidth. 

From-state: 
F_state_predicate 
Inputs: 

To state: 
T_state_predicate: 

Explanations: 

post-insert or post-select 
True 
Loc(mk? )=(linel, charl) Tand mb? =<down> 
Tand Loc(mk? )=(line2, char2) Tand mb? =<up> 

post - select 
if (line2*viewWidth + char2) > (linel*viewWidth + 

then selStart'=(Iinel, charl) and selEnd'=(line2, 
else selStart'=(line2, char2) and selEnd'=(Iinel, 

and is_hiLit( destRect'(selStart', sei End') ) 

and text(record')=text(destRect') 

charl) 
char2) 
charl) 

" The variables linel, line2, charl and char2 are used to represent character positions 
within the viewRect. The viewRect is considered instead of the destRect, because 

F_select_text is for selecting text within the viewRect. Another function, 
F_scroll_select, is specified in section 8.4.5 for selecting text outside the viewRect, in 

which case text scrolling may take place. 

" selStart' and selEnd' are notations used to represent the values of selStart and selEnd 

after the execution of F_select_text. Their values before the execution are immaterial, 

as they are not required in the F_state_predicate. 

" As mentioned earlier, the values of selStart and selEnd may have to be swapped if the 

user does not follow the "left to right" and top-down convention. 

" "is hiLit" is one of the state primitives defined in section 5.4. The statement 
is_hiLit(text(selStart', selEnd')) is a predicate stating that the piece of text located 

between (selStart', selEnd') is highlighted. 

115 



8.4.5 Scrolling while selecting text 

Whilst making a text selection, if the user drags the mouse pointer outside the viewRect 
without releasing the button, the window's contents are scrolled continuously to keep 
the extending end of the selection in view. This is performed by checking the position of 
the mouse. If it is outside the viewRect, the text is scrolled one line at a time, as long as 
the button is held down outside the viewRect. The discussion of horizontal scroll is 
omitted by assuming viewWidth=destWidth. 

----- Specification_for_function F_scroll_select 
((linel, charl), (line2, char2)) 

Variables : linel, charl, line2, char2 : integers, 
where 1 <_ linel destLen, 1< line2 <_ destLen, 

1s charl destWidth, 1s char2 <_ destWidth 
offset : integer, 
where 0 _< offset <_ (destLen - viewLen) 

From_state: post-insert or post-select 
F_state_predicate : True 

Inputs: Loc(mk? )=(Iinel, charl) Tand mb? =<down> 
Tand Loc(mk? )=(Iine2, char2) Tand mb? =<up> 
and ( Iine2 > (offset+viewLen) or Iine2 < offset ) 

To-state: post - select 
T_state_predicate: T_state_predicate(F_seIect_text) 

and (if line2 > linel then offset' = line2 - viewLen 
else offset' = line2 -1) 

Explanations : 
" destLen and viewLen are the length (in terms of the number of lines) of the destRect 

and viewRect respectively, as defined earlier in table 8.1. 

" line 1 and line2 are line numbers with respect to the destRect. 

" F_scroll_select will take place instead of F_select_text only if the mouse pointer is 

moved to a value of line2, where it is below the lower border of viewRect : 
line2 > (offset+viewLen) or 
it is above the upper border of viewRect : line2 < offset 
These conditions are stated in the F_state_predicate. 

" When the mouse button is finally released, the new value of the offset is calculated as 

116 



shown in the T_ state-predicate. If the mouse pointer has been moved downwards (i. e. 
11 line2 > line l ), line2 will become the last line in the viewRect. Consequently, the ne w 

value of offset is adjusted so that offset' = line2 - viewLen. 

Alternatively, the mouse pointer could have been moved upwards from line1 to line2, 

where line2 < linel. In this case, line2 will become the first line in the viewRect, 
resulting in offset' = line2 - 1, as the first line in destRect is always line no. 1. 

" Although the viewRect may be too small to display the whole of the selected text, the 
selected text is highlighted within the destRect : 
is_hiLit(text(destRect((linel, char 1), (line2, char2))) ) 

" As the text selection is larger than the viewRect, only the last portion of the text 

selection is displayed (in the viewRect). It displays the bottom portion of the text 
selection if the mouse pointer is moved downwards to make a selection. Alternatively, 

the top portion of the text selection is displayed if the mouse pointer is moved 
upwards in making a selection. If the user wishes to view a portion of the text 

selection other than what is displayed, one of the scroll bar interaction functions can 
be used. (See Chapter 9 and Appendix C. ) 

117 



8.4.6 A brief contrast between specification and code 

A number of interaction functions have so far been specified. It is felt necessary to 
perform some intermediate review and evaluation. One way of examining what the 
specification process is achieving is to compare the specification with the program code. 
For this purpose, the main parts of the GUI code responsible for the F_select_text 
function are given below: 

{----------------------------------------------------------} 
{ HandleContent is the top level dispatching routine for mouse-downs in the text or } 
{ scroll bars of the current front window. Note that mouse-downs in the text of } 
{ non-Edit windows are ignored. } 
{---------------------------------------------------------- } 

procedure HandleContent; 
var 

part: integer; 
control: ControlHandle; 

begin 
GlobalToLocal (Eve nt. where); 
part := FindControl(Event. where, TheWindow, control); 
if part <> 0 then 

ScrollContent(control, part, Event. where) 
else if EditText then 

with TheWlnfo^^ do 
if PtlnRect(Event. where, 
begin 

with Event do 
TEClick(where, 

FixEditMenu 
end 

else 
SysBeep(5) 

end; 

tehAA viewRect) then 

BitAnd(modifiers, ShiftKey)=ShiftKey, teh); 

The source listing of three procedures, HandleContent, AutoScroll and HandleScroll, is 

examined. The HandleContent procedure attempts to find out where the mouse-down 

event was generated. If it was within the control regions of the scroll bar, procedure 
ScrollContent is called. If the mouse-down event was within the text of the viewRect, 

which is of interest to this discussion, it dispatches the mouse location to the system 
library TEClick. TEClick tracks the mouse movement with text highlights and calls 

procedure AutoScroll repeatedly, for as long as the user holds down the mouse button. 
Procedure AutoScroll is listed in the following page. 

118 



{ AutoScroll is the "ClikLoop" routine which is described in the TextEdit Programmer's} 
{ Guide in Inside Macintosh. It is installed in all Edit windows opened by the editor. It is} 
{ called repeatedly from the ToolBox, for as long as the user holds down the mouse button} 
{ when the mouse was first clicked in the text of some window. The text in the window is} 
{ scrolled up or down depending upon whether the mouse is above or below the text. } 
{-------------------------------------------------------} 

function AutoScroll; {: boolean } 
var 

mouse: Point; 
oldClip: RgnHandle; 

begin 
AutoScroll := TRUE; 
oldClip := NewRgn; 
GetClip(oldClip); 
ClipRect(TheWindow^. portRect); 
GetMouse(mouse); 
with TheWlnfo^^ do 

if mouse. v < teh^^. viewRect. top then 
HandleScroll(vScrollBar, InUpButton) 
else if mouse. v > teh^^. viewRect. bottom then 

HandleScroll(vScrollBar, InDownButton); 
SetClip(oldClip); 
DisposeRgn(oldClip) 

end; 

Procedure AutoScroll checks whether the mouse is above or below the upper or lower 
border of viewRect, and calls procedure HandleScroll to calculate the changes in the 
offset. (Source listing of procedure HandleScroll is given on the next page. ) Eventually 

procedure HandleScroll calls SetCtValue (a system library) to adjust the scroll bar. 
HandleScroll also calls procedure AdjText, which in turn calls TEScroll (another system 
library) to scroll the text. 

From the above program listings, it can be seen that the code implementing a certain 
interaction function can be scattered in different routines. In contrast, the state 
predicates in specifications give an integrated picture as all causes and effects are 
collected in one place. The WinSpec notations can describe user interactions (causes) 

and visible outcomes (effects) of functions in a comprehensive manner. When 

examining the program code, often no information is given about the processing taking 

place, other than what can be gleaned from the names of the routines, such as TEClick 

and SetCtlValue. The actual effect of these routines can only be understood by studying 
the window library programmer's manual. (In this case, TEClick and SetCtlValue can 
be found in Inside Macintosh vol. 1 [Apple85]. ) These details of a program's internal 

working are unnecessary in the specification. Instead, the WinSpec notations can 
effectively expose vital results and visible outcomes, such as 
is_hiLit(text(destRect(selStart', selEnd'))). 

119 



{------------------------------------------------------------} 
{ HandleScroll handles mouse-downs in the up-line, down-line, up-page, or down-page} 
{ regions of the horizontal or vertical scroll bar. We must first determine which scroll } 
{ bar the mouse was clicked in so that the proper page size is used. The value of the } 
{ associated control is then updated and the text is scrolled if necessary. This procedure} { is the same as the actionProc "MyAction" which is described in the Control Manager} 
{ section of "Inside Macintosh". } 
{------------------------------------------------------------} 

procedure HandleScroll (scrollBar: ControlHandle; part: integer); 
var 

delta, pageSize: integer; 
begin 

if part <> 0 then 
with TheWlnfo^^ do 
begin 

if scrollBar = 
pageSize 

else 

vScrollBar then 
:= textLines -1 

pageSize := textWidth div 2; 
case part of 

InUpButton: 
delta := -1; 

InDownButton: 
delta := +1; 

InPageUp: 
delta := -pageSize; 

InPageDown: 
delta := +pageSize; 

otherwise 
end; 

SetCtlValue(scrollBar, 
AdjText(TheWInfo) 

end 
end; 

GetCtlValue(scrolIBar) + delta); 

Another benefit of a functional specification in a notation like WinSpec is that it is more 
likely to be reusable (at least in parts) for specifying GUIs on different implementation 

platforms. This is because specifications can model the main effects of functions on a 
level of abstraction that is higher than, and independent of implementations. It does not 
depend on routine names that are specific to a window system library, or notations that 

are restricted by the syntax of an implementation language such as C or Pascal. 
Although it is not possible to translate WinSpec specifications directly into an 
implementation, it is useful as an implementation-independent test specification. This 

section has justified the motivation for a functional specification. The process of 

specifying ThinkEdit functions is continued in the following sections. 

120 



8.4.7 Copy selection 

The "Edit" menu option "Copy" allows the text selection to be copied to a scrap (called 
the clipboard), without deleting the selection from the viewRect. "Copy" doesn't change 
the existing text in the editing window. The concept of a clipboard, a special text 
window, is introduced to help to specify the functions of copy, cut and paste. 

----- Specification_for_function F_copy : 

Variables : selStart, selEnd : points of (line, char) 

From-state: post-Select 
F_state_predicate : T_state_predicate(F_select_text or F_scroll_select) 

Inputs: kb? =<cmd-C> or 
(is_inside(mp?, menu_'Edit') Tand mb? =<down> 
Tand is_inside(mp?, mOpt_'Copy') Tand mb? =<up>) 

To-state: 
T_state_predicate: 

Explanations: 

post-select 
text(clipboard') = text(destRect(selStart, selEnd)) 

"A text selection range is defined by two variable sets of coordinate points: selStart and 
selEnd, as defined earlier in section 8.4.4. 

" As F_state_predicate for F_copy, a piece of text selection must exist, as consequences 

of either F_select_text or F_scroll_select : 
T_state_predicate(F_selecttext) or T_state predicate(F_scroll_select) 

" The "Inputs" required to execute F_copy are the mouse pointer and button interaction 

to choose the "Copy" menu option : 
Loc(mp? )=(mOpt_'copy') Tand mb? =<up> 

" <cmd-C> is the command key for mOpt_'Copy', see explanations at 8.4.10. 

" After the execution of F_copy, the content of the clipboard is set to the selected text 

between the two points selStart and selEnd : 

text(cipboard') = text(destRect(selStart, selEnd)) 

121 



8.4.8 Cut selection 

The "Edit" menu option "Cut" deletes the text selection from the display and makes a 
copy of it onto the clipboard. As an outcome of F_cut, the text characters located before 
and after the previously selected (highlighted) text piece are joined adjacently. 

----- Specification_for_function F 
-cut : 

Variables : selStart, selEnd : points of (line, char) 

From-state: post-Select 
F_state_predicate : T_state_predicate(F_select_text or F_scroll_select) 

Inputs: kb? =<cmd-X> or 
(is_inside(mp?, menu_'Edit') Tand mb? =<down> 
Tand is_inside(mp?, mOpt_'Cut') Tand mb? =<up>) 

To-state: post. 
T_state_predicate: text( 

and 
and 

Tand 
and 
and 

Explanations : 

insert 
clipboard') = text(destRect(selStart, selEnd)) 
is_not_visible(text(destRect(selStart, sel End))) 
text(destRect')=text(destRect((l , 1), selStart))// 
cursor' // text(destRect(selEnd, (destLen, destWidth))) 
(selEnd' = selStart) 
text(record')=text(destRect') 
T_state_predicate(F_update) 

" Specification for F_cut is similar to that of F_copy, except that the text selection 
disappears, as stated in the T_state_predicate : 
is_not visible(text(destRect(selStart, selEnd))) 

" As the text selection between selStart and selEnd is removed, text(destRect') is formed 

by joining up the remaining text pieces. 

" If denotes text concatenation. 
" <cmd-X> is the command key for mOpt_'Cut', see explanations at 8.4.10. 

" At the end of the execution of F_cut, the text selection between selStart and selEnd has 

vanished, and an empty selection is indicated by the predicate : 

selEnd' = selStart 

" It is also necessary to perform some housekeeping tasks (e. g. enabling the 'Save' 

menu option), as the content of text(record) has been changed, by including the 
T_state_predicates of F_update. 

122 



8.4.9 Paste selection 

The "Edit" menu option Paste' copies the text in the clipboard into the text being edited. 
There is only one clipboard, which is shared in common among all applications. This 
allows the user to cut or copy the text from one window and paste it down in another. 

----- Specification_for_function F_paste : 

Variables line, char : integer 
1 <_ line <_ destLen 

where 
and 1 <_ char <_ destWidth. 

From state: 
F_state_predicate 

post_insert 
Loc(cursor)=(Iine, char) 

Inputs kb? =<cmd-V> or 
(is_inside(mp?, menu_'Edit') Tand mb? =<down> 
Tand is_inside(mp?, mOpt_'Paste') Tand mb? =<up>) 

To-state: post_insert 
T_state_predicate: text(destRect') = text(destRect((1,1), (Iine, char))) 

text(clipboard) // cursor' 
text(destRect((Iine, char), (destLen, destWidth))) 

and text(record') = text(destRect') 
and T_state_predicate(F_update) 

Explanations : 

" Recall from section 8.4.4 that the cursor is formed as the result of an empty text 
selection (i. e. selStart = selEnd). It has a two way implication : 
selStart = selEnd = (line, char) => Loc(cursor) = (line, char) 
Loc(cursor) = (line, char) => selStart=selEnd=(line, char) 

Conversely, selStart # selEnd => is-not-visible (cursor) 

The F_ state-predicate for F_paste require the existence of the cursor (or insertion 

point) where the text will be pasted. 

" <cmd-V> is the command key for mOpt 'Paste', see explanations at 8.4.10. 

" The T_state_predicate describe how the content of text(destRect) is changed by 

concatenating the new text in the middle. 

" The cursor is effectively placed after the newly pasted-in text. 

123 



8.4.10 Replace selection 

F_paste_replace replaces the current text selection with the text in the clipboard. It can 
be looked at as a "cut" followed by a "paste", except the content of the clipboard 
remains unchanged throughout. 

----- Specification_for_function F_paste_replace : 

From-state: post 
- select 

F_state_predicate : selStart t selEnd 

Inputs kb? =<cmd-V> or 
(is_inside(mp?, menu_'Edit') Tand mb? =<down> 
Tand is_inside(mp?, mOpt_'Paste') Tand mb? =<up>) 

To-state: post-insert 
T_state_predicate: is-not 

-visible(text(destRect(se[Start, selEnd))) 
and text(destRect')=text(destRect((1,1), selStart)) 

// text(clipboard) // cursor' 
// text(destRect(selEnd, (destLen, destWidth))) 

I Tand (selEnd' = selStart and seIStart'=seIStart) 
I and text(record') = text(destRect') 
I Tand T_state-p redicate(F_update) 
I----------------------------------------------------- 

Explanations : 

" The text between selStart and selEnd is removed. 

" The content of the clipboard is pasted in, as similar to F_paste. The position of the 

cursor is adjusted accordingly. 

" Some functions that are usually invoked by selecting menu options can also be 

invoked through "keyboard accelerators". For example, the keyboard input, 
kb? =<cmd-V> can be used instead of 
is_inside(mp?, mOpt_'Paste') Tand mb? =<up> . 

The notation <cmd-V> is read as "command W. It denotes the entry of a "V" or "v" 

key on the keyboard, while the command key is held down. 

The suffix "_k" can be added to names of functions, to indicate that functions are 
invoked by means of command keys. For example, F_paste_k is used to refer to a 
F_paste function executed by using the keyboard accelerator <cmd-V>. This notation 
is used in the listing of test sequences in Chapter 9. 

124 



8.4.11 Clear selection 

The "Edit" menu option 'Clear' deletes the selected characters from the display without 
copying them to the clipboard. As a consequence of F_clear, the text characters 
previously located before and after the text selection are joined adjacently. 

----- Specification_for_fu nction F_c lear: 

Variables : selStart, selEnd : points of (line, char) 

From-state: post 
- 

select 
F_state_predicate : T_state_predicate(F_select_text or F_scroll-select) 

Inputs: is_inside(mp?, menu-'Edit') Tand mb? =<down> 
I Tand is_inside(mp?, mOpt_'Clear') Tand mb? =<up> 

To-state: post_insert 
T_state_predicate: is_not_visible(text(destRect(selStart, selEnd))) 

and text(destRect')=text(destRect((1,1), selStart)) 
cursor' // text(destRect(selEnd, (destLen, destWidth))) 

I Tand (selEnd' = selStart) 
and text ( re co rd') = text (destRect') 
and T_state_predicate(F_update) 

---------------------------------------------------------- 
Explanations : 

" Specification for F_clear is similar to that of F_cut, except that the text selection is not 
saved to the clipboard. 

8.4.12 Select All 

The "Select All" option of the "Edit" menu allows a user to select or highlight the whole 
text being edited. It does not just select the text visible in the viewRect, but the entire 

text in the destRect. 

125 



----- Specification_for_function F_selectAll 

From-state: post 
- 

insert or post-select 
F_state_predicate : True 

Inputs: kb? =<cmd-A> or 
(is_inside(mp?, menu_'Edit') Tand mb? =<down> Tand 

is_inside(mp?, mOpt_'Select All') Tand mb? =<up> ) 

To-state: post-select 
T_state_predicate: selStart'=(1,1) and 

selEnd'=(destLen, destWidth) 
and is_hiLit(text(destRect'(selStart', selEnd'))) 
and text(record')=text(destRect') 

---------------------------------------------------------- 
Explanations : 

" <cmd-A> is the command key for mOpt_'Select All', see explanations at 8.4.10. 

" selStart'=(1,1) indicates that text selection begins from the first character position of 
the first line. 

" selEnd'=(destLen, destWidth) shows that the selection covers throughout the text 
including the last character position of the last line within destRect. 

8.4.13 A review of edit-display functions 

The specifications for the edit-display functions of ThinkEdit are now complete. It is 

vital to analyse what has been achieved. In essence, a total of 11 interaction functions 

have been identified and specified in this group, not including the internal functions 

F_update and F_insert_cr. The notation FG_edit_display is used to represent the group 

of edit-display functions specified. 

FG_edit_display ={ F_set_insertion_pt, F_insert text, F_insert_scroll, F_select_text, 

F_select_scroll, Fcopy, F_cut, F_paste, F_paste_replace, 

F_clear, F_selectAll } 

A useful step to further our understanding of these interaction functions is to organize 

them into a structure to visualize how they are related. A simple state transition diagram 

is given below for this purpose. 

126 



F_to_ ED_S F success, new file, F open F_to_ED_ I F _ _ open untitied 
STD_edit display _ _ 

F_set_Ins_pt F set ins-pt insert-text 

F to 
_s 

Bar 

F_selectAll, Post_ 
Insert 

F_select 

_text, F cut F ins scroll F_select - _ _ 
scroll _ R 

-paste 

Post F_to sBar 
Select 

F_paste_replace 
F_copy 

F_to_menu_fun F_to_wind_mgrnt F_ 
_menu_func 

Figure 8.3 A STD showing the relationship amongst edit and display functions 

In Figure 8.3, the rectangular box represents the border of the state diagram 
STD_edit display, showing the state transitions within the function group 
FG_edit_display. The two circles (or nodes), Post_Insert and Post_Select, represent the 

two states between which transitions occur. For instance, the mouse interaction 

F_select_text causes the state transition from Post_Insert to Post_Select. This may be 

followed by a F_cut function, which returns the user interface to the Post_Insert state, 

where the insertion point (or cursor) is visible and no text selections (or highlights) can 
be seen. STD_edit display is related to other function groups of ThinkEdit, as shown in 

the higher level state diagram in the next chapter. The lines and arrows penetrating in 

and out of the rectangular border of STD_edit_display, as shown in Figure 8.3, 

represent transitions from and to other state diagrams. (See also Figure 9.1, which 
includes other function groups to show the overall structure of ThinkEdit. ) 

8.5 Summary and directions 

In this chapter, the specification of a window editor has been investigated. It began by 

presenting an informal description of ThinkEdit, followed by the detailed formal 

specifications. Display objects and interaction functions of ThinkEdit have been 

specified in terms of WinSTDs and WinSpec notations. A total of 11 edit-display 
functions have been specified, as listed in the last section (8.4.13). 

Another main group of ThinkEdit functions is the menu functions. A total of 23 menu 

127 



functions have been specified in appendix B. They are : 

FG_menu_func ={ F_new_file, F_open_file, F_open_cancel, F_open_select, 
F_open_folder, F_open_open, F_open_success, F_open_fail, 
F_clear_open_fail, F_DupFn, F_DupFn_cancel, F_open_untitled, 

F_save, F_save_success, F_save_fail, F_clear_save_fail, 
F_saveAs, F_saveAs_fn, F_quit, F_quit_warn, F_quit_cancel, 
F_quit_save, F_quit_discard } 

In addition to the above, there is also a group of scroll bar interaction functions: 
FG_sBar = {F_sB_IineUp, F_sB_IineDn, F_sB pageUp, F_sB pageDn, F_sB_slider }. 
Specification for these are given in Appendix C. 

Windows and other display objects used in the ThinkEdit user interface are subject to a 
set of window management functions. Window management functions are generally 
provided by the underlying window system, rather than the application user interface. 
However, it has been found that window management functions are similar across 
different systems (see Chapter 3, [Myers89], [Yip9ld]) and their specifications can be 

reusable. The specification of a small subset of window management functions, as 
applicable to ThinkEdit, is given in Appendix D. 

FG_wind_mgmt ={ F_select wind, F_resize_wind, F_drag_wind, F_zoom_wind, 

F_close_wind } 

To summarize, there are four main function groups that have been identified and 

specified for ThinkEdit. They are the edit-display functions, menu functions, scroll bar 
functions and window management functions. An analysis of the relationship amongst 

these four groups of functions is presented in the beginning of the next chapter, leading 

to the generation of test cases for these functions. 

128 



Chapter 9 

The testing of ThinkEdit 

In the previous chapter, the functions of ThinkEdit were decomposed into four main 
groups : edit-display functions, menu functions, scroll bar functions, and window 
management functions. (See section 8.5) 

FG ThinkEdit ={ FG_edit display, FG_menu_func, FG_sBar, FG_wind_mgmt} . 

Each function group is in turn made up of a number of interaction functions, as listed in 

section 8.5. The edit-display functions were specified in terms of WinSTDs and 
WinSpec notations in section 8.4. Specifications for the menu functions, scroll bar 
functions, and window management functions are given in Appendix B, C and D 

respectively. In this chapter, test cases of interaction sequences are derived from 

specifications to cover these four function groups. 

Function groups do not exist in isolation. For instance, a menu function must be 

invoked to open a file before any of the edit-display functions can be tested. In the last 

chapter, STDs are used to illustrate the relationship amongst functions within a function 

group. A top level state diagram is given in Figure 9.1 to show the relationship between 

different function groups. The rectangular boxes represent individual STDs for the four 

function groups. The state diagram, STD_edit_display, has already been given in the 
last chapter (Figure 8.3). The internal details of the other state diagrams, as represented 
in Figure 9.1, are given in the Appendices. 

129 



In Figure 9.1, the transitions between different function groups (each represented as a 
STD within its rectangular borders), are achieved through mode-free interactions with 
the mouse device. For example, in the middle of text editing (i. e. in STD_edit 

_display) 
the user is free to move the mouse pointer into the scroll bar regions (i. e. F_to_sBar) to 
invoke functions within STD_sBar, or to invoke functions in STD_menu_func by the 
interaction to move the mouse pointer (F_tomenu_func) onto the menu bar. 

Start 
invoke ThinkEdit 

F_quit 
STD F to_wind_mgmt 

10 menu 
func F_to_menu_func 

F_to_wi nd 
F. 

�. 

/to 
F_open_untitled, 

_menu 
_-mgmt 

F_open success, 
_func F_new file F to sBar 

STD F to_ED_S 

edit ,F to_ED_I 
display 

toBar 
F_to_E D_S, 
FtoEDI 

F_to_sBar 

F to menu func 

STD 
sBar 

STD 
wind 
mgmt 

F to_wi nd_mg mt 

Figure 9.1 A state diagram showing overall control flow of interactions in ThinkEdit 

130 



9.1 Test selection criteria 
In order to test a GUI, all display objects, interaction functions and application 
messages are identified. During the testing of the Logon interface in Chapter 7, four 
different test selection criteria were considered : 

TC 1- 100% coverage of objects 
TC2 - 100% coverage of messages 
TO - 100% coverage of functions 
TC4 - 100% coverage of all possible combinations of functions 

The message coverage criterion is unsuitable on its own as very few application 
messages are used in the specification of ThinkEdit. This is because editing functions 
are largely user interactions with little application processing outside the user interface. 
Application messages are only used in a few functions mainly for opening, reading from 
and writing to disk files. TC2 is rejected as ThinkEdit cannot be adequately tested by 
checking application messages alone. In practice, TC2 is covered by TC3, as all 
applications messages are included in the specification of functions. 

The object coverage criterion was also abandoned. The main reason, as found in 
Chapter 7, is that TC1 is not as powerful as TC3 in detecting errors. For ThinkEdit, it 
was found that each character in the text being edited can be recognized as a lower level 
display object within the viewRect (the viewing window). One can argue that the object 
viewRect is in a different state when text(viewRect((line, char), (line, char+l ))) has a 
different character. This implies that a 100% object coverage may not be practical as the 
total number of test sequences can be quite large. As discussed earlier, destRect (the 
destination rectangle) can actually be thought of as a bottomless rectangle. Practically, 

only a small, representative number of character locations are selected for testing. 

A 100% coverage of functions is the main strategy being used to test ThinkEdit, as the 

criterion of testing all possible combinations of functions (TC4) is impractical. Although 
TO is the chosen criterion for further experiments, it can be complemented if necessary 
by any of the other three criteria. 

131 



9.2 From specification to test sequences 

Having decided on a 100% function coverage criterion, it is desirable to generate the 
smallest number of test cases which, together, will cover all functions. Each test case is 
the invocation of a sequence of interaction functions. Individual functions are joined 
together to form a sequence as permitted by their To_ and From-states. For example : 

F_set_insertionpt(8,1) o F_insert_text("This is line No. 8 ... ", <cr>) 

A basic algorithm for generating test sequences is outlined here. The first step is always 
to select the function that would invoke the user interface. In this case it is a double 

mouse click at the ThinkEdit icon (denoted as F_start or F_invoke). Then one of the 
functions with suitable From states is selected to be the second function in the test 
sequence. Another function with From-state matching the To-state of the second 
function is selected to join the test sequence as the third function. This selection process 
carries on until all functions are covered at least once, or until the end of a sequence is 

reached by having chosen a function that will terminate the execution of ThinkEdit. It is 

possible that a sequence may be terminated before all functions are covered, in which 
case another test sequence has to be generated to cover the untested functions. 

To reduce the cost of testing, ThinkEdit should be invoked the smallest number of times 

necessary to cover all functions. This is because the startup and termination of programs 
are usually time consuming. Therefore a test sequence should cover as many different 
functions as possible, even if some functions are repeated within the same invocation. 

The execution (or testing) of a certain interaction function is only repeated if it is strictly 

necessary. For example, a function is repeated in order to reach other yet untested 
functions, or if repeated execution can expose new errors. As discussed in Chapter 6, it 

is possible to employ existing techniques, such as RCPT, to assist the derivation of test 

sequences. 

9.3 Test sequences generated 

A total of four test cases (or sequences) have been generated, following the basic 

algorithm outlined above, to cover all functions of the four function groups identified 

earlier. 

132 



9.3.1 Test sequence for edit-display functions : 

Test sequence TS 1: 

F 
_start 

o F_open_cancel o F_new_file 

o F_insert_text("abcdefghijklmnopgrstuvwxyzl234567890-=[]; ',. /", <del>, <cr>) 
o F_set_insertion_pt(1,1) o F_insert_text("Line No. 1: ") 
o F_select_text((1,1), (2,1)) o F_cut oF 

-paste o F_paste_k o f_paste o F_paste_k 
o F_select_text((1,1), (3,1)) o F_clear o F_paste_k o F_paste_k o F_paste_k 

o F_select_text((6,1), (1,1)) o F_copy 

o F_ paste o F_paste_k o f_paste_ ko F_paste_k o F_paste_k 

oF 
_select_ 

text((2,10), (2,11)) o F 
_insert _text("2") 

oF _select_ 
text((3,10), (3,11)) o F 

_insert _text("3") 
oF 

_select_ 
text((4,11), (4,10)) o F 

_insert _text("4") 
oF 

_select_ 
text((5,11), (5,10)) o F 

_insert _text("5") 
oF 

_select_ 
text((6,11), (6,10)) o F_ insert 

_ 
text(<del>, "6") 

oF 
_select_ 

text((7,10), (7,11)) o F_ insert_ text(<del>, "7") 

o F_ set_ insertion 
_pt(8,11) 

o F_ set_ insertion 
_pt(9,11) 

o F_ set_ insertion 
_pt(10,11) 

o F_insert_text(<del>, "8") 

o F_insert_text(<del>, "9") 

o F_insert_text(<del>, "10") 

o F_select_text((11,1), (1,1)) o F_copy_k 

o F_ set_ insertion 
_pt(11,1) 

o F_insert_text(<cr>, <cr>, <cr>, <cr>, <cr>) 

o F_ set_ insertion 
_pt(destLen, 

destWidth +1) 
o F_insert_text("Trying function F_paste_replace") 

o F_select_text((destLen, 1), (destLen, destWidth+l)) o F_paste_replace 

o F_saveAs o F_saveAs_fn("tf. 1 ") o F_save_success 

o F_select_text((15,1), (20,1)) o F_cut_k o F_paste 

o F_set_insertion_pt(destLen, destWidth+l) o F_insert_text(<cr>) o F_paste 

o F_scroll_select((destLen, destWidth), (1,1)) o F_sB_slider(at_bottom) 

o F_set_insertion_pt(destLen, destWidth+l) 

o F_insert_scroll(<cr>, "This is the last line ... ") 

o F_selectAll 

o F_sB_slider(at_top) o F_set_insertion_pt(2,7) 

o F_scroll_select((2,14), (30,5)) 

oF selectAll_k 

o F_quit o F_quit_warn o F_quit_save o F_save_success 

end 

133 



An explanation of TS1 

Test sequence TS 1 is generated by invoking all the functions, where allowable, one after 
another. All the edit-display functions are covered in TS 1, namely : 
FG-edit-display ={ F_set_insertion_pt, F_insert_text, F_insert scroll, F_select_text, 

F_selectAll, F_scroll 
_select, 

F_cut, F_paste, F_paste_replace, 
F_copy, F_clear } 

TS 1 does not attempt to test different combinations of these functions. Most edit-display 
functions are mode-free, except F_copy, F_cut and F_paste_replace which must be 

preceded by F_select_text. Usually, F_set_insertion_pt is invoked before F_insert_text 
as a common pattern of text editing activities. 

TS 1 contains a number of combinations of F_select_text, F_cut, F_copy and F_paste. 
These are mainly employed to build up a reasonable length of text for testing the text 
scrolling functions. TS l does not give special consideration to boundaries of words, 
lines and paragraphs as portrayed in one specification approach [Sufrin82]. A blank 

space in the text is just considered as another character. Characters are placed in a new 
line because they were preceded by a carriage-return character (denoted as <cr>). 
However, it is found that ThinkEdit does not fold lines automatically when the last 

character position (destWidth) of the destRect is reached. Keyboard inputs are allowed 
to go beyond the edge of the window, and are not visible. This is clearly a design / 

implementation error. 

Observations of users show that an interaction usually starts as an initial long spell of 
F_insert_text, with the insertion point remaining at the end of the text. Then editing 

occurs at different parts of the text, through interactions that set insertion points, insert 

characters and remove unwanted characters. The test sequence TS 1 covers a number of 

these interactions; it also includes cut-and-paste interactions that move text pieces 

around. 

The part sequence "F quit o F_quit_warn o F_quit save o F_save_success o end" is 

used to terminate TS 1. Different terminating functions are used in TS 1, TS2, TS3 and 
TS4 to cover the four possible ways of terminating the execution of ThinkEdit : 

F_quit save, F_quit_discard, F_close_save and F_close_discard. 

134 



9.3.2 Test sequence for menu functions 

Test sequence TS2: 

F 
_start 

o F_open_file o F_open_folder o F_open_select("tf. 1 ") o F_open_open 
o F_open_success 

o F_open_file_k o F_open_select("tf. 1 ") o F_open_open 
o F_DupFn o F_DupFn_cancel 

o F_open_file o F_open_select("tf. 1 ") o F_open_open 
o F_DupFn o F_open_untitled o F_open_success 

o F_select_text((1,1), (3, destWidth)) o F_cut 
oF 

_save oF 
_saveAs_fn("tf. 

2" )o F_saveAs o F_saveAs_fn("tf. 2") 
oF _save_fail o F_clear_save_ fail 

o F_open_file o F_open_select("tf. 2") o F_open_fail o F_clear_open_fail 
o F_new_file o F_new_file o F_new_file_k o F_new_file_k 

o F_quit o F_quit_warn o F_quit_cancel 

o F_quit_k o F_quit_warn o F_quit_discard o 
end 

An explanation of TS2 

TS2 tests the menu options and dialogue boxes in ThinkEdit by opening, closing and 
saving files. The FG_menu_func functions are not as mode-free as the FG_edit_display 
functions. For instance, F_quit_warn must be preceded by F_quit, and F_quit_warn 
must be followed by one of three functions : F_quit_cancel, F_quit_discard or 
F_quit save. This actually makes test case design more straightforward, as choices are 
limited by modes of interactions. Again, the task of test sequence generation is to select 
functions with matching To-state and From-state from the WinSpec specifications. 

There are some exceptions to the simple pattern of joining functions with matching 
To-states and From-states to form a test sequence. For example, the function 
F_new_file is invoked repeatedly to open five editing windows to reach the maximum 
window limit of ThinkEdit. 

Although TS2 includes the two part sequences, 
F_save_fail o F_clear_save_fail 

F_open_fail o F_clear_open_fail , 
the testing of read and write errors during file access requires the simulation of some 
hardware circumstances, such as a full disk or some disk drive problems. 

135 



A total of 23 menu functions have been specified in appendix B. They are : 
FG_menu_func ={ F_new_file, F_open_file, F_open_cancel, F_open_select, 

F_ open folder, F_open_open, F_open_success, F_open_fail, 
F_ clear_open_fail, F_DupFn, F_DupFn_cancel, F_open_untitled, 
F 
_save, 

F_save_success, F_ save_fail, F_clear_ save_fail, 
F_saveAs, F_saveAs_fn, F_quit, F_quit_warn, F_quit_cancel, 
F_quit_save, F_quit_discard } 

All of these menu functions are included in TS2, except F_quit_save and 
F_save_success, which have already been covered by TS 1. 

9.3.3 Test sequence for scroll bar interactions 

Test sequence TS3: 

F_start 

o F_open_file o F_open_folder 

o F_open_select("tf. 1 ") 

o F_sB_slider(at_bottom) 

o F_ sB_ IineUp o F_sB_IineDn(2) 

o F_ set _insertion_ 
pt((destLen+1,1) 

o F_insert_text("The end") 

o F_sB_pageUp o F_sB_IineDn(3) 

oF _sB _slider(at_ 
top) 

oF _sB_ 
IineUp(2) o F_sB_IineDn 

o F_ sB_ slider(at_ middle) 

o F_ set _insertion _pt(destLen 
div 2,1) 

! Move slider to bottom of sBar, 
! see Appendix C for definitions 

! of "top", "middle" and "bottom". 

I Up 1 page and down 3 lines. 
! Move slider to top of scroll bar. 

! middle = (bottom - top) div 2. 

oF _insert _ 
text("Approx. in the middle", <cr>) 

o F_ select _text((destLen 
div 2, 1), (destLen div 2 +1,1)) 

o F_sBpageUp o F_sB_IineDn(2) 

o F_sB_pageDn o F_sB_IineUp(3) 

o F_ sB_ slider(at_ bottom) 

o F_ set _insertion _pt((destLen+1,1) 
oF _close 

o F_close_warn o F_close_save o 

end 

! Move slider to bottom of sBar. 

136 



An explanation of TS3 

The scroll bar interactions are completely mode-free. The user is free to drag the slider 
to any position within the scroll bar, or perform the page-up, page-down, line-up and 
line-down interactions in any order. However, some of these interactions are only 
meaningful or visually observable when there is more than one pageful of text. This is 
why the test inputs in TS 1 are designed to ensure a sufficient amount of text is generated 
in file tf. 1 

. 

Since the FG_sBar functions are all mode-free, it is unnecessary to search WinSpec 
specifications to look for functions with matching To_states and From_states. However, 
the "Inputs" clause and the T_ state-predicates are useful for generation of test inputs 

and test oracles. The order of functions chosen in TS3 is designed for visibility. For 

example, interactions to move one page down F_sB_pageDn, followed by two lines up 
F_sB_lineUp(2). The idea of boundary value testing is used by first moving the slider 
to the top position of the scroll bar, then to the middle position, and then to the bottom 

position. 

9.3.4 Test sequence for window management functions 

Test sequence TS4: 

F_start 

o F_open_file ("tf. 1 ") 

o F_drag_wind(wind_'tf. 1', (x1, y1), (x1 +200, yl +20)) 

o F_zoom_wind(wind_'tf. l') 

o F_zoom_wind(wind_'tf. l') 

o F_resize_wind(wind_'tf. 1', (x2, y2), (x2+100, y2-50)) 

o F_zoom_wind(wind_'tf. l') 

o F_zoom_wind(wind_'tf. l') o F_zomB_track(wind_'tf. i') 

o F_open_file o F_open_select("tf. 1 ") o F_open_untitled 

o F_drag_wind(wind_'Untitledl', (x3, y3), (x3-50, y3+100)) 

oF select_wind(wind_'tf. l') 

oF select_wind(wind_'Untitledl') 

o F_new_file o F_close_wind(wind_'Untitled2') 

oF select_wind(wind_'Untitledl') o 

oF close_wind(wind_'Untitledl') 

F_cloB_track(wind_'Untitledl') 

oF insert_text ("Now tf. 1 should become the active window as others are closed") 

oF close_wind(wind_'tf. l') o F_close_warn o F_close_discard 

end 

137 



An explanation of TS4 

The specification of window management functions can be found in Appendix D. The 
window management functions of ThinkEdit are mostly mode-free. Windows can be 
freely moved around, resized, zoomed or selected in any order. Therefore, TS4 is 
generated simply by including all the window management functions one after another. 
It is obvious that a window can no longer be manipulated after it has been closed. It is 
necessary to have more than one window to test the F_select_wind function. The 
F_zoom_wind function toggles the size of a window between two sets of values. One 
set of window size is fixed by the program. The other set of window size is adjustable 
by the user. This is why it is necessary to have two adjacent F_zoom_wind functions in 
the test sequence. In TS4, F_zoom_wind is tested again after F_resize_wind, which is 

the function that changes the user-adjustable set of window size. The size of a 
rectangular window is normally expressed in terms of the (x, y) coordinates of its top- 
left and bottom-right corners : ((left, top), (right, bottom)). The set of fixed window size 
for ThinkEdit is ((0,38), (513,342)), which is the zoomed window size. The user 
adjustable set of window size is initially set at ((3,40), (250,338)). 

Regarding the "drag" and "resize" functions, the relative movement of the mouse pointer 
determines changes in the location and size of a window. The movement of the mouse 

pointer is relative to the location where the mouse button was pressed down. For 

example, F_drag_wind (wind 
_'tf. 

l', (x 1, y 1), (x l +200, y1+20)) will move the 

window 200 units towards the right and 20 units downwards. 

There is one minor feature of the window management functions included in TS4. 

When the mouse pointer is inside the zoom box (or the close box) and the mouse button 

is pressed down, the mouse movement is tracked until the mouse button is released. If 

the mouse pointer is subsequently moved outside the zoom box (or close box) before 

the mouse button is released, the F_zoom_wind (or F_close_wind) functions are not 

performed. This interaction can be expressed in WinSpec notation as follows. 

is_inside(mp?, wind_'tf. 1'. zomB) Tand mb? =<down> 
Tand is_not_inside(mp?, wind_'tf. 1'. zomB) Tand mb? =<up> 

As the source code of the window manager is not available for error injection, TS4 is 

not designed to uncover errors in these libraries. It is to include a basic level of sanity 

checks of window management functions. 

138 



9.4 Error seeding and debugging 

As each function within a test sequence is executed, the outcomes are checked against 
the T_state_predicate for that function. Any discrepancies or unexpected outcomes are 
regarded as faults or symptoms. They indicate the possible existence of errors, either in 
the implementation or in the specification. During the main experiment, 40 errors were 
generated by the human tester to cover all the code modules of ThinkEdit. These 40 
errors are listed in table 9.1 in section 9.5. Some minor experiments were also 
conducted, during which a smaller number of errors were injected in locations unknown 
to the tester. Experienced programmers outside the testing research group were invited 
to invent errors that must pass compilation and permit program execution in the first 
instance. It was found that errors generated by outsiders were more readily exposed 
than errors injected by a human tester. The human tester was able to invent "harder" 
errors because of testing experience and familiarity with ThinkEdit. For instance, errors 
in setting up proper parameter values in window library calls will usually produce 
obvious symptoms. Ordinary program logic errors, such as forgetting to set the dirtFlag 
in one location', are harder to expose. The error seeding process is shaped by a number 
of constraints: 

"A program module must be re-compiled successfully after the injection of an error. 
Generally, program units of ThinkEdit are relatively small, with few variables declared 
in each unit. As references to undeclared variables will cause problems with the 

compiler, the invention of errors by "misuse of variables" is restricted. 

" Pascal performs strong type and number checking of parameters in routine calls. This 
limits the introduction of errors in window library call statements. 

" It was decided that the test object must run successfully initially. This narrows the 

possibility of injecting errors in program statements responsible for initializing system 
and window resources. Errors in these area will normally cause program crashes or 

exceptions as soon as ThinkEdit is invoked. 

" As a principle, errors that would produce very obvious symptoms are not used. For 

example, it is simple to 'comment out' a line of code that displays a window. This 

would be easily spotted by the tester, as a window is expected to be displayed at that 

point of interaction, according to the T_state_predicate in the specification. A better or 

harder error is one that would display a window but with the "down arrow" missing 
from its scroll bar'. To invent such "hard to detect" errors usually requires some 

knowledge of the window system. 

See error E 13 listed in the table of results in section 9.5. 
7 See error E2 listed in the table of results in section 9.5. 

139 



" Lastly, errors are to be scattered fairly randomly, but covering all program modules. 
The process of error seeding requires some understanding of the code structure and 
introduces a sense of code coverage. An example of error seeding is given below. 

{ -------------------------------------------------------------------------------------------------- } 
{ CloseMyWindow is used to close an Edit window. The window is closed, and the } 
{ associated data structures are Disposed of. } 

procedure CloseMyWindow (window: WindowPtr); 
var 
wlnfo: WInfoHandle; 
begin 

wlnfo := WInfoHandle(GetWRefCon(window)); 
Clo seWindow (window); 
TEDispose(wlnfo^^. teh); 
{E11, by commenting out "TEDispose(... )", no visual symptoms, it may 

eventually run out of memory } 
DisposHandle(Handle(wlnfo)) 

end; 

It was found that after the injection of more than 4 or 5 errors, it was not always easy to 

associate symptoms with errors on a one to one basis. The approach taken was to fix (or 
debug) one symptom at a time. A retest (using the same test sequence) was then carried 

out to see if the symptom was cured, before moving on to fix another symptom. In this 

way, a code error was then claimed to have been uncovered by a certain function test 

within a test sequence. Only four main test sequences were derived following the 100% 

function coverage criterion. In practice, a test sequence was halted as soon as a 

symptom appeared. An effort was then made to locate the code error(s) responsible for 

the symptom. Since code errors were introduced artificially, it was most important to 

check if any seeded errors remained uncovered after all symptoms exposed by the test 

sequences were fixed. These accounted for the undetected errors in the table of results in 

the following section. 

140 



9.5 Results of testing 

The results of testing, in terms of success or failure to detect the seeded errors, are given 
in the following table. A number is assigned to each of the errors injected, as listed in 
the first column of the table. The second column gives a brief description of the error, 
such as its symptom, if one is observable. The third column records if the particular 
error was detected during testing. The 4th (last) column attempts to give more details 
about the nature of the error, such as where it was located in the source code, and which 
functional test exposed the error. This information will be useful for future references 
when experimenting with new test sequences derived from enhanced specifications. To 
grasp the full details of these errors, one would require execution of the test sequences 
in conjunction with the source code listing. 

To summarize, this chapter describes a testing experiment with ThinkEdit. It explains 
how formally specified functions are organized to generate test cases. These test cases 
(or sequences) are then evaluated by error seeding and debugging exercises. Of the 40 

errors seeded, 8 errors remain undetected after the execution of the test sequences. An 

analysis of these undetected errors is given in Chapter 12, where code coverage 
measurements are used to further evaluate the FFT approach. 

141 



-------- 
ErrorI Brief description 

-------- 

I Detected 
------------------------------------- 

I More details 
INo. 

I ---- 

I (symptoms, etc) 

--------- 

I? / by I (where in code, which function test exposed it) I 

I El 
-------- 

I No vertical scroll 
-------- 
I Yes 

------------------------------------- 
I lineHeight: =ascent+descent+ leading I 

with more than I TS1 I detected by ... o F_select_text( (11,1), (1,1)) oI 

I ---- 
one page input 

----- 

I I ... o F_paste I 

I E2 
------------ 

I sBar_dnArrow 
-------- 
I Yes 

-------------------------------------I 
I bottom - SBarWidth +2I 

---- 

missing 

---- 

I TS3 I ... o F_sB_lineUp o F_sB_IineDn o ... I 

E3 
------------- 

I r. right + r. left 
-------- 
I No 

-------------------------------------I 
I Does not seem to have any observable functional I 

in OpenWindow I I or visual difference. I 

---- 
E4 

----------------- 
I SetEnable(... ) 

-------- 
I No 

-------------------------------------I 
I Would only be exposed when the no. of files opened I 

I in OpenFile I I exceeds Maxfiles. I 

---- 
E5 

----------------- 
I No diaB to prompt 

-------- 
I Yes 

------------------------------------- 
I fName := StandardFile(StandardPut, ... ); I 

I fName to save Untitled I TS2 

------ 

I in function SaveText, detected by F_SaveAS .I 

----------------------------- ---- 
I E6 

----------------- 
I mOpt_'Save' not 

-- 
I Yes 

------- - 
I Disableltem(FileMenu, Saveltem); in SaveText, I 

I disabled after Save I TS2 I Detected by checking Post-conditions after F_Save. I 

---- 
E7 

----------------- 
I Window title not 

-------- 
I Yes 

------------------------------------- 
I ChangeFile(window, fName) ; in SaveText, I 

I updated after SaveAs 

--- 

I TS2 

-------- 

I detected by F_SaveAS. I 

------------------------------------- ---- 
E8 

-------------- 
I Cancel and Discard I Yes I Cancel = 3; in function SaveFile, I 

I swapped I TS2 I Detected by F_quit warn. I 

---- 
E9 

------------------------- 
I No diaB to prompt userI Yes 

------------------------------------- 
I if winfo = nil ... in function SaveFile I 

I to save dirty at quit. I TS2 I Detected by F_quit_warn. I 

--------I ---- 
El0 

----------------- 
I SaveAs dialogue box 

-------- 
I Yes 

----------------------------- 
I ModalDialog(nil, item); in Savefile I 

flashed away. I TS2 I Detected by F_quit_warn. I 

I ---- 
Ell 

----------------- 
I Forgot to dispose text 

-------- 
I No 

------------------------------------- 
I TEDispose(wlnfo^^. teh); in CloseMyWindow 

I record when closing I I No visual symptoms, may eventually run out of 

---- ----------------- -------- 

I memory. 

------------------------------------- 

142 



--------------------------------------- Err or I Brief description I Detected I More details 
No. I (symptoms, etc) I? / by I (where in code, which function test exposed it) I 

I ----- 
I E12 

----------------- 
I GUI hangs when 

------ 
I Yes 

-------------------------------------- 
I window := window^. nextWindow I 

mOpt_'Close' selected I TS2 I Detected by any quit functions. I 

---- 
E13 

------------------ 
I textDirty := FALSE; 

------ 
I No 

-------------------------------------- 
I Can only be detected by the sequence :I 

F_start o F_select_text o F_cut o F_quit 

---- 
E14 

----------------- 
I "vScrollBar" typed 

------- 
I Yes 

-------------------------------------- 
I in Procedure HandleScroll, 

I as "hScrollBar" I TS3 I Detected by F_sB_pageUp, F_sBj, ageDn. I 

---- 
I E15 

----------------- 
I "AdjText(TheWlnfo)" 

------- 
I Yes 

-------------------------------------- 
I in Procedure ScrollContent, easily detected by any I 

I missing I TS3 I F_sB_slider interactions, no text adjustment. I 

------------------------------------ ---- 
E16 

----------------- 
I "oldClip := NewRgn; " 

------- 
I Yes 

-- 
I in function AutoScroll, detected by any mouse I 

I missing I TS1 I interaction straight away with "Address error". I 

------------------------------- - ---- 
E17 

----------------- 
I "SetClip(oldClip); " 

------- 
J Yes 

----- - 
I in function AutoScroll, detected easily by any I 

I missing I TS1 I F_select_text interaction. I 

----------------------------------- ---- 
E18 

----------------- 
I "if part = 0" as Typo 

------- 
I Yes 

--- 
I Detected by any mouse down interaction with 

I in HandleContent I TS1 I "address error". 

------------------------ ---- 
E19 

----------------- 
I "scrollContent(... )" 

------- 
I Yes 

-------------- 
I in Procedure HandleContent, 

I missing I TS3 

- 

I detected by any scroll bar interaction. 

-------------------------------------- ---- 
E20 

----------------------- 
I ShowSelect(TheWlnfo) I No I in Procedure HandleKey. 

---- 

missing 

----------------- 

I 

------- 

I Undetected, no obvious functions. 

-------------------------------------- 
I 

---- 
E21 u 

----------------- 
no text in window 

I 

------- 
I Yes 

-------------------------------------- 
I "TEUpdate(teh^^. viewRect, teh); " is missing 

I I at event of open I TS2 I in HandleUpdate, detected by F_open_file .I 

I ---- 
I E22u 

----------------- 
I Incorrect "duplicate 

------- 
I No 

-------------------------------------- 
I fName, dName, Null swapped in "ParamText(... ); " I 

I 

I ---- 

I Filename" warning . 

----------------- 

I 

------- 

I Detected by opening the same file the second time. 

-------------------------------------- 

143 



----- 
Err or I 

---------------- 
Brief description 

-------- 
I Detected 

-------------------------------------I 
I More details 

No. I 

I ----- 

(symptoms, etc) 

---- 

I? / by I (where in code, which function test exposed it) 

I E23u I 
------------ 

incorrect UntitledNum 
-------- 
I No 

------------------------------------- 
I "UntitledNum + 1" instead of -1 can be detected , 

II 

I ----- 

in DuplicateName 

-------- 

I I by F_open_file o F_open_cancel o F_new_file 

I E24u I 
-------- 

incorrect filetypes 
-------- 
I Yes 

------------------------------------- 
I numTypes=-1,2 instead of 1 in SFGetFile(... ), 

I 

----- ---------------- 

I TS2 

------ 

I detected straight away with F_open_file. I 

E25u I No highlight of default 
-- 

I Yes 
-------------------------------------I 
I "Frame RoundRect(iBox, 16,16); " missing in I 

I 

----- 

command button 

------- 

I TS2 I FrameDltem , detected by F_quit_warn. I 

E26u I 
----------------- 

Forgot to reset PenSize I No 
-------------------------------------I 
I "Set PenState(oIdPenState)" missing undetected, I 

I , no visual effect I I probably taken care by SetPort(... ) .I 

----- 
E27u I 

---------------- 
Address error with 

-------- 
I Yes 

-------------------------------------I 
I in unit Editor utilities, I 

I Disablitem ( I TS2 I detected by : F_start o F_open_cancel I 
I WindowMenu, i) I Io F_new_file o ... o F_close_file I 

I ----- 
I E28g I 

---------------- 
"New" , "Close" 

-------- 
I Yes 

------------------------------------- 
I detected by :I 

swapped in Globals I TS2 I F_start o F_open_cancel o F_new_file o ... 
I ----- 
I E29 I 

---------------- 
loss of highlight of 

-------- 
I Yes 

------------------------------------- 
I Forgot to "ValidRect(r)" on zoom Box, detected I 

zomB after drag_wind I TS4 I by F_zoom_wind o F_drag_wind 

I ----- 
I E30 I 

---------------- 
horizontal scroll bar 

-------- 
I Yes 

------------------------------------- 
I forgot to re-adjust "textLines" after resize, I 

missing 

-- 

I TS4 

-------- 

I detected by F_resize_wind 

-------------------------------------I I ----- 
I E31 I 

-------------- 
improper half or part I Yes I "textWidth" not re-adjusted after resize, I 

I Ichar along right border l TS4 I detected by F_resize_wind I 

I ----- 
I E32 I 

---------------- 
titleBar gone outside 

-------- 
I Yes 

-------------------------------------I 
I Forgot to adjust "LocalToGlobal" when returning I 

screen, behind I TS4 I from zoomed to normal, local coordinates start I 

the menuBar I I from 0 (i. e. location of menuBar in global co. ). I 

I ----- ---------------- -------- 

Detected by F_zoom wind o F_zoom_wind I 

------------------------------------- 

144 



----- 
Err or I 

---------------- 
Brief description 

-------- 
I Detected 

------------------------------------- 
I More details I 

INo. I 

I ----- 

(symptoms, etc) 

--- 

I? / by I (where in code, which function test exposed it) I 

I E33 I 
------------- 

window zooms with 
-------- 
I Yes 

------------------------------------- 
I "<" is used instead of ">" by mistake in I 

II 

----- 

single click at titleBar I TS4 

------ 

I "if TickCount < (FirstClick + GetDblTime)" I 

E34 I 
---------- 

window does not zoom 
-------- 
I Yes 

-------------------------------------I 
I Code error in "FirstClick := TickCount; ", I 

----- ------ 

I TS4 I both E33 and E34 detected by F_zoom_wind. I 

E35 I 
---------- 

no mouse tracking in 
-------- 
I Yes 

------------------------------------- 
I detected by F_cloB_track. I 

I close Box, I TS4 I 

----- 
E36 I 

---------------- 
window won't be 

-------- 
I Yes 

------------------------------------- 
I missing call to HandleGrow(), I 

II 

I ---- 

resized, I TS4 I detected by F_resize_wind. I 

- 
I E37s I 

------------------------ 
vScrollBar not to scale I Yes 

------------------------------------- 
I in "ctlMax := Lines InText(wlnfo) - textLines; " I 

with text length, error) TS3 I detected by F_sB_slider(at_bottom), I 
I more obvious with a longer text. I 

I ----- 
I E38s I 

---------------- 
hScrollBar has no 

-------- 
I Yes 

------------------------------------- 
I affects both horizontal and vertical scrolling ,I 

I ----- 

effect, but vScrollBar 

---------------- 

I TS3 

-------- 

I "delta := oldScroll - newScroll; " missing. I 

--------------- 
I E39s I no scrolling of ins-pt I Yes 

---------------------- 
I Omitted scroll bar adjustment, detected by I 

to middle of viewRect I TS3 I inserting text on last line including kb? =<cr> I 

I ----- 
I E40s I 

---------------- 
ins-Pt moved to mid. 

-------- 
I Yes I 

------------------------------------- 
Error in "bottomLine := topLine+ textLines; " ,I 

I----- 
of viewRect wrongly 

---------------- 

I TS3 I 

-------- 

detected by F_insert_text above the bottom line. I 

------------------------------------- 

u* in program source file: "Editor Utilities" 

g* in program source file: "Editor Globals" 

s* in program source file: "Show Edit" 

All other errors (undenoted) are found in program source file: "Editor TopLevel". 

Table 9.1 A list of the 40 seeded errors and results of detection 

145 



Chapter 10 

Other specification case studies 

The preceding case studies of Logon and ThinkEdit expounded the proposed approach 
of deriving functional tests from formal specifications. In this chapter more case studies 
are conducted to show that the specification approach is applicable to a number of other 
user interfaces. These further case studies are presented in a less detailed manner, 
showing only a small portion of the specifications. Because of space and time 
constraints, the testing process will not be explored. 

10.1 The X-Mail user interface 

X-Mail is a program developed under the X Windows System environment [MIT89], 
intended to be a user interface for the Berkeley Mail system [Kernighan84]. In this case, 
the concept of dialogue separation is exemplified, as the user interface (i. e. X-Mail) is 
physically isolated from the application B-Mail (i. e. the Berkeley Mail system). The 

outputs of X-Mail are text strings corresponding to valid B-Mail commands. The 

communication between X-Mail and B-Mail is entirely external, via UNIX pipes. 
Alternatively, the output from X-Mail can be stored in a file, which is then used as an 
indirect input to B-Mail. 

The specification of X-Mail can be viewed as a mapping between input sequences, and 
a subset of all valid Berkeley Mail commands supported by X-Mail. For example, the 
user interaction of selecting the "file" command button, together with choosing certain 
menu options, will result in a command message being passed from X-Mail to B-Mail. 

146 



For instance, a command message can be one in the form of : "save [message-list] 
[filename]" 

. 

Similarly, all valid combinations of command button and menu option selections would 
result in command messages being sent to the Berkeley Mail system. The functions of 
the X-Mail user interface are tested by generating input sequences to try out 
combinations of menu options, and by checking display objects and application 
messages with the expected outcome. Display objects of X-Mail are identified in a 
WinSTD as shown in Figure 10.1. 

A total of 52 objects and 46 functions have been identified. The 6 composite objects : 
OBJOO, OBJ10, OBJ20, OBJ30, OBJ210, OBJ220 have no specific functions, other 
than window management functions. More details of specification can be found in 
[Yip91 b]. 

A small fraction of the specification of X-Mail is given below. It can be seen that the 

earlier version of WinSpec notations is used, in that display objects are given numerical 
names. 

Specification for Function F01 
From-state : PostFOO 
F_ state-predicate : is_visible(OBJ00) 
Inputs : is_inside(mp?, OBJ01) 
To state PostFOl 
T_state_predicate : is_hiLit (OBJ01) 
Output_msg none 

Specification for Function F10 
From-state : PostF01 
F_ state-predicate : is_hiLit (OBJ01) 
Inputs : mb? =<click> 
To-state : PostF10 
T_state_predicate : is-visible (013,110) 
Output_msg none 

Specification for Function F11 
From-state : PostF10 
F_state_predicate : is-visible (013,110) 
Inputs : is_inside(mp?, 013,111) 
To-state : PostF11 
T_state_predicate : is_hiLit (OBJ11) 
Output_msg none 

Specification for Function F110 
From-state : PostF11 
F_state_predicate : is_hiLit (OBJ11) 
Inputs : mb? =<click> 
To-state : Po st F 110 
T_state_predicate : is_not_visible(OBJ10) 
Output_msg app_msg_sent("file %") 

147 



The text-editing function of OBJ211 is only counted as one of the 46 functions. The idea 
is that the single function identified for OBJ211 would be decomposed into edit-display 
functions similar to those specified for ThinkEdit in Chapter 8. This would be an 
example of the re-use of a functional specification across the platforms of Macintosh (for 
ThinkEdit) and Unix (for X-Mail). 

31 

F1 4 Other user's 
F00 

system mailbox 

OBJ10 F10 

F120 System mailbox 

File in folder 

Other user's 
system mailbox 

013.110 F10 

OBJ31 

OBJ32 

OBJ33 

J11 
OBJ35 

13 
OB. J37 

14 

OBJ39 

F310-3so" 
Save ""'to specified file 
Save in file: <author> 
Copy to specified file 

Copy to file: <author> 
Save without headers F' 

Delete from mailbox 

Undelete F3 

Mark as read 
Mark as unread 

s 

30 

F30 
Xmail : System mailbox 

"mbox" :4 messages 

>1 dave@ easby 
2 swly@ws_pub4 
3 zhao@ bbk. cs 
4 root 

Read 

Sat May 26 15: 45 
Sat May 26 17: 50 
Sun May 27 9: 15 
Sun May 27 12: 00 

O J04 

OIBJE 

®19J, 

OBJZ 

Write I File 

Meeting 
Work plan 
Hello 

shut down 

file/user name : swly OBJOA 

Scroll up Iscroli down Print ;ýId Exit Done 
R. J)MjU* %-PLUJUD %JO%JU F %-IPMj %JMJý 

F310 to 
F390 

®[220 

Messages 

i Current 
Deleted 
Read 

4 Unread 

New 
Old 

All 

Strin in sublect 
From specified user 

F220 

F24 

F2270 

O J2O 

7 

Compose 

Follow up 0 

Reply to 
01 

author(s) 
Reply to all 
recipients 

F210 

UJ22 

J23 

3J24 

F21 F2150 

Figure 10.1 A WinSTD for the main parts of the X-Mail user interface 

OBJ210 

OBJ211 

148 



The process of constructing the formal specification has itself helped to identify a 
number of errors in X-Mail. The implementation was found to be incomplete, with 
errors in mapping messages to functions, and some interaction objects being unreachable 
because of missing functions. X-Mail is a locally produced, unreliable and incomplete 
software product. It is not possible to apply the same analysis and evaluation of the 
testing process that was carried out with ThinkEdit to X-Mail. 

The extensive use of messages to communicate with the underlying application has made 
X-Mail a good example of the user interface model discussed in Chapter 3. The fact that 
the user interface is physically separated from the application allows the interface to be 
tested without the application, by simulating the necessary application messages on Unix 

pipes. 

10.2 The WinSTD editor 

Another case study is the user interface of the WinSTD editor. It is a tool constructed to 
investigate the feasibility of the idea of a WinSTD, namely the drawing of display 

objects joined by arcs showing state transitions. Its user interface imitates that of a 

number of drawing tools, such as MacDraw [Apple85] and ObjectDraw [Symantec90]. 
The style of interaction allows the user to choose objects from a palette set and to draw 

the selected object shape. Figure 10.2 helps to illustrate this "pick and draw" style of 
interaction. 

The WinSTD editor belongs to a class of GUIs, commonly called graphical editors that 

deal with the drawing and editing of shapes and graphics. Thus, the specification for the 
WinSTD editor is significant in investigating the usefulness of WinSpec for graphical 

editors. Similar to the experience with ThinkEdit, a number of new constructs of the 
WinSpec notations are found to be necessary for the specification of the WinSTD editor. 

Three new generic types of display objects are introduced : palette, shape and line. 

A palette set is a set of small icons representing different shapes that can be drawn on 

the screen, through a "pick and draw" style of interaction. For the WinSTD editor, the 

palette set contains a number of palettes, each of which is a small rectangular icon that 

holds a miniature picture of the shape that it can draw. 

palette-set ={ palt_rect, palt_rndRect, palt_oval, palt_rhombus, palt line } 

where palt rest is a palette for drawing a rectangle 
palt rndRect is a palette for drawing a round rectangle 

149 



palt_oval is a palette for drawing an oval 
palt_rhombus is a palette for drawing a rhombus 
palt_line is a palette for drawing a line 

r IE File Edit Colors 

WinSTD editor -1 
R     , New XN Undo cZ 

......................................................................... ........................................... 
Close xW Cut x>"t 

......................................................................... Copy XC 
Saue Picture... ýS Paste 39 U 
Print Picture... ¬P Clear 
Load Picture... XL 

Quit xQ 

F_d ra w 

F_name 

Figure 10.2 A WinSTD for part of the WinSTD editor user interface 

150 



The shapes that are being drawn on the screen are denoted by the generic display object 
type of "shap_" 

, followed by the denotation of the type of the shape, e. g. "shap_rect" 
represents the shape of a rectangle. The shapes that the WinSTD editor can draw are the 
members of the palette set. 

shape-set ={ shap_rect, shap_rndRect, shap_oval, shap_rhombus } 

where shag sect denotes a display object in the shape of a rectangle 
shap rndRect denotes a display object in the shape of a round rectangle 
shap_oval denotes a display object in the shape of an oval 
shap_rhombus denotes a display object in the shape of a rhombus 

It is also necessary to introduce a new state primitive "shape" which indicates the shape 
inside a palette. For example, 
shape (palt rndRect) = shap_rndRect. 

In this way the "shape" primitive describes a visual property of a palette, similar to the 
primitive "text" as in text(texB_name)= "abcd" 

. 

Since a WinSTD consists of arcs joining display objects, the WinSTD editor allows the 
drawing of lines to represent state transitions. A line is recognized as a type of display 

object denoted by "line_" , just as windows are denoted by "wind_" and shapes are 
denoted by "shap_". A small number of types of lines are generally used in graphical 
user interfaces. 

line-set ={ line-dir, line_unDir, line-dot, line_dotDir I 

where line-dir denoted a directed line (one with direction indicated by an arrow) 
line_unDir denoted an undirected line (no direction indicated) 
line_dotDir denoted a dotted line with direction indicated by an arrow 
line-dot denoted a dotted line (no direction indicated) 

With these extended object types, it is possible to specify the "pick and draw" style of 
interaction in WinSpec notations. Recall the case of ThinkEdit where the mouse pointer 

symbol "mp? " is changed to "mk? ", showing that the shape of the mouse pointer is 

changed to that of a book marker whilst inside an editing window. The WinSTD editor 

changes the mouse pointer arrow to the shape of a small cross, denoted by "mc? ", when 

performing the drawing of a shape after a palette has been chosen. 

Part of the specification of the interactions, starting with the invocation of the WinSTD 

editor, is given below. The user interface goes through its main processing cycle in three 

steps : selecting a palette, drawing the selected shape, and prompting the user to enter a 

name for the shape drawn. 

151 



Specification for function Finvoke 
From_state : Start 
r-_siate_preaicate : is_visible(icon_'WinSTD') 
Inputs : is_inside(mp?, icon_'WinSTD') Tand mb? =<dClick> To_state : Post Invoke 
T_state_predicate : is_visible(wind_'WinSTD editor') 
Output_msg none 

Explanations: 

" The function F_invoke starts the execution of the WinSTD editor. 
" The window wind_'WinSTD editor' is displayed. The palette set is assumed to be part 

of the window and thus is also visible. 

Specification for function F_select(aPalette) 
Variable : 
From-state : 
F_state_predicate 
Inputs : 
To state 
T_state_predicate 
Output_msg 

aPalette E palette_set 
Post_Invoke 
is_visible(wind_'WinSTD 
is_inside(mp?, aPalette) 
Post Select 
is_hiLit(aPalette) 
none 

editor') 
Tand mb? =<click> 

Explanations: 

" The function F_select allows the user to select a shape for drawing by the input of a 
mouse click within the palette icon for the shape desired. 

" The variable aPalette must be a member of the palette-set supported by the WinSTD 

editor. 
" The selected palette will be highlighted throughout the "pick and draw" interaction. 

Specification for function F_draw (aShape) 
Variable : aShape E shape_set 
From-state : Post-Select 
F_state_predicate : is_hiLit(aPalette) 
Inputs : Loc(mc? )=(ptl) Tand mb? =<down> 

Tand Loc(mc? )=(pt2) Tand mb? =<up> 
To_state : Post-Draw 
T_state_predicate : is_visible(aShape) and rect(aShape) = (ptl, pt2) 

and aShape = shape(aPalette) 
Tand is_modal(diaB_name) 

Output_msg none 

Explanations: 

" After a shape has been selected, it can be drawn within the WinSTD editor window. 

" The location and size of the shape drawn is determined by a sequence of mouse 
interactions, as stated in the Inputs clause. 

152 



" As mentioned earlier, the arrow shape of the mouse pointer is changed to the shape of 
a cross, indicated by the mouse pointer notation "mc? " . 

" The location within the drawing window where the mouse button is first pressed 
down, after a palette has been selected, is remembered as pt I. 

" The location where the mouse button is subsequently released is denoted as pt2. 
" Between ptl and pt2, the bounding rectangle is fixed, within which the selected shape 

will be drawn. 

" Eventually, a modal dialogue box diaB_name appears to assist the user to name the 
object that has just been drawn, as in the specification for F_name. 

Specification for function F_name(aString) 
From-state : Post Draw 
F_state_predicate : is_modal(diaB_name) 
Inputs : kb? =aString Tand 

is_inside(mp?, cBtn_'OK') Tand mb? =<click> 
To state : Post_Name 
T_state_predicate : text(texB_name) = aString 
Output_msg app_msg_sent= 

"add: " // aString // aShape // (ptl, pt2) 

Explanations: 

" The function F_name is the interaction used to name the display object (or shape) that 
has just been drawn through the "pick and draw" interactions. 

" The modal dialogue diaB_name has a text entry field texB_name that allows a text 

string to be entered, which will be used as the name of the object. 
" Eventually, an application message is sent to add the new object onto the database. The 

message sent contains the name of the object, its type of shape, and the two coordinate 
points (ptl, pt2) recording the bounding rectangle of the object. This information is 

vital to the test generation process. 
" The symbol // again stands for text concatenation. 

A proper testing experiment has not been conducted on the WinSTD editor. Being a 

primitive prototype, the WinSTD editor has a number of design and implementation 

deficiencies that render a formal functional testing inappropriate at this stage. However, 

this prototype has shown that the idea of drawing and storing a WinSTD is feasible, and 

the "pick and draw" style of interaction can readily be specified in WinSpec notations. 

10.3 The JRR tool 

A "Journal Record and Replay", or JRR tool, is an automation mechanism whereby 
keyboard and mouse inputs generated by a user can be recorded for later playbacks or 

re-runs. The use of a JRR tool for testing GUIs was introduced in Chapter 3. JRR and 

other automation issues are discussed in Chapter 12. 

153 



The discussion in this section is only concerned with how the user interface of a JRR 
tool can be specified in WinSpec. As part of the research into GUI testing, a 
rudimentary JRR tool has been developed. It has a very simple user interface consisting 
only of one menu and one window. The JRR menu has four menu options : Record, 
Playback, Off and Exit. They are used for turning recording on and off, switching over 
to playback mode , and eventually exiting the JRR tool. The JRR window is for display 

only and does not support inputs. The window displays (or echoes) all input events 
being recorded or replayed by the JRR tool. 

4 File Edit Uiew Special JRR 

Figure 10.3 The user interface of the JRR tool illustrated as a WinSTD 

The user interface specifications are simple. The task of intercepting and recording input 

events is actually performed by the underlying application, not the user interface. The 

154 



JRR application can be grouped amongst programs generally called device drivers, close 
to the internals of the window system. The displays of events being processed, on the 
JRR window, are modelled as application message received. The commands to turn on 
(or off) recording or playback are modelled as messages sent to the application. The 
WinSpec specifications for the JRR tool are given below. 

Specification for function F 
_record Variable flag E {record, 

Post Off 
flag = "off" 

playback, off} 
From-state : 
F_state_predicate 
Inputs : 

To state : 
T_state_predicate 
Output_msg 

is_inside(mp?, menu_'JRR') Tand mb? =<down> Tand 
is_inside(mp?, mOpt_'Record') Tand mb? =<up> 
Post Record 
flag' ="record" 
app_msg_sent = "start recording" 

Explanations: 

" The global variable "flag" is used to represent the current state of processing 
recording, replaying, or off. 

" The mouse interaction to select the menu option "Record" is similar to that of other 
interfaces encountered earlier. 

" The message "start recording" is sent to the underlying device driver that actually 
performs the recording of input events. 

Specification for function F_off 
From-state : Post_Record or Post_Replay 
F_state_predicate flag # "off" 
Inputs : is_inside(mp?, menu_'JRR') Tand mb? =<down> Tand 

is_inside(mp?, mOpt_'Off') Tand mb? =<up> 
To_state : Post-Off 
T_state_predicate : flag' = "off" 
Output_msg app_msg_sent = "Stop recording/playback" 

Explanations: 

" The message "Stop recording/playback" is sent to signal the device driver to stop 

processing, as the "Off' menu option is selected. 

Specification for function F_replay 
From-state Post-Off 
F_state_predicate : flag = "off" 
Inputs : is_inside(mp?, menu_'JRR') Tand mb? =<down> Tand 

is_inside(mp?, mOpt_'Playback') Tand mb? =<up> 
To-state Post 

- 
Replay 

T_state_predicate : flag' = "playback" 
Output_msg app_msg_sent = "Start playback" 

155 



Explanations: 

" The function of the "Playback" menu option is similar to that of "Record", except that 
the device driver is requested to perform replay, instead of recording. 

Specification for function F_e xit 
From-state : Post 

- 
Off 

F_ state-predicate : flag = "off" 
Inputs : is_inside(mp?, menu_'JRR') Tand 

is_inside(mp?, mOpt_'Exit') Tand 
To state : Post Exit 
T_state_predicate : is_not_visible(wind_'J R R') 

and is_not_visible(menu_'J R R') 
Output_msg app_msg_sent = "exit JRR" 

Explanations: 

mb? =<down> Tand 
mb? =<up> 

" Execution of the JRR tool is terminated as the "Exit" menu option is chosen. The menu 
and window of the JRR tool will disappear from display. 

Specification for function F_echo 
From-state : Post_Record ( or Post_Replay) 
F_ state-predicate : flag # "off" 
Inputs : app_msg_recv ý {} 
To_state : Post-Record ( or 
T_state_predicate : text'(wind_'JRR') 

= text(wind_'JRR') 
Output_msg none 

Explanations: 

Post_Replay) 

// app_msg_recv // <cr> 

" During processing (record or playback), the application (in conjunction with the device 
driver) sends messages to the user interface. These contain names of events that are 
being processed and the user interface displays them on the JRR window. 

" The denotation text'(wind_'JRR') represents the text display on the JRR window 
after the execution of function F 

-echo. 
" Again, the // symbol indicates text concatenation. The new message is effectively 

displayed by concatenating it onto the existing text on the window, followed by a 
carriage-return to prepare a new line for the next message. 

Recalling the discussion on macro- and micro-communications (chapter 3), it is possible 
to alter the division of work between the JRR user interface and the underlying 
application. It is conceivable to model some of the actions of record and playback within 
the user interface, where every kb?, mp? and mb? inputs received during recording 

will be sent as messages to the application for storage. The actions of replay can be 

156 



portrayed in specifications by channelling contents of application messages to become 
keyboard and mouse inputs. 

Proper testing of the JRR tool has not yet been pursued, as it still has the occasional 
symptom of system crashes during recording. A number of JRR tools are now 
commercially available and there is little doubt that the idea of JRR for GUIs is feasible. 
This section has shown that the functions of a JRR tool can be specified in WinSpec 
notations. 

10.4 Summary 

The last chapter demonstrated that test case generation is relatively straightforward, 
provided that formal specifications of the functions are available. This chapter aims to 
promote the idea that the WinSTD and WinSpec approach to specification is generally 
usable for different classes of graphical user interfaces. Three GUIs have been 

considered: X-Mail, the WinSTD editor and a JRR tool. They belong to different classes 
of user interfaces, as their respective application and style of interaction are different. X- 
Mail, a user interface for a mail program, is a typical example of ordinary user 
interfaces. The WinSTD editor is special as it belongs to the class of graphics editors. 
The JRR tool is an example of a systems tool that has a very simple user interface. In all 
of these cases, the WinSTD and WinSpec specification approach is adequate. However, 

extensions to WinSpec notations are necessary when encountering new object types and 

styles of interactions. All three of these GUIs are still at too immature a stage of 
development to warrant the formal functional testing process. The argument is that once 

a user interface is specified in WinSpec, it will be possible to derive test cases from the 

specification. This chapter has further evaluated the specification process through case 

studies. The discussion of automation issues is returned to in the next chapter. 

157 



Chapter 11 

Automation Issues 

Automation issues were first discussed in Chapter 3. They are raised again in this 
chapter to discuss tools that have been explored and to pinpoint future directions for 

automation. The automation of the GUI testing process can be divided into three sub- 
processes: test data generation, test execution and test result analysis. As mentioned in 
Chapter 3, the Journal Record and Replay (JRR) mechanism has been advocated and 
implemented by a number of researchers and practitioners as the answer to the 
automation of test execution. The screen snapshot and bitmap comparison methods 
have been suggested as feasible means of assessing the result of test executions, by a 
number of software vendors. The problem of test generation remains largely 

unexplored. This thesis has demonstrated the feasibility of deriving test cases from 
formal specifications. It proposes that formal functional testing (FFT) should lead the 
test generation process towards automation. 

This chapter describes a set of prototype tools developed to explore the automation of 
FFT. Recall that test cases are derived from specifications which consist of WinSTDs 

and WinSpec notations. The tools involved are: a WinSTD editor for constructing 
WinSTDs, a WinSpec parser, a test case generator (TCG) and a JRR tool. For 

completeness, the activities of leading software vendors, in the automation of GUI 

testing, are also described. 

158 



11.1 WinSTD editor 

The WinSTD editor was introduced in Chapter 10, as a drawing tool for constructing 
WinSTDs for user interfaces. The design and implementation of a graphics editor like 
the WinSTD editor is not new. Indeed, there are a range of such products available 
commercially. The WinSTD editor is different because of its attempt to extract 
information of graphics objects that are being drawn. In a WinSTD, all interaction 
objects are enumerated together with the main interaction functions. Information about 
display objects (such as their name, type of shape and (x, y) coordinates), is essential to 
test generation, and is stored in the internal database of the WinSTD editor. All other 
information necessary for test generation is contained within the WinSpec. 

As illustrated in Chapter 10, the WinSTD editor uses the "pick and draw" style of 
interaction to enable a WinSTD to be built from a set of standard shapes. After a display 

object is drawn, the WinSTD editor will require an unique name to be entered for that 
object. Interaction functions (or transitions) are shown by drawing and labelling a line 
from one object to another. It has been observed that a WinSTD clearly enhances human 
testers' understanding of a user interface and assists in its testing. The prototype has 
demonstrated that information about display objects can be captured by a WinSTD 

editor. In the original design of a WinSTD, all interaction functions were to be 

enumerated and represented by arcs with labels. This idea worked well for a very small 
interface such as Logon, but turned out to be impractical for more complex user 
interfaces. Finally, it was decided that a WinSTD should only present the main 
interaction functions. The task of enumerating all interaction functions is best dealt with 
in WinSpec, which is a machine-readable denotation. 

11.2 WinSpec Parser 

A WinSpec parser extracts information about the required inputs and expected outputs 
from the "Inputs" clauses and T_state_predicates in a specification. The first task of the 

parser is to detect any syntactical errors in a WinSpec specification. When the 

specification of an interaction function have been successfully parsed, an entry is added 

to a table called the F-Table. The F-Table holds information about all interaction 

functions for the GUI being specified. Information in the F-Table is organized to be 

readily usable by the Test Case Generation (TCG), to produce the required input 

sequences to test the user interface. 

Each function has its own entry in the F-Table. Each entry is divided into five fields : 

Name, Tested, From, To and Inputs. The first field contains the name of the interaction 

function, which is used as the key for accessing the database. The "Tested" field 

159 



contains an integer which is initialized to zero, indicating that the function has not yet 
been tested. The "From" field lists the state(s) that can precede (or lead to) the function 
of this entry. The "To" field lists the state resulting from the execution of this function. 
The "Inputs" field contains the required input to test the function. 

Name Tested? From field To field Inputs field 

Fl 0 Start postF 1 is_inside(mp?, icon_Logon) 
Tand mb? =<click> F2 0 postF1 postFl kb? 

F2.1 0 postFI postF4 kb? =<cr> 
F2.2 0 postFl postF2.2 kb? =<tab> 
F2.3 0 postF1 postF2.2 is_inside(mp?, texB_pass) 

F3 0 postF2.2 postF2.2 kb? 

F3.1 0 postF2.2 postF4 kb? =<cr> 

F3.2 0 po stF2.2 po stF l kb? =<tab> 
F3.3 0 postF2.2 postF1 is_inside(mp?, texB_user) 

F4 0 postFl, postF4 is_inside(mp?, cBtn_'OK') 
postF2.2 mb? =<click> 

F5 0 postF4 postF5 app_msg_recv="Logon failure" 

F6 0 postF5 Start is_inside(mp?, cBtn_'Reset') 
mb? =<click> 

F7 0 postF4 postF7 app_msg_recv="Logon ok" 

F8 0 postF7 Start is-inside (mp?, cloB_term) 

Figure 11.1 A Function Table (F-Table) for the Logon user interface 

An example of the F-Table for the Logon interface is shown in Figure 11.1. The first 

entry in this F-Table is function Fl. The second entry is F2, which is yet untested, as 
the "Tested" field is 0. The "From" field of F2 has the content of "postFl", indicating 

that F2 can be executed following Fl. The "To" field of F2 is also "postFl", showing 
that the user interface returns to the same state (i. e. postF1) after the execution of F2. 

The third entry is F2.1, which also has "postF1" in its "From" field. This means that 
either F2 or F2.1 can be executed after Fl. If F2.1 is selected for execution, it will lead 

160 



the user interface into the state "postF4", as can be seen in the "To" field of the entry for 
F2.1 

. 

F2.2, which is the 4th entry in the table, can also follow the execution of Fl. The "To" 
field of F2.2 indicates that "postF2.2" is the state following the execution of F2.2. The 
contents of "From" and "To" fields are extracted from the WinSpec From-state and 
To-state. For instance, the From-state for F2 is "postFl". Similarly, the 
F_state_predicate for F3 requires "has_kb_focus(texB_pass)", which is the 
To-state-predicate of F2.2, as given in the Logon specifications in Chapter 5. The STD 
for Logon (Figure 5.3) is reproduced in Figure 11.2 for convenient reference. 

A parser for an earlier version of WinSpec has been implemented, using lex and yacc 
[Schreiner86]. However, as explained in Chapter 5, the WinSpec notations have 
subsequently been changed for improvements. More development is required to update 
the parser and the TCG for an automated test case generation. Some of the detailed 
internal workings of the parser and the TCG have yet to be implemented. Nevertheless 
the idea of Formal Functional Testing (FFT) for GUIs has largely been explored by the 
case studies in chapters 7 to 10. 

11.3 The Test Case Generator (TCG) 

The task of the TCG is to select functions from the F-Table to form test sequences. The 
formation of test sequences, as discussed in section 9.2, requires that all interaction 
functions be covered at least once. Two adjacent functions in a sequence must have 

matching To-state and From-state. In order to reduce the number of test sequences, an 
algorithm is developed in the following section for selecting functions. When a function 
is selected to go on the test sequence, the required keyboard and mouse inputs for that 
function are written onto the Test Inputs File (the TI-File). When inputs concerning 
mouse pointer location are required (e. g. is_inside(mp?, mOpt_'File')), a reference is 

made to the WinSTD database (also called the W-Table) to obtain the coordinates of the 
display object (i. e. mOpt 'File' in this example). 

11.3.1 Developing a sequence selection algorithm 

The algorithm to generate test sequences can be outlined in four steps. These steps are 

presented in the form of pseudo-code, together with comments. The first step is to 
determine if all the interaction functions have been covered by test sequences already 

generated; if so the TCG will terminate processing. 

161 



" Step 0: finished := TRUE; ! Assuming processing should finish. 
LOOP i: 1,1 where I=len(F-Table) !A loop to check through all entries, 

IF F-Table(i). Tested =0 THEN 
BEGIN 

finished := FALSE ; 
EXIT LOOP i; 

END; 
END LOOP i; 
IF finish = FALSE THEN 

GOTO Step 1 
ELSE 
BEGIN 

len(F-Table) is the length or total no. 
of entries in the F-Table. If the Tested 
field of the i th entry is 0, i. e. untested, 
TCG should not terminate processing. 
If one untested function is found, 

another test sequence has to be 
generated by executing Step 1 of 
the algorithm. 

print("Finished ... all interaction functions covered ! ") 
STOP; 

END; 

The first entry in the F-Table always has "F_start" (or "Fl") in its "Name" field, "Start" 
in its "From" field. F1 is always the first function in any test sequence. 

9 Step 1: Last func_in_seq := "F 1" 
! Insert Fl onto test sequence. 

TI_File := TI_File // F 1. Inputs 
! Insert what is in Inputs-field of F1 into TI_File 

F1. Tested := F1. Tested +1 

candid func :_ "null" 

pass :=0; 
GOTO Step 2 

! Increment the "Tested? " field of entry Fl. 
! Initialize, no candidate chosen to go on the 
! test sequence. Set pass mark to 0, only 
! functions with Tested? =0 are considered. 

Having selected F1 (or F_start), the algorithm searches through the F-Table to find the 
function best suited to be the next function in the sequence being built. Once a candidate 
(candid_func) passes the selection, the contents of its "Inputs" field is appended to the 
TI-File, and its "Tested? " field is incremented. Then a new search is started from the top 
of the function table to find the next function to follow the one that has just been added 
to the test sequence. This is the main processing loop in Step 2. 

162 



Figure 11.2 An STD for the Logon interface 

When searching the F-Table, all entries with 0 in their "Tested? " fields are examined to 
see if their "From" field matches the last function in the sequence. If a match is found, it 
becomes the candid func. Then its "To" field is examined and followed to see if it leads 

to a loop, or if it leads to any untested functions, as detailed in step 2. 

163 



" Step 2: candid funs := null; 

LOOP i: 2 to I, where I=1en(F-Table) 
IF Last_func_in_seq. To = "end" THEN 

BEGIN 
PRINT "End of test sequence" ; 
STOP; 

END; 
func := F-Table(i). Name ; 

! Initialize candid funs 
. 

! No need to check 1st 

entry of F-Table which 
always contains Fl. 
Stop processing if end of 
sequence reached. 

! Examine i th entry. 
IF func. Tested. < pass AND func. From=Last_func_in_seq. To 
THEN I If entry is untested, and 
BEGIN ! matches last function. 

IF pass >0 THEN pass := pass - 1; ! If "pass" has been relaxed 
candid_func := func ;! to > 0, tighten it. 
IF candid_func. To = Last_func_in_seq. To ! Choose a function 

THEN Last_func_in_seq := candid_func ! that returns to the same 
ELSE Step 2a; ! state. 2nd choice is Step 2a. 

IF Last func_in_seq = candid_func ! If candid_func is added to 
THEN EXIT LOOP i! sequence, exit loop. 
ELSE Step 2b; ! Otherwise try 3rd choice in 

EXIT LOOP i;! Step 2b. Eventually exit 
END; 

endLOOP 
! Loop i. 

IF Last_func_in_seq # candid_func AND candid_func # null THEN 
BEGIN 
Last_func_in_seq := candid_func ; 
END; 

IF candid funs = null THEN 
BEGIN 

pass := pass + 1; 
GOTO Step 2; 

END; 

If none of the 3 choices succeed, 
just add candid_func to sequence. 
If no candid_func is found, 

relax pass mark from 0 to 1 
! or from 2 to 3 ..., to choose 
!a candid_func that's already tested, 

as end of test sequence not yet 
reached. Return to repeat Step 2. 

The line "candid func. To = Last func_in_seq. To" above states that the functions which 
could follow candid_func are any of the functions allowed to follow Last func_in_seq. 
Effectively, candid func takes the user interface back to the state before its execution, as 
the same set of functions can both precede or follow candid_func. This is the first 

choice : an untested function that effectively loops back to the same state. The second 

choice is two untested consecutive functions which together would effectively bring the 

user interface back to the state existed before their execution. That is when 
funcl. From=candid_func. To AND funcl. To=Last func_in_seq. To, as shown in 
Step2a. 

164 



" Step 2a: LOOP j: 2 to I, where I=1en(F-Table) 
fund := F-Table(j). Name ; 
IF func1. From=candid_func. To AND func1. To=Last func_in_seq. To 
THEN 
BEGIN 

Last_func_in_seq := candid_func 
candid_func := funcl ; 
Last func_in_seq := candid_func 

END; 
END LOOP j; 

The third choice is any untested function that would lead to another untested function. 
That is when funs l . Tested =0 AND func 1. From=candid_func. To, as outlined in 
Step 2b. (Whereas the last choice is any untested function that can follow the 
Last func_in_seq. This can be seen in Step 2, on the 9th line from the end of Step 2. ) 

" Step 2b: LOOP j: 2 to I, where I=len(F-Table) 
fund := F-Table(j). Name ; 
IF funs 1. Tested =0 AND func 1. From=candid func. To 
AND funcl# candid func 
THEN 

BEGIN 
Last_func_in_seq := candid_func 
candid_func := funcl ; 
Last_func_in_seq := candid_func 
END; 

END LOOP j; 

11.3.2 Observation of sequences 

The above algorithm was developed following the observation of a very simple yet 
useful phenomenon in GUI interactions. Starting from a certain state (or object), the 
execution of a simple sequence of two functions would often return the user interface to 
the same state (or object embracing states). There are numerous examples; for instance, 

a user selects a "Quit" menu option during text editing, then decides to choose the 
"Cancel" command button to cancel the "Quit" command, when faced with a dialogue 
box giving warnings such as "Unsaved changes". The two consecutive interaction 
functions, "Quit" and "Cancel", bring the user interface back to its state before the 
"Quit" command was initiated. This observation is useful for generating effective test 

165 



sequences, as the user interface is brought back to a previous state, so that more 
functions can be tested within the same test sequence. 

Referring to Figure 11.2, function pairs (F2.2 o F3.2) and (F2.3 o F3.3) are such 
examples. The reader may like to refer to Figure 8.3 for similar loop back functional 

paths in ThinkEdit. A point of wider concern is that graphs of interaction functions, as 
in Figure 11.2 and Figure 8.3, would lend themselves to analysis methods that are 
usually applied to structural graphs. This is because the formal specification of program 
functions can now offer software engineers the kind of formal attributes of software, 
which were previously mainly obtainable from program code only. 

11.3.3 TCG implementation issues 

The operations of a Test Case Generator are mainly centred around the F-Table and the 
selection algorithm. However there are a number of minor implementation issues. 

" User interfaces, which have an unbalanced tree structure in their state transition 

networks (as shown in Figure 11.3), may exist. 

ted=O 

f 

Figure 11.3 An unbalanced tree showing where a2 step look ahead is insufficient 

166 



The selection algorithm in section 11.3.1 would not perform efficiently, as it does not 
look beyond two nodes ahead for untested functions. It would choose to go down 
from node b to node c instead of node d, as both node c and node d have been 
traversed (or tested) twice. The algorithm does not look beyond node f, and does not 
realize that nodes i and j have not yet been tested. It is necessary to enhance the test 
generator by implementing the RCPT algorithm as described in chapter 6. This will 
meet the need for regression testing after the software maintenance process, as 
discussed in [Yip91d]. 

" Although the WinSTD parser and the TCG can automate the test generation process, 
there is still a need for some application-specific or heuristic knowledge. For example, 
the knowledge of valid sets of username and password (for Logon) still lies with the 
human tester, and is not known to a general purpose TCG. In the case of ThinkEdit, a 
human tester uses the heuristic knowledge that at least a page or two of text is essential 
to make the testing of some of the scrolling interactions meaningful. 

" In order to automate the test execution process, the test inputs generated by the TCG 
must be translated into a format that is acceptable to a JRR tool. This leads to the 
investigation of JRR tools in the following section. 

11.4 Journal Record and Replay tools 

The idea of Journal Record and Replay (JRR) is not new. It is a mechanism employed to 
record user inputs, which are later replayed for automation purposes. A survey of some 
commercially available JRR tools is given in Chapter 3. The reason for attempting to 
construct a JRR tool is to investigate the practical problems in translating user inputs 
from the TCG to the format required by the JRR tool. It was decided to store inputs in a 
textual format in the Test Inputs File (TI-File), which is convenient for test-design 
alterations. Eventually, the textual content of the TI-File is converted into window- 
system event codes for playback with the JRR tool. A prototype JRR tool for the 
Macintosh environment was constructed as an experiment. Some details of this JRR tool 
have been given in section 10.3. It was a limited implementation, but has demonstrated 

the feasibility of translating test inputs from textual format to event codes, for playback 
purposes. 

It seems to be a reasonable suggestion that all window systems should have a built-in 

journal facility, possibly distributed with a vendor-supported JRR tool. It was decided 

that a commercially available JRR tool should be used for a future implementation, in 

view of the features available and the low level programming skill required. 

167 



11.5 Software vendors' approaches 

This section reviews GUI validation in the software industry in order to balance the 
academic contents of this thesis. Vendors are making significant efforts to automate the 
GUI testing process, with new advances evolving. Brief visits to a number of leading 
window software vendors were made during April 1991, to survey the status quo in the 
industry. These vendors included the Open Software Foundation (OSF), Digital 
Equipment Corporation (DEC), Hewlett Packard, and Microsoft. The following points 
summarize the major findings of the visits. 

" The testing of window systems is generally divided into system level and component 
(or widget) level. The X test suite for the X Windows System, available in the public 
domain, is such an example. The X Test Suite covers a wide range of tests, from the 
sanity tests of the X protocol at device server level, through the comprehensive tests 
of XLIB routines, to the higher levels of volume and stress testing. 

" The main mechanism used for automation is JRR. The normal industrial practice is to 
implement overnight runs using a JRR mechanism, executing large test suites 
consisting of many previously recorded applications. 

" In attempts to reduce the long execution time (well exceeding 10 hours in many cases) 

of some large test suites, experiments to replay inputs at a faster rate than the real user 
inputs recorded are carried out. This also promotes an element of performance testing. 
However, there remains a number of synchronization problems [Su91]. 

" There is a growing use of bitmap comparison tools to validate results of test runs. 
However, the difficulties of such approaches still exist; for instance, in choosing 

appropriate snapshot points, as discussed in Chapter 3 ([Islam89], [Andreas9l]). 

" The design of test cases (i. e. interaction sequences) is mostly conducted informally, 

relying on personal creativity and experience. Some vendors have expressed the need 

to develop metrics to measure the quality of their tests. This may be an area for 

technology transfer, where experience of academic research in code / function 

coverage and error detection statistics can be recommended for industrial practice. 

" Vendor-supplied assistance towards the testing of application user interfaces is 

restricted to hooks for the implementation of JRR tools. An example is the Input 

Synthesis Extension as part of X11 Release 3 from MIT, and the Client Exerciser in 

the X Test Suite. 

168 



11.6 Summary 

This chapter has re-explored the testing of GUIs from the automation perspective. The 
design of test inputs, the execution of test cases, and the analysis of test results are the 
three main parts of the testing process that require automation. Examination of vendors' 
testing practices and marketed test tools reveal that JRR is the established strategy for 
automated test execution. A few major vendors are now pioneering the automation of 
the results-analysis process, by introducing bitmap comparison tools. The intellectually 
challenging problem of automating the test design and generation process is largely 
unaddressed by industry. This thesis has manually demonstrated the derivation of test 
cases from formal specifications. The WinSTD editor, WinSpec parser, TCG and JRR 
tool have been developed to explore the automation of the FFT approach. A complete 
and integrated implementation has not been possible because of time constraints. 
Nevertheless, the ideas behind these tools are found to be feasible through prototypes, 
or confirmed to be practical as similar tools are now commercially available. This 

concludes the discussion of automation issues. 

169 



Chapter 12 

Review and Evaluation 

In order to evaluate the capability of the FFT approach, a number of case studies and 
experiments have been conducted, as described in Chapters 7,9 and 10. This chapter 
presents observations, insights and conclusions derived from the results of these case 
studies. 

12.1 Findings from the testing of the Logon interface 

The results of testing the Logon interface are given in section 7.4. The success rate of 
error detection was 90%, as 9 out of the 10 seeded errors were detected. Only 10 errors 
were injected, as the logon user interface is too small to warrant any more meaningful 

errors. 

A total of 9 display objects and 14 functions have been identified and specified. The 
functional coverage criterion requires each interaction function to be invoked at least 

once. The 100% function coverage criterion appears to have worked well. It was found 

that only 3 test sequences were necessary to cover all functions. Test sequences were 
designed, by adopting the graph theoretic algorithms of the Euler tour and the postman 
tour (in Chapter 6), for an optimal coverage of functions. As a whole, the 3 test 

sequences cover all 14 functions, with some functions tested more than once. 

170 



The undetected error (E2, see section 7.5) is that of a very small shift in the screen 
position of the username textBox (texB_user). Even in this case, the textBox functions 
normally, as the defect is purely visual. For a rectangular object, the centre of the object 
(i. e. half way between the top-left and bottom-right corners) is used by the test case 
generator as the exact location of the object. This location is used in generating mouse 
pointer inputs for predicates such as is_inside(mp?, texB_user). The small shift in the 
position of texB_user is undetected because the generated mouse pointer input is still 
inside the shifted texB_user. For detecting these kind of errors, visual inspection 
(manual) and visual verification (automated) are more effective than functional testing. 

12.2 Analysis of undetected errors in ThinkEdit 

In chapter 9, a table of results was built from the testing of ThinkEdit. The ability of the 
four test cases (TS 1 to TS4) to expose faults in ThinkEdit was as high as 80%. In the 
40 errors seeded, 32 errors were detected. In order to improve the FFT approach, the 
undetected errors were closely examined. All the undetected errors are listed below. 
Each one is accompanied by reasons explaining why it was not detected by the test 

cases. 

E3: In "textWdith :_ (r. right + r. left) div HorizUnit; ", it should be (r. right - r. left). 

This error is hardly observable, even with very careful visual inspection. This is 
because "r. left" has a small value that is close to 0, as is normal for the left edge 

of an editing window. (In this case, r. left=3, r. right=250 and HorizUnit=8. ) 
This error produces no difference (or failure) in the final outcome of the 
interactions (i. e. the content of the resultant text file), if the visual differences 

were visible to the unaided eyes during testing. 

E4: "SetEnable(... )" was missing from Procedure OpenFile. This error actually 

exposed a missing predicate in the specification, concerning the maximum 

number of files allowed to be opened. The specification was then enhanced and 

testing exposed this error by opening a number of files to reach the maximum 

number of files. 

El 1: The problem is in closing editing windows without releasing the memory held by 

the text record. There are no quick ways to detect this kind of system problem, 

except by opening and closing a number of large files, until memory runs out. 

This problem would be uncovered by stress testing or system testing (where 

usage of system resources is monitored), rather than functional testing. 

E13 Error in not setting "textDirty := FALSE; " in handling "cut" in DoEdit. 

This error is hard to detect because the textDirty flag is set correctly in other 

1 71 



procedures which hides this error. The way to expose it is to perform a "cut" 
operation only, and then quit to see if the warning dialogue "Unsaved changes" 
will be displayed to indicate the state of the textDirty flag. The following 

sequence will detect this error : 
F_start o F_select_text o F_cut o F_quit. 
It is not desirable to modify the test cases for this purpose as it requires the tester 
to quit from ThinkEdit when testing has just started. Since the textDirty flag is set 
in a number of procedures; each would then require a quick quit to be tested. This 
error would only produce a failure when a user quits the editor after making some 
text selections and cuts, and nothing else. Effectively, the user has not lost any 
work (i. e. new text entries). The problem is observable in the lack of a warning 
about "Unsaved changes". 

E20 "ShowSelect(TheWInfo)" is missing from Procedure HandleKey. 
It is undetected because the window receiving the keyboard input (as pointed to 
by TheWinfo) is already the front window, even without ShowSelect. 

E22u Incorrect "duplicate Filename" warning as "fName, dName, Null" were swapped 
in "ParamText(... ); ". 
This can be detected by opening the same file a second time. The inability to 
detect this error has revealed predicates missing from the specification of 
F_open_file. The enhanced specification would allow detection of this error. 

E23u Incorrect UntitledNum ("UntitledNum + 1" instead of -1 in Procedure 
DuplicateName). 
This undetected error reveals another incompleteness in the specification for 
F_open_file, in not specifying predicates for UntitledNum. With the enhanced 

specification, this error can be detected by a sequence such as : 
F_open_file(x) o F_open_open o F_open_file(x) o F_open_cancel o F_new_file. 

E26u: Forgot to reset PenSize; "SetPenState(oldPenState)" is missing. 
It is undetected, and has no observable effects, because the pen (with PenSize=3 

left) was not used again in that procedure (FrameDltem). When the pen was 

used later in other procedures, it was then reset to other defaults by SetPort(... ). 

It is fair to say that this error produces no failures in this case. Resetting PenSize 

is a kind of good programming practice that can only be checked by code 
inspection, and cannot be detected by a testing approach that uncovers errors by 

examining the results of program execution. 

172 



12.2.1 Reappraisal of results 

Given the above analysis of undetected errors, the success rate of test cases (derived 
from specifications) in the exposure of errors is well above 80%. The reasons are : 

" The 3 errors, which help to reveal incompleteness in the specification, will be detected 
as the specification is enhanced. (E23u, E22u, E4) 

" There are 2 errors which would not be detected by this approach nor any other 
functional testing approach, only code inspection would uncover them. (E26u, E20) 

" There are 3 errors that would remain undetectable (E13, El 1, E3). 

Five undetectable errors in a total of 40 gives a detection rate of 87.5%. If the two 
errors, which are only detectable by code inspection or analysis, are deducted, 92.5% of 
all functionally detectable errors are found. This is achieved by four relatively short test 
sequences, derived from specifications according to the criterion of 100% functional 
coverage. Even the initial 80% error detection rate is higher than the 61% reported in 
[Howden76]. (See section 2.3. ) The higher detection rate is attributed to the use of 
formal specification and the observation that GUIs are more amendable to functional 
testing (see the next chapter). The work in [Howden76] was carried out prior to the 
advent of GUIs, and formal specifications were not used. 

12.2.2 Other observations 

The error seeding and debugging process was described in section 9.4. The following 
paragraphs restate and develop some related observations. 

" Errors in window library calls are likely to produce visible symptoms, leading to their 
detection. Ordinary logical and typographical errors, in code statements other than 
window library calls, are harder to expose. 

" T_state predicates are very useful in assisting the detection of faults. Yet minor visual 
differences are hard to detect (e. g. E3). There is a vital balance between keeping the 
state primitives in WinSpec on a relatively high and comprehensible level, and its 

usefulness in exposing minor visual differences. The ability to detect functional 
differences is considered more important than minor visual differences. Perhaps the 
base line is that these minor visual differences should not hinder user interactions or 
affect the final outcome (i. e. the content of the text file being edited). 

" Although a functional testing approach was followed, the process of injecting errors in 

the source code provided some insight into structural testing. There are cases (E13, 
Ell and E3) in which it was found that the errors were seeded in program paths which 

were untested by the test sequences. Specific combinations of functions are required to 

173 



traverse the program paths containing these errors. Intuitively, a thorough path 
coverage in structural testing could be viewed as corresponding to a thorough 
functional testing that invokes all combinations of functions. An advantage of FFT is 
that the formal specification provides the source for both test inputs and test oracles. 
Structural testing uses the program source as a concrete basis for test data generation, 
but still requires some form of functional specification to serve as a test oracle. 

12.3 Complementing functional testing with code coverage 

Given the above observation, it was decided that some code coverage measurements 
should be used to evaluate the FFT approach. A very simple method of code 
instrumentation was employed to measure code coverage. Additional "check point" 
statements were inserted throughout the source code, at locations including: 

" One check point at the entrance of each procedure or function. 

" One check point at the exit of each procedure or function. 
" For each "IF 

... THEN 
... ELSE... " statement, one check point at the THEN clause, 

and one check point at the ELSE clause. 
" Each item within a CASE statement is inserted with a check point. 
" Each "WHILE ... DO" program block is given a check point. 
" Each program loop of "REPEAT ... UNTIL ... " is also given a check point. 

During execution of the test sequences, if any of these "check point" statements are 
executed, a flag is set in a matrix recording the check point traversed. At the end of the 
execution, a simple analysis program is run to reveal the percentage of check points 
traversed. The following table presents the result of check points exercised by test 
sequences TS 1, TS2, TS3 and TS4. 

Source file name 
Editor TopLevel 
Editor Utilities 
Editor Init 
Change font 
Show Edit 

Total 

Total No of chk pts 
177 
85 
7 

17 
18 

304 

No of chk pts traversed (%) 
143 (87%) 
59 (69%) 

7 (100%) 
0 (0%) 
18 (100%) 

227 (74%) 

Table 12.1 Result of code coverage measurements 

The most outstanding observation from these results is that the routines in the "Change 

font" module were completely untested by the test sequences. It reveals the complete 

174 



omission of the "Change font" functions in the specification. This reconfirms the 
general belief amongst researchers that functional and structural tests should be used to 
complement one another. It would be straightforward task to improve the specification 
and test cases, and consequently the results, by including the "Change font" functions. 
However, it was decided to publish the results obtained from the first experiment, as 
they are more revealing than otherwise. 

In the following bar chart, the code coverage measurements are shown in percentage 
values, together with the earlier results of error detection. Allowing for inaccuracies in 
these experiments, the 70% to 80% achievement of both error detection and code 
coverage is encouraging. Recall that the test sequences for ThinkEdit are relatively short; 
they only require about 10 to 15 minutes for a human tester to perform manually. These 

results are higher than those reported in [OU84], where functional (non-formal 

specification based) test cases achieved 44.5% statement coverage and 35% branch 

coverage. 

% of 
code coverage 
/ error detection 

100% 

80% 

60% 

40% 

20% 

L- 
---- code coverage ----- 

-1 

Figure 12.1 A bar chart showing percentages of code coverage and error detection 

175 

TopLvl Util Init Font Show average error-seed 
detection 

I 
module names 



12.4 Common errors in GUIs 

It has been suggested by [Myers79] that some people are good testers because of their 
experience or intuitive feeling about where errors may lie. There is also research in the 
more recently proposed fault / error based approach [Morell87] to software testing. 
From the GUI testing experiments, faults in GUIs are classified into error classes. The 
error sources are found to be largely related to the understanding of window library 
routine functions, sequences and parameters of routine calls, in addition to the usual 
logical and typographical errors. Four different error classes (EC 1 to EC4) are explained 
below. 

EC1: Visual errors 
Errors in the display of objects, where objects are missing or inappropriately displayed. 
These can be caused by incomplete visual design, or errors in translating design into 
code (e. g. a typing error in the integer values of coordinates of objects). 

EC2: Functional errors 
Missing functions; an example is a command button with no functions. Inadequate 
functions; an example is a username textBox without text editing functions. It was 
declared by mistake as a "static text box", instead of an "edit text box", in the program. 

EC3: Sequencing errors 
These can be seen as logic errors in the flow of interactions. For example, a "save file 
before quitting ?" dialogue box should not be sequenced indiscriminately to appear 
when the "quit" menu option is selected. The dialogue is unnecessary if no changes 
have been made to the file since the last save operation. 

EC4: Message errors 
These refer to a kind of "cross-wired" problems in switching messages between the 
GUI and the underlying application program. For example, the username and password 
fields are swapped, by mistake, in messages sent from the Logon interface to the system 

authorization routines. 

The error classes above are developed subjectively. It is, of course, possible to 

categorize errors in other ways. Nevertheless, the following list gives the classification 

of the 10 errors in the logon interface. (Also see sections 7.4 and 7.5. ) 

176 



E1 Visual errors 
El) "OK" button is placed in a different location than that which is specified in the 

WinSTD (error in coding coordinates). 
E2) Username field is misplaced (i. e. out of alignment). 
E3) Username and password fields are swapped physically (i.. e. the label "username" is 

wrongly attached to the password textBox). 

EC2: Functional errors 
E4) Username field has no text entry function 
E5) "Reset" command button has no function. 
E6) "OK" button has no function. 
E7) <tab> and <cr> at the username and password textBoxes have no function. 

EC3: Sauencing errors 
E8) Terminal window is displayed when logon is invalid (wrong display sequence in 

the GUI). 
E9) "Logon Failure" dialogue box is displayed when logon is valid. 

EC4: Message errors 
E10) Username and password are swapped internally (i. e. keyboard inputs in the 

username textBox are sent in messages to the application as the password). 

The 40 seeded errors, used in the ThinkEdit testing experiment, can also be categorized 

according to the error classes discussed above. The following table gives the 

distribution of the ThinkEdit errors. (A complete list of the 40 errors can be found in 

Table 9.1 in section 9.5. ) 

Error Classes Error Nos. in classes Total 

EC1 Visual errors E2, E3, E6, E7, E23, E25, E28, E29, 12 

E30, E31, E32, E37. 

EC2 Functional errors El, E14, E15, E16, E17, E18, E19, 14 

E33, E34, E35, E36, E38, E39, E40. 

EC3 Sequencing errors E5, E9, E10, E12, E13, E20, E21, 8 

E26. 

EC4 Message errors E4, E8, E 11, E22, E24, E27. 6 

Table 12.2 Distribution of ThinkEdit errors according to error classes 

177 



12.5 Considerations on design, specification and testing 

The use of WinSTDs and WinSpec notations is not limited to testing. They can also be 
used as design tools. A WinSpec specification can be used to check the reachability 
([Nicho1190], see Glossary) of objects and functions, and the complexity and 
completeness [Jalote89] of a design. A WinSTD is useful in visualising display objects 
and the flow of interactions, for early user training and feedback. The user interface 

model used (see Figure 3.1) encourages dialogue separation and modular programming. 

12.5.1 Testability as a design factor 

The design concept of dialogue separation is important to the development of user 
interfaces. Yet it has not been considered from the point of view of software testing. 
There is a current debate between supporters of UIMS and those supporting user 
interface toolkits. An important factor in this debate is that UIMS encourages dialogue 

separation whilst toolkits make it possible for interface processing to be mixed together 

with computations. 

The research conducted in this thesis reveals that dialogue separation would indeed 

improve the testability, and thus the quality of user interfaces. This is exemplified in the 

case of X-mail, where dialogue separation makes it possible to test the user interface in 

the absence of the application. However, there are also examples such as ThinkEdit, 

where the main application functions lie close to that of the user interface, in handling 

screen display and user inputs. Dialogue separation is less important in these cases. 

12.5.2 The value of formal specifications in software testing 

A formal functional specification readily lends itself to test generation, as has been 

expounded by this thesis. It has the additional validation value of being implementation 

independent, as specifications are generally not written in a programming language. A 

formal functional testing approach has the advantage that test oracles as well as test 

inputs are obtainable from the specification. A structural testing approach would still 

require some form of (perhaps informal) functional specification for a test oracle. 

There are myths concerning formal approaches, such as "Myth 1: Formal methods can 

guarantee that software is perfect" [Ha1190]. However, formal methods are fallible. The 

specification for ThinkEdit was found to be incomplete, with missing functions in at 

178 



least three places. This does not undermine the value of formal specification. The value 
of formal specifications lies in the use of precise, unambiguous notations and a sound 
mathematical base to enable software engineers to reason about the functional aspects of 
computer programs, more vigorously than the unaided mind. The experience with the 
X-Mail user interface was that the process of producing a formal specification has itself 
uncovered a number of design and implementation errors. There is another myth that 
"formal methods are unacceptable to users" [Ha1190]. As discussed in section 8.4.7, a 
contrast between specification and code shows that the specification is easier to 
understand and follow. This is due to both the special notations used, and the power of 
abstraction that a specification can offer. 

12.6 Justifications for the case studies 

This section gives an analysis to justify that the small number of case studies pursued in 
this thesis are representative of graphical user interfaces in general. Due to resource and 
time constraints, testing experiments were mainly conducted on the Logon and 
ThinkEdit interfaces. These two user interfaces were chosen for three main reasons : 

" They cover most of the basic interaction components commonly used in GUIs (such 

as windows, menus, icons and dialogue boxes, as discussed in section 3.1). 

" The logon interface and text processing are probably amongst the most commonly 

used types of graphical user interfaces. 

" They are also standard examples used in a number of publications concerning user 
interfaces and specification. By adhering to widely used examples, it is possible to 

contrast the different approaches to specification of such systems. 

Different versions of the logon user interfaces have been the subject of research in 

[Jacob83,861, [Green85,86], [Alexander86] and [Marsha1186]. The logon (or login) 

interface is used in a number of research publications because it is a small and self- 
contained example, with features familiar to most computer users. 

Specifications of text editors are pursued in [Sufrin82] and [Chi85]. Window-based text 

editors are common in GUI environments, yet their interaction styles are beyond those 

of icons and menus. An interactive window editor introduces the complications of 

formatting, highlighting and scrolling of text within the editing window. The 

specification has to capture both the visible layout of text in the window and the 

invisible structure of the file being edited. These are the reasons for choosing ThinkEdit 

as one of the main case studies in this thesis. 

1 79 



Another reason for the small number of testing experiments is the belief that test case 
generation can be carried out systematically (see Chapters 6 to 9), provided that formal 

specifications of the functions are available. In order to investigate if the WinSTD and 
WinSpec approach to specification is generally usable for different classes of graphical 
user interfaces, the specification of three other GUIs (Xmail, the WinSTD editor and a 
JRR tool) were examined in chapter 10. The three GUIs belong to different classes of 
user interfaces, since their respective applications and styles of interaction are different. 
X-Mail, a user interface for a mail program, is a typical user interface. The WinSTD 

editor is special as it belongs to the class of graphics editors. The JRR tool is an 
example of a systems tool which has a very simple user interface. In all of these cases, 
the WinSTD and WinSpec specification approach is adequate. 

From the view of popular usage, logon interfaces, text editors and mail interfaces are 
probably the most widely used of user interfaces. Considering the styles of user 
interface interaction, the text and graph editing (ThinkEdit and WinSTD editor), and the 
use of icons, menus, windows and dialogue boxes (Logon, X-Mail, JRR tool) are 
representative of current graphical user interfaces. Viewing from the perspective of the 
communication model between the user interface and underlying application, the case 
studies cover a wide range, from the "micro-communication" of ThinkEdit, to the 
"macro-communication" of the JRR tool. (See section 3.3 for descriptions of macro- 

and micro-communication. ) 

A further justification for this testing method is that it has been found to be effective in 

uncovering the commonly occurring classes of faults: visual, functional, sequencing and 

message errors (as analysed in section 12.4). Since these common classes of faults are 

not specific to Logon or ThinkEdit, this testing approach will be useful in testing other 

graphical user interfaces. 

180 



Chapter 13 

Conclusions 

"A number of authors have suggested methods for functional testing, 

and there are also a substantial number of systems based on this 

approach. The fundamental idea is that functions be identified within 
the computer software or elsewhere, and in order to test the program, 

each of these functions must be tested over appropriately selected 

test cases. We shall see that the problem is to approach the 

generation of the functions and test cases systematically, and 

eventually automatically. " 

From [White87] in [Yovits87] 

This thesis has undertaken an original investigation and analysis of the problems 
concerning the validation of graphical user interfaces. A systematic approach has been 
developed for the identification and specification of functions, and the generation of test 

cases for GUI software. 

State Transition Diagrams (STDs), based on the theoretical concept of a Finite State 
Machine (FSM), are useful for describing the flow of interactions in a GUI. A WinSTD 
is also useful for the enumeration and visual inspection of display objects for testing. 
The WinSpec notations make it possible to model and formalize user interactions into 

functions and sequences of functions. A WinSpec specification presents the required 
user inputs and expected visual outputs and state changes, in terms of state predicates 
for each interaction function. When functions and their relationship are specified 
formally, graph theoretic algorithm such as Euler tour, postman's tour, Hamilton circuit 

181 



and the travelling salesman's tour can be used for identifying test coverage. 

A WinSpec specification is not intended for prototyping, and thus is independent of 
implementation. This allows both design and implementation errors to be uncovered by 
tests derived from specifications. This new validation approach is explored in the 
specification and testing of a number of user interfaces. These include a logon interface 
and a window editor. A 100% function coverage criterion is used, producing relatively 
short test sequences that can be manually executed in about 10 minutes. The test 
sequences derived from formal specifications are evaluated with seeded errors and code 
coverage measurements. The results obtained show a 80% success rate in the detection 
of seeded errors and a 70% code coverage. Some knowledge about common GUI 
faults / errors is gained. 

This thesis has argued that a functional testing approach is suitable for graphical user 
interfaces, and concludes that the derivation of test cases from formal specification is an 
important step towards automation. Attendees at a recent conference (HICSS-24), from 
both industrial and academic backgrounds, were in agreement that this should be the 
future strategy [Andreas9l], [Birjandi9l], [Yip9la]. 

One distinctive feature of user interfaces in general, and of GUIs in particular, is the 
relatively direct, almost one-to-one relationship between user inputs and observable 
outputs. It is exemplified by visual feedback and direct manipulation of display objects. 
For the above reason, the derivation of required inputs and expected outputs for GUIs is 

relatively easy. This may have contributed to the successful results of the FFT 

experiments. Test derivation may be more difficult for other types of software where 

outputs (or results) are more dependent on values of internal program storages 
[Hall9lb] which are hidden from testers. 

Contrary to the myths about formal specifications [Ha1190], the experience of formal 

specifications for GUIs has not been prohibitively difficult or mathematical. The process 

of making a specification does not generally demand skills other than those required for 

writing programs. For instance, a total of more than 40 interaction functions has been 

specified for ThinkEdit. The mathematical skill required was not beyond that of first 

order predicate calculus used in state predicates. Logical or conditional statements are 

also used in programming languages. One difference is that predicates are used almost 

exclusively in a model-based specification language like WinSpec. In contrast, many 

other constructs, such as assignment statements and routine calls, are frequently used in 

procedural programming languages. The kind of arithmetic used in specifications, 

which is usually application dependent, is largely similar to that used in programs. For 

instance, simple arithmetic is used to specify the number of text lines to be scrolled, by 

multiplying the total number of text lines by the fraction of the length of the scroll bar 

that the slider has been moved. Perhaps the most demanding portion of the specification 

process is in identifying the type of parameters (or variable) to be used in modelling the 

182 



essential properties of functions for testing purposes. An example is the use of the two 
pointer variables, selStart and selEnd, to represent the start and end of a piece of text 
selection. This kind of modelling is similar to that of working out the required data 
structure in program designs. 

The above justifications for the use of formal specification are based on the assumption 
that a suitable formal specification language is available. Naturally, it is difficult to write 
programs in a language at the same time when the language is being developed 
[Wirth7lb]. It has been found that writing WinSpec specifications has become 
straightforward once a basic set of constructs have been tried and modified in earlier 
specification attempts. The foundation work of pinning WinSpec on predicate logic and 
set theory, recognizing the temporal order of I/Os, and the adoption of application 
messages and visual state primitives to model GUIs is considerably harder than writing 
WinSpec specifications. 

Another value of the FFT approach is in the possibility of expanding WinSpec by 
introducing new object types and state primitives. This has been demonstrated with user 
interfaces employing different interaction objects and styles. The flexibility for 
expansion is vital for adapting to new ideas in graphical user interfaces. This is also 
important in allowing WinSpec to be used for different window systems. Window 

systems provide very similar features, even across different hardware platforms. 
Consequently, in circumstances where a popular application is ported to a different host 

computer environment, for example from a PC to a workstation, WinSpec specifications 
and test cases will be largely reusable. The flexibility and reusability of both the 
specification and test data are valuable to the software maintenance process, the most 
expensive phase of the software life cycle. 

13.1 Assessment: achievements 

The main criteria for success were laid down in Chapter 1. These are now examined to 
judge if the research has been successful. 

" "The specification approach and notation should give a precise and comprehensible 
description of GUI functions... " 
A novel specification method has been developed, based on WinSpec notations and 
WinSTDs. The specification approach has improved the understanding of GUIs, as 
design and implementation errors were found during the specification process, prior to 

testing. In section 8.4.6, it was argued that WinSpec specifications are more 

comprehensible than the source code. 

" "The approach should be applicable to a wide range of user interfaces possibly on 
different hardware platforms and window systems. " 

183 



This is accomplished in the case studies of a number of different classes of GUIs, on 
more than one hardware platform. These include a logon interface, a window editor. a 
mail user interface, a graphics editor and a JRR tool. These interfaces employ different 
display objects and interaction styles. It is possible to expand the WinSpec notations to 
introduce new object types and state primitives, when necessary. 

" "The specification, once written, should lend itself to the systematic generation of test 
cases. " 
This has been achieved and presented in detail for both the Logon and ThinkEdit 
GUIs. Test design has become a systematic way of deriving test inputs and test oracles 
from the WinSpec specification. Test sequences are formed by selecting and joining 
functions of matching To-state and From-state, according to the required coverage 
criteria. 

" "A low success rate in error detection, function or code coverage, should call for 
improvements in the specification method and notations. " 
The test sequences derived from formal specifications are evaluated with seeded errors 
and code coverage measurements. The results obtained show a 80% success rate in the 
detection of seeded errors and a 70% code coverage. These compare favourably with 
one study [OU84], which reported functional test cases (non-formal specification 
based) of achieving 44.5% statement coverage and 35% branch coverage. The error 
detection rate of traditional (i. e. not formal specification based) functional testing is 
61% as reported in [Howden76]. (See section 2.3. ) The use of formal specifications, 
the nature of GUIs, and the relatively small size of ThinkEdit may have contributed to 
the higher success rates. 

13.2 Assessment: criticisms 

The original intention, to capture all interaction functions and state transitions in a 
WinSTD, has been found to be impractical. The WinSpec notations are subject to a 

number of restrictions and assumptions as discussed in section 5.8. These are 

summarized below : 

" The existence of a mechanism to serialize inputs, that "type ahead" and "mouse 

ahead" inputs are blocked (queued or discarded), is assumed. 

" It is not possible to specify effects of other user interfaces that may become 

concurrent with the GUI being specified. 

" Predicates in the T_state_predicates only state the changes in display objects that are 

consequences of the functions being specified. Any unspecified visual changes on the 

screen (e. g. time clock) are considered irrelevant. 

184 



" Although the mouse input device (pointer and button) is used exclusively in 
specifications, it does not imply that other devices cannot be used in graphical user 
interfaces. 

The Formal Functional Testing (FFT) approach has turned the demanding process of 
test design into straightforward derivation from specifications. However, it can be 
argued that it has merely moved the intellectual effort required from the design of test 
cases to that of writing formal specifications. It is true that some skills are required to 
produce formal specifications. Perhaps the most important skills are familiarity with the 
specification language, and understanding of the application being specified. 

It is probably true that even in an ad hoc manner, a human tester does attempt to identify 
display objects and functions before carrying out testing. The difference that FFT has 
made is in adopting a set of precise and unambiguous notations, through which a human 
tester can identify objects and functions more properly and formally. These formal 
notations also enable test designs to be communicated amongst and cross-checked by 
software engineers. 

Some information outside the WinSpec specification is still required. For example, valid 
pairs of usernames and passwords are required to test the Logon interface. This 
information is not part of the user interface specification. 

Formal methods are fallible. The specification for ThinkEdit is found to be incomplete, 

with missing functions in at least three places. All the "font" functions were found to be 

untested, when cross-checked with code coverage evaluation. However, this does not 
undermine the value of formal specification. The value of formal specification lies in the 

use of precise, unambiguous notations and semantics with a sound mathematical base, 

enabling software engineers to reason about the functional aspects of computer 
programs. It is important to realize that a formal specification can be modified, if 

necessary, according to the findings of the testing process. There is a most recent and 

pragmatic advocacy that specification should also be considered as an output, as well as 
an input to the testing process [Hetzel9 1]. 

Despite case studies and exploration of automation issues, a complete tool 
implementation is beyond the resource constraints of this thesis. The testing process has 
been demonstrated (in chapters 6 to 11), and prototypes have been explored, but a 

complete implementation has not been possible because of time constraints. 

185 



13.3 Future directions 

Following on from the criticism above, a complete tool-implementation and further 

evaluation will be the main directions for future research. Once the test generation 
process is completely automated, it will be relatively less time-consuming to conduct 
testing experiments, in order to obtain further results. 

Further experiments, on the testing of user interfaces through dialogue separation, 
should be pursued. When user interfaces are increasingly designed with dialogue 

separation in mind, their testability will be improved. The checking of textual messages 
between an application and its GUI is easier and more reliable than the visual 
verification of screen outputs. 

Perhaps the most important future direction, in concluding this thesis, is the need to 

carry out further research towards discovering the value of formal specifications to 
software testing. It would be interesting to investigate how code coverage, achieved by 
functional test cases, can be improved. Two answers are foreseeable. One is the 

refinement of the specification to further reduce incompleteness. The other is the testing 

of combinations of functions, as explained in the last observation in section 12.2.2. 

Research on the wider use of FFT in testing programs other than GUIs should be 

encouraged. The experience gained in this thesis is that functions of a class of software, 
GUIs in this case, are similar across different implementations. Perhaps research into 

the formal specification of functions of a number of common applications, such as 
database access, accounts and ledgers, real time process control, modelling and 

simulation programs can be pursued. The efforts required by the initial specifications 

may be justified by the long term view of the reusability of these formal specifications. 
Would it be a vision or a dream to foresee that one day a box labelled "Formal 

specification and test cases for databases - universal, hardware and language 

independent' 'can be purchased off the shelf ? 

Use of formal specifications in software testing should be considered alongside program 

proving and mathematical proof approaches [Young9l]. It is also important that a formal 

specification should not be used just as an input to the testing process. Knowing that 

formal methods are fallible, a formal specification should also be improved as an 

outcome of the testing process. 

186 



References 

[Abbott86] J., "Software Testing Techniques" 
, The National Computing Centre Ltd., 

1986. 

[Abowd90] G. D., Harrison M. D., "On a Constructive Approach to Applying Formal 
Methods in HCI", Dept. of Computer Science, University of York, Report YCS151, 
May 1990. 

[Aho88] AN., Dahbura A. T., Lee D., and Uyar M. U., "An Optimization Technique for 
Protocol Conformance Test Generation Based on UIO Sequences and Rural Chinese 
Postman Tours", in Proc. 8th IFIP WG6.1 Workshop on "Protocol Specification, 
Testing and Verification VIII", Elsevier Science Publishers (North-Holland). 

[Alagar89] V. S., "Fundamentals of Computing, Theory and Practice", Prentice-Hall 
International Inc., 1989. 

[Alexander86] H., "Formally-Based Tools and Techniques for Human-Computer 
Dialogues", PhD. Thesis, Stirling University 1986. 

[Anderson87] Publishing Company, Special Report on "Major Vendors Agree on 
Window Standard", The Anderson Report, P5-6, February 1987. 

[Andreas9l] J. R., "Automated Regression Testing of Graphical User Interface Based 
Applications", in [HICSS91] . 

[Apple85] Computers Inc., "Inside Macintosh", Vol 1-5, Addison-Wesley 1985. 

[Arthur87] J. D., "Towards a Formal Specification of Menu-based systems", The 
Journal of System and Software 1987. 

[Atly84] J. L., "Use of Path Algebras in an Interactive Adaptive Dialogue System", 
Proc. INTERACT'84, p351-354, North-Holland 1985. 

[Birjandi9l] A., Sydorowicz S., "Validation of Motif Graphical User Interface Widget 
Set", in [HICSS91] . 

[Bobrow86] D. G., "Expert Systems: Perils and Promise", Communications of the 
ACM, p880-894, Sept. 1986. 

[Boehm88] B. W., "A Spiral Model of Software Development and Enhancement", 
Computer, p61-72, May 1988. 

[Brady77] J. M., "The Theory of Computer Science, A Programming Approach", 
Chapman and Hall Ltd., 1977. 

[Budd78] T. A., DeMillo R., Lipton R. J., Sayward F. G., "The design of a prototype 

mutation system for program testing", Proc. ACM Nat. Comput. Conf., p623-627, 
1978. 

[CAPBAK90], "CAPBAK/X - Test Capture / Replay for X Windows, Technical 
Specifications", Software Research Inc., San Francisco, USA, May 1990. 

[Casey82] B. E., Dasarathy B., "Modelling and Validating the Man-Machine Interface", 

187 



GTE Labs., Software-Practice and Experience 12(6) p558-569,1982. 

[Carre79] B. A., "Graphs and Networks", Clarendon Press, Oxford 1979. 

[Chernicoff88] S., "Macintosh Revealed, Vol. 2: Programming with the Toolbox", 
Hayden Books, New York 1988. 

[Chi85] U. I., "Formal Specification of User Interface: A Comparison and Evaluation of 
4 Axiomatic Approaches", IEEE Trans. Software Eng., 11(8), p671-685,1985. 

[Choquet86] N., "Test Data Generation using a Prolog with constraints", in [TAV86], 
p132-141 . 

[CMU89] "Serpent Overview", Serpent UIMS user manual, SEI Carnegie Mellon 
University, August 1989. 

[Cockton86] G., "Where do we draw the line? ", Proc. of HCI'86 Conf., Harrison M., 
Monk A. F. (eds), Cambridge University Press. 

[Coutu90] D., "Automating X Window System testing by User Synthesis", Digital 
Equipment Corp., X Technical Conference, MIT Press, Jan 1990. (Abstract only). 

[Coward88a] P. D., "A review of software testing", Information and Software 
Technology , Vol 30, p 189-198, Apr 1988. 

[Coward88b] P. D., "Symbolic execution systems -a review", Software Engineering 
Journal, p229-239, Nov. 1988. 

[Crabb89] D., "A Macintosh Retrospective", Byte, p143-146, March 1989. 

[Cronin87] P. J., Robson D. J., "Confirmation of some random testing results", 
University Computing, 9, p153-156,1987. 

[CSR85], "Software : requirements, specification and testing" - Proceedings of CSR 
Workshop, University of East Anglia, April 10-12,1984. 

[Dijkstra76] E. W., "A Discipline of Programming", Prentice-Hall 1976. 

[Duce86] D. A., Fielding E. V. C., "Towards a formal specification of the GKS output 
primitives", Proc. Eurographics '86, p307-324,1986. 

[Duran84] J. W., Natfos S. C., "An Evaluation of Random Testing", IEEE Trans. Soft. 

Eng. 10(4), p438-444, July 1984. 

[Durham9l] University of Durham, Proc. European Workshop of Software 

Maintenance, 1991. 

[Ehrlich89] K. (Sun Micro-systems Inc. ), et al., "Incorporating usability studies & 

Interface design into Software development" , Proc. USENIX Technical Conf., Summer 

1989. 

[Elmendorf73] W. R., "Cause-Effect Graphs in Functional Testing", TR-00.2487, 

IBM Systems Development Division, Poughkeepsie, N. Y., 1973. 

188 



[Elverex89], "Evaluator" - Sales Literature, in Personal Computer Magazine, 
August 1989 . 

[Fiume89] Eugene, "Towards Realistic Formal Specifications For Non-Trival 
Graphical Objects", in Proc. EUROGRAPHICS'89, p289-299, Elsevier Science 
Publishers, 1989. 

[Floyd67] R. W., "Assigning meanings to programs", Proc. Symposium Applied Math. 
Vol 19, p19-32, American Math. Society 1967. 

[Galton87] A. P. (Ed), "Temporal logics and their applications", Academic Press Ltd., 
1987. 

[Gannon8l] J., McMullin, P., Hamlet, R., "Data-abstraction implementation, 
specification, and testing", ACM Trans. Program. Lang. and Syst., 3(3), p211-223, 
July, 1981. 

[Gaudel88] M-C., Marre B., "Generation of Test Data From Algebraic 
Specifications", in TAV88, p138-139. 

[Gehani86] N., McGettrick A. D. (eds), "Software Specification Techniques", Addison- 
Wesley 1986. 

[Glass79] R. L., "Software Reliability Guide book", Prentice-Hall, New Jersey, 
1979. 

[Goldberg83] A., Robson D., "SmallTalk-80, The language and its implementation", 
Addison-Wesley, Xerox 1983. 

[Goodenough75] J. B., Gerhart S. L., "Towards a Theory of Test Data Selection", IEEE 
Trans. Soft. Eng., 1(2), p156-173, June 1975. 

[Gourlay8l] J. S., "Theory of testing computer programs", Ph. D. dissertation, Dept. 
of Computer and Communication Sciences, Univ. of Michigan, 1981. 

[Gourlay83] J. S., "A Mathematical Framework for the Investigation of Testing", 
IEEE Transaction on Software Engineering, 9(6), p666-709, Nov 1983. 

[Gray88] P. D., et al, "Dynamic reconfigurability for fast prototyping of user 
interfaces", Soft. Eng. Journal, p257-262, Nov 1988. 

[Graham90] D., "Computer Aided Software Testing - CAST Report", Unicorn 
Seminars, UK, 1990. 

[Green85] M., "The University of Alberta UIMS", Proc. SIG GRAPH 85, p205-213, 
ACM New York, 1985. 

[Green86] M., "A Survey of Three Dialogue Models", ACM Trans. Graphics, p244- 
275, July 1986. 

[HaII87] Frank, "XRLIB: An X Windows Toolkit", p254-263, in [Pacific87]. 

[Ha1188] P. A. V., "Towards testing with respect to formal specification", Proc. 2nd 
UK IEE/BCS Conf. of Software Engineering, p159-163, July 1988. 

189 



[Ha11901 Anthony, "Seven Myths of Formal methods", p11-19, IEEE Software, Sept. 
1990. 

[HaII91 a] P. A. V., "Relationship between specifications and testing", p47-52, 
Information and Software Technology, Jan/Feb 1991. 

[Hall91 b] P. A. V., Hierons R., "Formal Methods and Testing", Technical Report 
No. 91/16, Computing Dept., The Open University, Aug. 1991. 

[Hantler76] S. L., King J. C., "An Introduction to Proving the Correctness of 
---Programs"; --ACM-Computing -Surveys, pa3t-353, Sept 1976. 

[Harel88] D., "On Visual Formalisms", Comms. of ACM, 31(5), p514-531, May 
1988. 

[HareI90] D., et al, "STATEMATE :A Working Environment for the Development of 
Complex Reactive Systems", IEEE Trans. Soft. Eng., 16(4), p403-413, April 1990. 

[Harrison90] M., Thimbleby H. (eds), "Formal Methods in Human-Computer 
Interaction", Cambridge Univ. Press 1990. 

[Harrison9l] M. D., Abowd G. D., "Formal Methods in Human Computer Interaction: a 
Tutorial", Dept. of Computer Science, University of York, Report YCS155, Mar 
1991. 

[Hartson89] R., "User- Interface Management Control and Communication", IEEE 
Software, Jan 1989, p62-70. 

[Hekmatpour88] S., Ince D., "Software Prototyping, Formal Methods and VDM", 
Addison-Wesley 1988. 

[Hetzel9l] B., Gelperin D., "Software Testing, some troubling issues", p22-27, 
American Programmer, April 1991. 

[HICSS91] , Proc. Hawaii International Conference on System Sciences 1991, session 
on Graphical User Interface Validation, p89-123, in vol. 2 of Proc. 

[Hoare69] C. A. R., "An Axiomatic Basis for Computer Programming", Comms of the 
ACM, 12(10), p576-583, Oct. 1969. 

[Hoare85] C. A. R., "Communication Sequential Processes", Prentice-Hall 1985. 

[Hopgood86] F. R. A., et al, "Introduction to GKS", Academic Press, 2nd ed., 1986. 

[Howden76] W. E., "Reliability of the Path Analysis Testing Strategy", IEEE Trans. 
Soft. Eng., 2(3), p208-214, Sept. 1976. 

[Howden77] W. E., "Symbolic testing and the DISSECT symbolic execution system", 
IEEE Trans. Soft. Eng., 3(4), p266-278, April 1977. 

[Howden78] W. E., "A survey of dynamic analysis methods", in [Tutorial8l], p209- 
231. 

190 



[Howden8l ] W. E., "Completeness Criteria for Testing Elementary Program 
Functions", Proc. 5th Intl. Conf. on Soft. Eng., p235-243,1981. 

[Howden87] W. E., "Functional Program Testing & Analysis", McGraw-Hill 1987. 

[Hsieh7l] E. P., "Checking experiments for sequential machines", IEEE Trans. 
Comput., 20(10), p1152-1166, Oct., 1971. 

[IEEE83], ANSI/IEEE Std 729-1983, Standard glossary of Software Engineering 
terminology, 1983. 

[Ince84] D., Hekmatpour S., "An evaluation of some black-box testing methods", 
Technical Report No 84/7, Computing Discipline, Faculty of Mathematics, Open 
University. 

[Islam89] N., Ingoglia J. P., "Testing Window Systems", Proc. 28th Annual Technical 
Symposium "Interfaces : System and People working together", Washington D. C. ACM 
Chapter. 

[Jacob83] R. J. K., "Using formal specifications in the design of HCI", Comms. of ACM, 
26(4), p259-264, April 1983 

[Jacob86] R. J. K., "A Specification Language for Direct Manipulation User- 
interfaces", ACM Transactions on Graphics, p283-317, Oct. 1986. 

[Jalote89] P., "Testing the Completeness of Specifications", IEEE Trans. Soft. Eng. 
15(5), p526-531, May 1989. 

[Jamison90] A., "Enhancing the Input Synthesis Extension with Xtrap", Digital 
Equipment Corp., Proc. X Technical Conference, Jan 1990. (Abstract only). 

[Johnson8l] S. C., "Yacc - Yet Another Compiler-Compiler, Comp. Sci. Tech. Rep. 
No. 32. ", Bell Laboratories: Murray Hill, New Jersey, 1981. 

[Johnson87] M. A., "Automated Testing of User Interfaces", p285-293, Proc. Pacific 
North West Software Quality Conference, 1987. 

[Jones85] C. B., "Specification, Verification and Testing in Software Development", 
in [CSR85], p1-13. 

[Jones90] C. B., "Systematic Software Development Using VDM", 2nd edition, 
Prentice-Hall 1990. 

[Kernighan84] B. W., Pike R., "The UNIX Programming Environment", Prentice- 
Hall 1984. 

[King76] J. C., "Symbolic execution and program testing", Comms. of ACM, 19(7), 

p385-394, July 1976. 

[Kuan62] M. K., "Graphic programming using odd or even points", Chinese Math., 

vol. 1, p273-277,1962. 

[Leach83] D. M., M. R. Paige, and J. E. Satko, "Autorester: A Testing Methodology for 
Interactive User Environments", Wang Laboratories; Software Reliability 

191 



Engineering Group. IEEE CHI, p143 - 147, August 1983. 

[Lee90] Ed, "User-Interface Development Tools", IEEE Software, p31-36, May 
1990. 

[Leek8l] M. E., "Lex -A Lexical Analyser Generator, Comp. Sci. Tech. Rep. No. 39. ", 
Bell Laboratories: Murray Hill, New Jersey, 1981. 

[Leler89] W., "PIX, the latest NeWS", Proc. IEEE COMPCON Spring'89, p239-242, 
Feb. 1989. 

[Lientz80] B. P., Swanson E. B., "Software Maintenance Management", Addison- 
Wesley, London, 1980. 

[Lewis89R] R. and D. W. Beck (BTRL, UK) , J. Hartmann and D. J. Robson (Durham 
University), "ASSAY -A Tool To Support Regression Testing", Published in Procs. of 
2nd European Software Engineering Conference, Sept. 1989. 

[Lewis89T] T. G., et al, "Prototypes from Standard User Interface Management 
Systems", IEEE Computer, p51-60, May 1989. 

[Linton89] M. A., "Composing User Interfaces with InterViews", IEEE Computer, p8- 
22, Feb 1989. 

[Liskov75] B. H., Zilles S. N., "Specification Techniques for Data Abstractions", IEEE 
Trans. Software Eng., 1(1), p7-19, March 1975. 

[Liskov79] B. H., Berzins V., "An Appraisal of Program Specifications", reprinted in 
p3-23, [Gehani86]. 

[Liskov86] B., Guttag J., "Abstraction and Specification in Program Development", 
MIT Press, 1986. 

[Loo88] P. S., Tsai W. K., "Random testing revisited", Information and software 
technology, 30(7), Sept. 1988. 

[Malhortra89] Anil, "Through the X Window", Unix Systems, p30-32, February 
1989. 

[Mallgren82] W. R., "Formal specification of interactive graphics programming 
languages", PhD. dissertation, Univ. Washington, Seattle, 1982. 

[Marsha1185] S. L., "A Formal specification of line representations on graphics 
devices", in Lecture notes in Computer Science - 186, p129-147, Spring Verlag, 
1985. 

[Marshall86] S. L., "A Formal Description Method for User Interfaces", PhD. thesis, 
University of Manchester 1986. 

[Maurer83] M. E., "Full-screen testing of interactive applications", IBM Systems 
Journal, 22(3), p246-261,1983. 

[McMullin83] P. R., Gannon J. D., "Combining Testing with Formal Specifications: A 
Case Study", IEEE Trans. Soft. Eng., 9(3), May 1983. 

192 



[Microsoft88] Corporation, "AUTO MAC III, Macro Recorder" Reference Manual, 
1988. 

[Minieka78] Edward, "Optimization Algorithms for Networks and Graphs", Marcel 
Dekker Inc., New York, 1978. 

[MIT89], documents in X11 R4 distribution tape, MIT 1989. 

[MIT90], Proc. 4th X Technical Conf., MIT Press, Jan 1990. 

[More1187] L. J., "A Model for assessing Code-based Techniques", Proc. Pacific 
North-west Software Quality Conference, p309-325, Oct 1987. 

[More1188] L. J., "Unit Testing and Analysis", SEI Curriculum module SEI-CM-9- 
1.1, SEI, Carnegie Mellon University, Dec 1988. 

[Myers88] B. A., "A Taxonomy of Window Manager User Interfaces", IEEE Computer 
Graphics and Applications, Page 79-109, Sept. 1988. 

[Myers89] B. A., "User-Interface Tools: Introduction and Survey", IEEE Software, 
p15-23, Jan 1989. 

[Myers79] G. J., "Art of Software Testing", John Wiley & Sons 1979 . 
[Narayana90] K. T., Dharap S., "Formal Specification of a Look Manager", IEEE 
Trans. Software Engineering, 16(9), p1089-1103, Sept. 1990. 

[NichoII90] R. A., "Unreachable states in model-oriented specifications", IEEE Trans. 
Soft. Eng., 16(4), p472-477, April 1990. 

[North90] N. D., "Automatic Test Generation for the Triangle Problem", NPL Report 
DITC 161/90, National Physical Laboratory, Crown copyright, Feb 1990. 

[Ostrand84] T. J., Weyuker E. J., "Collecting and Categorizing Software Error Data in 
an Industrial Environment", J. Syst. and Software, 4(11), p289-300, Nov. 1984. 

[OSU89] Delph C., Whiltmore S., "Oregon Speedcode Universe" user manual., Oregon 
State University, 1989. 

[OU84] Open University, Software Engineering course material, Unit 7, PMT600, 
Volume 7, p8-9, Open University Press, 1984. 

[Pacific87], Proc. 5th Annual Pacific NorthWest Software Quality Conf., Oct 1987, 
Portland, Oregon. 

[Parnas69j D. L., "On the use of transition diagrams in the design of a user interface 
for an interactive computer system", in Proc. 24th National ACM Conference, p379- 
385,1969. 

[PEI90] Programming Environment Inc., "T - Test Method and Tool", sales 
literature, 4043 State Highway 33, Tinton Falls, NJ 07753, USA, 1990. 

[Petzold89] Charles, "Programming The OS/2 Presentation Manager", Microsoft 

193 



Press, Washington 1989. 

[Pfaff85] G. E. (ed), "User Interface Management System" (Proceedings of Workshop 
on UIMS, Seeheim, Germany, Nov. 1983), Springer-Verlag 1985. 

[Prime88] M., "User Interface Management Systems -a current product review", 
Report RAL-88-028, Rutherford Appleton Laboratory, 1988. 

[Purvis90] J. B., "The use of LOTOS for the specification of graphics software", 
Technical Report CSTR-90-5, Dept. of Computer Science, Brunel University, July 
1990. 

[Richardson89] D. J., O'Malley 0., Tittle C., "Approaches to Specification-Based 
Testing", p86-96, in TAV89. 

[Roper87a] R. M. F., Smith P., "A Software tool for testing JSP designed programs", 
Soft. Eng. Journal 2(2), p46-52, Mar 1987. 

[Roper87b] R. M. F., "The derivation of a methodology, with supporting software aids, 
for testing structured data processing programs", PhD Thesis, Sunderland 
Polytechnic, UK, 1987. 

[Roper90] R. M. F., "The Automatic Generation of Test Cases", in 
[Wolverhampton90], p43-56. 

[Rosson87] M. B., S. Maass, W. A. Kellogg, "Designing for Designers: An analysis of 
Design and Practices in the Real World" Proc. SIGCHI+Gl 87, ACM, P137-142, New 
York, 1987. 

[Royce70] W. W., "Managing the Development of Large Software Systems: Concepts 
and Techniques", Proc. Wescon, Aug. 1970. Also available in Proc. ICSE 9, Computer 
Society Press, 1987. 

[Scheifler86] R. W. , 
Gettys J., "The X Window System", ACM Transactions on 

Graphics, Vol. 5, No. 2, p79-109, April 1986. 

[Schmucker86] K. J., "MacApp An Application Framework", BYTE, p189-193, Aug 
1986. 

[Schreiner86] A. T., H. G. Friedman Jr., "Introduction to Compiler Construction with 
UNIX", Prentice-Hall Inc., 1986. 

[Shneiderman83] B., "Direct Manipulation: A Step Beyond Programming Languages", 
Computer, p57-69, August 1983. 

[Shooman83] M. L., "Software Engineering", McGraw-Hill 1983. 

[Shu89] N. C., "Visual programming: Perspectives and approaches", IBM System 

Journal, 28(4), p525-547,1989. 

[Smith82] D. C., et all, "Designing the Star User Interface", Byte, 7(4), p242- 
282, Apr. 1982. 

[Spivey891 J. M., "An introduction to Z and formal specifications", Software 

194 



Engineering Journal, p40-50, Jan 1989. 

[Su91] Jason, Ritter P. R., "Experience in Testing the Motif Interface", IEEE 
Software, p26-33, March 1991. 

[Sufrin82] B., "Formal specification of a display-oriented text editor", Sci. Comput. 
Program., VoI. 1, p157-202,1982. 

[Symantec90], Symantec Corporation, THINK Pascal User Manual, Cupertino, CA, 
USA, 1990. 

[Talbot85] D., Foreword to [CSR85], as Software Engineering Director of the Alvey 
Directorate. 

[Took90] Roger, "Putting design into practice: formal specification and the user 
interface", p63-96, in [Harrison90]. 

[Tutorial8l], Miller E. and Howden W. E. (eds), "Tutorial: Software Testing & 
Validation Techniques", IEEE Computer Society Press, New York, 1981. 

[Weyuker80] Elaine, Ostrand T. J., "Theories of Program Testing and the Application 
of Revealing Subdomains", IEEE Trans. Soft. Eng., 6(3), p236-246, May 1980, also 
reprinted in [Tutorial8l]. 

[Weyuker82] Elaine, "On Testing Non-testable Programs", Computer J., 25(4), 
p465-470, Nov. 1982. 

[Weyuker83] Elaine, "Assessing Test Data Adequacy through Program Inference", 
ACM Trans. Prog. Lang. and Syst., 5(4), p641-655, Oct. 1983. 

[White87] L. J. "Software Testing and Verification", Advances in Computers, Vol 26, 
1987, Academic Press Inc. 

[Winston9l ] N. K., Baughman T., "Testing a Graphical User Interface, Experiences 
with Automation", p182-204, Proc. Pacific North West Software Quality Conference 
1991. 

[Wirth7la] N., "Program development by stepwise refinement", Comms. of the 
ACM, 14(4), p221-227, April 1971. 

[Wirth7l b] N., "Design of a Pascal compiler", Software Practice and Experience, Vol 
1, p309-333,1971. 

[Wolverhampton90], "Testing Large Software Systems", Proc. Seminar Series on 
New Directions in Software Development, Wolverhampton Polytechnic, Mar 1990. 

[Woodcock88] J., Loomes M., "Software Engineering Mathematics", Pitman 
Publishing, London, 1988. 

[Yip9la] S. W. L., Robson D. J., "Graphical User Interface Validation: A problem 
analysis and a strategy to solution", Proc. Hawaii International Conference on System 
Sciences (HICSS-24), Vol. 2, p91-100, Jan 1991. 

[Yip9lb] S. W. L., Robson D. J., "Conformance Validation of Graphical User Interfaces", 

195 



Proc. Intl. Phoenix Conference on Computer and Communication (IPCCC), p733- 
739, Mar 1991. 

[Yip91 c] S. W. L., Robson D. J., "Applying Formal Specification and Functional Testing 
to Graphical User Interfaces", Proc. IEEE CompEuro'91 Conf., p557-561, Bologna, 
May 1991. 

[Yip9ld] S. W. L., Robson D. J., "Window User Interfaces and Software Maintenance" , Journal of Software Maintenance, 3(2), p107-123, John Wiley & Sons Ltd., June 
1991. 

[Young9l] W. D., "Panel: Formal Methods Versus Software Engineering: Is There a 
Conflict? ", in [TAV91 ], p188-189. 

[Yovits87] M. C. (ed), "Advances in Computers", Vol. 26, Academic Press Inc., 1987. 

196 



Appendix A Glossary 

Boundary value analysis is a specification-based functional testing technique. It can 
be seen as a special case of equivalence partitioning. Boundary value analysis requires 
the selection of test data directly on, above and below the boundary of equivalence 
classes. 

Branch coverage requires enough test cases to be written so that each direction of 
branch (or decision) in the program would have a true and false outcome at least once. 

Call-Back Routine is a mechanism used in window systems for handling certain 
input events. For example, a command button (or a menu option) is declared together 
with the name of a call-back routine. When the command button is selected by a user, 
the window system will pass control over to the call-back routine to handle the event. 

Code coverage is a range of criteria requiring increasing test coverage of all program 
statements, branches, conditions, combinations of conditions, and lastly, all program 
paths. 

Completeness of specifications requires that all functions (or operations) on all 
objects of the type of interest are defined by the specification . The most obvious reason 
for incompleteness is that of missing functions [Howden87]. 

Condition coverage requires enough test cases to be written so that each condition in 
the program would be tested for a true and false outcome at least once. 

Debugging is different from testing. Debugging is the process of locating and 
rectifying the textual faults in the program, design or specification, after the existence of 
errors has been indicated during testing. 

Dialogue separation means separating out the user-interface code from the other 
computing components of the application program. Dialogue separation requires design 
decisions that affect only the user interface to be isolated from those that affect the other 
components of the application program [Hartson89]. Dialogue separation is crucial for 
easy modification and maintenance of user interfaces, and could also increase the 
portability of software packages. 

Direct manipulation is the name of an interaction style by which users perform (or 
request) operations by manipulating objects that are visible on a computer screen, 
instead of using a command language to describe operations on objects that are 
invisible. (e. g. to delete a file by placing the file icon onto the trash can icon. ) 

Domain testing is a modified form of path coverage. It helps to select a finite set of 
paths for analysis. Ranges of inputs are deduced from the program structure to establish 
path domains. This technique reveals errors by picking test data on and slightly off the 
borders of path domains. 

Dynamic analysis is any testing technique that requires the program to be executed. 

Equivalence Partitioning is a specification-based functional testing technique. The 
input domain of a program is partitioned into a finite number of equivalence classes, so 
that one can reasonably assume a test of a representative value of each class is equivalent 
to a test of any other value. 

An error is a mental mistake by a programmer or designer. It may result in textual 
problem with the code called a fault. A failure occurs when a program computes an 
incorrect output for an input in the domain of the specification [More1l87]. 

197 



Error-based testing is a testing strategy which seeks to demonstrate that certain 
classes of errors have not been committed in the programming process [More1187]. 
Error classes may be derived from a history of programmer errors, measures of 
software complexity, knowledge of error-prone syntactic constructs, or even error 
guessing [Myers79]. 

Functional testing is also known as black box testing. It is a testing strategy in 
which the testers are unconcerned about the internal behaviour and structure of the 
program under test. They perform testing on their understanding of the intended 
function of the program. 

Graphical User Interfaces (GUI) use interactive display objects such as windows, 
icons, pop-up (or pull-down) menus, together with user inputs on the mouse pointer, 
mouse button(s) and keyboard to achieve a Human Computer Interface (HCI). This is 
generally called a graphical or window-based user interface to distinguish it from the 
traditional textual command line interface. GUIs are sometimes called WIMP interfaces. 

Incremental integration is to add (or integrate) one module to the program at a time, 
testing is performed before the integration of the next module. Incremental integration 
generally results in more thorough testing and earlier detection of interface errors 
between modules [Myers79]. 

Input synthesis is an approach which simulates keyboard and mouse inputs, so as to 
relieve human testers from having to execute tests in generating inputs by hand. 

Integration testing is a process to test the whole program by combining modules, 
which have been successfully tested during module / unit testing. Integration testing can 
be carried out in two alternative ways, incremental or non-incremental. 

Journal Record and Replay (JRR) is a mechanism that records user interactions, 
which are later replayed for automation purposes. A survey of some commercially 
available JRR tools is given in section 3.7. 

Module testing or Unit testing is the process of testing the individual 
subprograms, subroutines, or procedures in a program . 

Multiple condition coverage requires enough test cases to be written in order that 
all possible combinations of conditions are tested. A multiple condition coverage would 
always satisfy both branch and condition coverage. 

Non-incremental Integration is also called "big-bang" integration. In this 
approach, modules are combined all at once to form an integrated program, before 
testing is applied. 

Path coverage is the strongest code coverage testing technique. It simply requires that 
all possible program paths be executed at least once. 

Reachability of a specification requires that every state which satisfies the state 
definition can be reached by some sequence of operations applied to the initial state 
[Nicho1190]. 

Regression testing is the rerun of some existing tests after changes have been made 
to a program which had previously been test-accepted. This is to determine if the 
changes have regressed other aspects of the program. 

Software testing is defined in this thesis as the process of revealing the existence of 
errors in computer programs, by exposing faults or differences in behaviour or code 
structure from what is expected. Testing is usually carried out by executing the program 
under test, or by examination and analysis of the program code and design. 

198 



Statement coverage requires the design of test cases to ensure that every statement in 
the program / module is executed at least once. 

Static Analysis is any testing technique that does not involve the execution of the 
program under test. 

Structural Testing is also known as white box testing. It is a testing strategy, by 
which the testers, are concerned with the internal structure of the program, can derive 
test data according to their understanding of the program's logic. 

Symbolic execution is a testing technique, also known as symbolic evaluation, 
which does not execute a program in the traditional sense. Symbolic values of input 
data, instead of actual values, are fed, together with the program, into a tool that carries 
out symbolic execution. The outcome of symbolic execution is a set of expressions 
based on the symbolic values of the data. 

A test case is a detailed design, consisting of both the required input data for program 
execution, and a precise description of the correct output of the program for that set of 
input data. 

Test oracle is the name given to an external mechanism which can be used to check 
test output for correctness. Test oracles can take on different forms. They can consist of 
tables, hand calculated values, simulated results, or informal design and requirements 
descriptions [Howden78]. An oracle can exist in the form of a written specification or 
as a person who has the authority to decide if a program is working correctly 
[Weyuker82]. 

A test plan is the overall schedule covering all the different stages of testing, from 
design reviews and module testing, to final regression testing. It may enlist many test 
cases designed for individual modules and the program as a whole. 

Test tools are software tools that assist the testing of programs in different ways, such 
as analysing program structure, generating test data and recording test execution. 

Toolkits 
A window system library can be tedious to use, as it generally provides a programming 
interface of low level routines. To encourage programmers to use windows, low level 
routines are built together to form a higher level programming interface, generally called 
a toolkit. 

User Interface Management System (UIMS) can be perceived as an integrated 
set of tools that help user interface developers to create and manage many aspects of 
interfaces. [Myers89] suggests that it is preferable to call them User Interface 
Development Systems (UIDS) instead of UIMS. The name UIMS is used in this thesis. 

Validation is the process of testing software or its specification at the end of the 
development effort to ensure that it meets its requirements (that it does what it is 

supposed to do). [IEEE83] 

Verification is the process of evaluating software during each life-cycle phase to 
ensure that it meets the requirements set forth in the previous phase [I]EEE83]. 

Visual verification is an attempt to validate GUI screen outputs by comparison with 
previously recorded bitmaps. This approach has a number of difficulties, as outlined in 

section 3.7.2. 

Widget is a special term used in the X Window Systems to represent a fundamental 
data type abstraction. Logically, a widget is a rectangle with associated input / output 

199 



semantics. Some widgets display information (for example, text or graphics), and 
others are merely containers for other widgets (for example, a menu box) [MIT89]. 

WIMP stands for "Window Icon Menu and Pointer", or "Window Icon Mouse and 
Pop-up (or Pull-down) menu". WIMPs are also called Graphical User Interfaces 
(GUIs). It is part of a computer program / system that uses the display objects 
mentioned above, to achieve interactions with users on a screen. It was first used in the 
Star and SmallTalk systems at Xerox. 

Window systems provide the underlying window graphics libraries and device 
drivers for the construction of window-based or graphical user interfaces. An example 
is the X Windows System [Scheifler86]. 

200 



Appendix B Specification of menu functions 

Section 8.4 covered all the edit-display functions of ThinkEdit. In this appendix. 
specifications are developed for another main group of ThinkEdit functions, the menu 
functions. There are two menus for ThinkEdit, the "File" menu and the "Edit" menu. 
The visual appearance of these menus is shown in Figure 8.2. 

The "Edit" menu has six menu options : 
Edit ={ Undo, Cut, Copy, Paste, Clear, Select All } 
The "Edit" menu functions have already been dealt with in section 8.4, except the 
"Undo" command which is not supported in ThinkEdit. 

The "File" menu has six menu options' : 
File = {New, Open, Close, Save, Save As, Quit) 

These options affect the content of the file on disk. During editing, a copy of the file 
(called the 'record') is changed, whilst the disk file itself is not modified until a "File" 
menu option is selected. The fact that new text entries or changes have been made is 

recorded by setting a flag called the dirtFlag. In addition to setting the dirtFlag, it is 
necessary to enable the "save" menu option when the active window is dirty, allowing 
the user to save the changes to the disk file. When a dirty window becomes clean after a 
file operation, the "save" menu option is then disabled, as the window's contents are 
then in agreement with the version on the disk. 

The following sections cover menu functions for creating, saving and closing editing 
windows. The relationship amongst menu functions is illustrated in the state diagram in 

Figure B. 1. 

Figure 8.2 actually shows 9 options for the "File" menu, three of them (i. e. Page 
Setup, Print and Transfer) are either unsupported or irrelevant. 

201 



F_invoke_ThinkEdit, 
F to menu func 

F_open_untitled 
F_o en_success F_new file 

F_quit F_quit_ iscard 

F_quit_warn 

at 
F_ quit_ 

quit_ warn F 

STD menu func 

F_quit_save 

at_ 
-save-success File_ 

clear F- 
menu save ai at save_ 

save fail 
fail 

F open F open at 
_cancel 

file _ diaB_ 
saveAs saveAs 

at_ 
diaB_ F open open _ folder 

F open 
select at_ 

- folder 

at_ 
cmdB F_open_select 

ok 

JF open open 

at 
read 

F open fail 

wait at_ 
open_ 

F_DupFn fail , 

F_ 
clear 
open_ 
fail 

at 
DupFn F_DupFn_cancel 

Figure B. 1 STD_menu_func for FG_menu_func 

at 
write 

wait 

IF_ 
saveAs 

Fn 

202 



B. 1 Creating a new window for editing 

The 'New' command is the first of the "File" menu options considered here. When the 
'New' menu option is chosen, ThinkEdit will display a new editing window with the 
title "UntitledX", where X is an integer between 1 and 5. ThinkEdit does not access the 
file system until the user chooses the 'Save' command later on in order to save the new 
file onto disk. In the mean time, the content of the text being edited is kept in a 
temporary buffer called the 'record'. 

B. 1.1 Function F_newfil e 

----- Specification_for_function F_n ew_f iIe: 

Variables 

From-state 
F_state_predicate 

Inputs 

To-state 
I T_state_predicate 

Output_msg 

-------------- 
Explanations: 

n, X: integer , 0<_ X <_ n, 0 <_ n maxWind 
maxWind : integer , maxWind =5 
dirtFlag : boolean 
at_File_menu 
n< maxWind 

kb? =<cmd-N> or 
(is_inside(mp?, menu-'File') Tand mb? =<down> Tand 
is_inside(mp?, mOpt_'New') Tand mb? =<up> )) 

Post-Insert 
n'=n+1 
and is_visible(wind_edit#n') 
and X'=X+1 
and text(wind_edit#n'. tBar) _ "Untitled"//X 
and text(record') = {} 
and wind_edit#n'. dirtFlag'=false 
and is_disabled(mOpt_'Save') 
and if n'>_ maxWind then ( is_disabled(mOpt_'New') 

and is_disabled(mOpt_'Open') ) 
none 

" The variable "n" represents the total number of editing windows that are open under 
ThinkEdit. The value of "n" is incremented by 1 each time an editing window is 

opened. The initial value of "n" is 0, and the maximum value is 5, as controlled by 

maxWind. 

" The variable "X" represents the total number of "UntitledX" windows that are open 
under ThinkEdit. 

" The interaction to choose the 'New' command begins by moving the mouse pointer 
into the "File" menu. Then press the mouse button down, and hold it down whilst 

203 



moving the mouse pointer into the option "New" within the "File" menu. Then release 
the mouse button. 

" <cmd-N> is the command key for mOpt_'New', see explanations in 8.4.10. 
" As part of the T_state_predicate of F_new_file, a new editing window is displayed. 

" The construct text(wind_edit#n. tBar) gives the title of the window wind_edit#n. The 
title is the text on the window's title bar (denoted as tBar). 

" The predicate "text(record)={ }" indicates that the editing buffer is initially empty. 

" The flag dirtFlag is set to false as the file has not been updated so far. The notation 
dirtFlag' is used to show the value of dirtFlag after the execution of F_new_file 

. The 
notation wind_edit#n'. dirtFlag is used to represent the dirtFlag associated with the 
editing window wind_edit#n' , as a total of up to 5 editing windows may exist. 

" The menu option "Save" is disabled as there is nothing to save. 
" If the maximum number of editing windows (maxWind) is reached, both the "New" 

and "Open" menu options will be disabled. 

B. 1.2 Function F 
_open 

He 

----- Specification_for_function F_open_file : 

Variables 

From-state 
F_state_predicate 

Inputs 

To-state 
T_state-predicate 

------------- 
Explanations: 

n: integer, 0 <_ n <_ maxWind 
maxWind : integer , maxWind =5 
at-File-menu 
n< maxWind 

kb? =<cmd-O> 
(is_inside(mp?, 
is_inside(mp?, 

or 
menu-'File') 
mOpt_'Open') 

Tand mb? =<down> Tand 
Tand mb? =<up> )) 

at_diaB_open 
n'=n+1 and 
if n'> maxWind then ( is_disabled(mOpt_'New') 

and is_disabled(mOpt_'Open') 
and is_modal(diaB_open) 

" The interaction to open an existing file for editing is performed by selecting the 'Open' 

menu option within the 'File' menu. 

" <cmd-O> is the command key for mOpt_'Open', see explanations in 8.4.10. 

204 



" As in the T_state_predicate of F_open_file, the value of "n" is incremented by 1. 

" If the maximum number of editing windows (maxWind) is reached, both the 'New' 
and 'Open' menu options will be disabled. 

"A modal dialogue box (diaB_open) is displayed to assist the user to choose which file 
is to be opened. 

B. 1.3 Function F_open_cancel 

----- Specification_for_function F_ open_cancel: 

Variables 

From-state 
F_state_predicate 

Inputs 

To-state 
T_state_predicate 

-------------- 
Explanations: 

n: integer, 0<n< maxWind 

at_diaB_open 
T_state predicate(open_file) 

is_inside(mp?, cBtn_'Cancel') Tand mb? =<click> 

at-File-menu 
is_not_visible(diaB_open) 
and n' =n-1 and 
if n' < maxWind then ( is_enabled(mOpt_'New') 

and is_enabled(mOpt_'Open') ) 

" As a consequence of F_open, the user is presented with a dialogue box (diaB_open) 

that allows a choice of files to be opened. 

" If, at this stage, the user decides to abandon the opening of a file, the 'Cancel' 

command button can be used to clear diaB_open. 

205 



F_open_file 

TeHtEdit Folderl 
Q Change Font 
Q Editor Globals 
Q Editor I nit 
D Editor Main 
Q Editor TopLevel 
Q Editor Utilities 
Q Show Edit 

F_open_folder 

=Macintosh HD 

ie 
iL e 

Open j 

L. Cancel 

F_open_select F_open_cancel F_open_open 

Figure B. 2 A WinSTD showing the diaB_open dialogue box and associated functions 

diaB_open 
menu-folder 

mOpt_folders (1) 

mOpt_folders (fdrLen) 

fileList lines (1) 

lines (listLen) 

viewList lines (offset + 1) 

lines (offset + vListLen) 

vBar 
sBar _upArrow sBar_ pgUpRect 
sBar _slideBox sBar_ pgDnRect 
sBar _dnArrow cBtn 'Drive' 

cBtn 'Eject' 
_ cBtn 'Open' 
_ cBtn_ 'Cancel' 

(Invisible if IistLen vListLen) 
(Invisible if listLen < vListLen) 
(Invisible if listLen <_ vListLen) 

Table B. 2 A table listing the display objects within the diaB_open dialogue box 

206 



B. 1.4 Function F open_select 

----- Specification_for_function 
I 

Variables 

From-state 
I F_state_predicate 

Inputs 

To-state 
T_state_predicate 

---------------- 

F_open_select(i) 

i: integer 
,1 <_ i <_ listLen 

at diaB_open 
T_state_predicate(open_file) 

(is_inside(mp?, viewList. line(i)) 

at_cmdB_ok 
is_hiLit (viewList. Iine(i)) 

Tand mb? =<click> 

Explanations: 

" The interaction function F_open-select allows the user to select the file to be opened 
by clicking at a line within a list of file-names. 

" As a consequence, the line containing the chosen file-name will be highlighted. 

B. 1.5 Function F 
_open_ 

folder 

----- Specification_for_function F_open_folder(j) 

I Variables :j: integer ,1 <_ j <_ fdrLen 

I From-state : at_diaB_open 
I F_state_predicate : T_state_predicate(open_file) 

I Inputs : is_inside(mp?, icon-folder) Tand mb? =<down> 
I Tand is_inside(mp?, mOpt_folders(j)) Tand mb? =<up> 

To-state at-folder 
T_state_predicate : text(icon_folder') = text(mOpt_folders(j)) 

Tand app_msg_sent = ("folder : ", text(mOpt_folders(j)) ) 
Tand text(fileList') = app_msg_recv 

I ---------------------------------------------------------- 
Explanations: 

" If the desired file is not in the current file folder, the interaction F_open_folder can be 
invoked to select the necessary file folder. 

" This interaction is carried out by moving the mouse pointer into the icon resembling a 
file folder (denoted icon-folder) 

, and then pressing down the mouse button. 

207 



"A list of available file folder names will be displayed in the form of a list of menu 
options (denoted mOpt folders(j)). 

" While depressing the mouse button, move the mouse pointer into the menu option 
containing the desired file folder, and then release the mouse button. 

" As a consequence, the selected item (i. e. mOpt_folders(j)) in the list will become the 
current folder, denoted as icon folder' . 

" An application message is then sent to request the list of file-names in the current 
folder. 

" The list of file-names (denoted fileList) is updated upon the receipt of an application 
message. 

B. 1.6 Function F open_open 

----- Specification_for_function F_open_open: 

Variables :i: integer ,0 <_ i <_ listLen 
filename : string 

From state : at_cmdB_ok 
F_state_predicate : T_state_predicate(open_select) 

Inputs : (is_inside(mp?, viewList. Iines (i)) Tand mb? =<click> 
Tand is_inside(mp?, cBtn_'Open') Tand mb? =<click> ) 
or (is_inside(mp?, viewList. Iines (i)) Tand mb? =<dClick>) 

To-state : at_read_wait 
T_state_predicate : is_not_visible(diaB_open) and 

filename = text( viewList. lines (i)) 

Output_msg : App_msg_sent = "Read file: " // filename 

Explanations: 

" The interaction function F_open_open allows a user to choose a certain file to be 

opened, amongst a list of file-names (denoted by viewList) belonging to a certain file 
folder. 

"A file is selected by a mouse click input, whilst the mouse pointer is inside the line 

(within the list viewListlines) displaying the desired file-name. 

" To send the chosen filename to the the application routines responsible for opening the 
file, a mouse button click must be entered at the "Open" command button 

208 



(cBtn_'Open'). Alternatively the user can double click at the line containing the file- 
name (viewList. lines (i)). 

B. 1.7 Function F_open_success 

----- Specification_for_function F_open_success: 

Variables :n: integer, 0 <_ n <_ maxWind 

From-state at read_wait 
F_state_predicate : T_state_predicate(F_open_open) 

Inputs : App_msg_recv = "readSuccess" 
ard 
`d iE {1, 

..., n-11 " text(wind_edit#i. tBar)ýfilename 

To-state : Post-Insert 
T_state_predicate : text(wind_edit#n')= text(filename) 

and text(wind_edit#n'. tBar') = filename 
and is_visible(wind_edit#n') 

Explanations: 

" The function F open_success is executed if an application message of "readSuccess" 
is received following F_open_open . 

"A new editing window wind_edit#n is displayed. The content of the window is 
initially the same as that of the file chosen by F_open_select. 

" If the file is not already opened in any of the existing windows, its file-name will be 

used as the title of the new window. Otherwise, a modal dialogue box (diaB_DupFn) 

is displayed, to warn the user that the file is already open in another editing window. 

B. 1.8 Function F DupFn 

----- Specification_for_function F_DupFn: 

Variables :n: integer, 0 <_ n <_ maxWind 
From-state at-read_wait 
F_state_predicate : T_state_predicate(F_open_open) 

Inputs : 

i 
To-state 
T_statepredicate 

-------------- 

App_msg_recv = "readSuccess" 
and 
3ic {1, 

..., n-1} " text(wind_edit#i. tBar) = filename 

at_DupFn 
text(wind_edit#n')= text(filename) and 
is_modal(diaB_DupFn) 

209 



Explanations: 

" The F_state_predicate for F_dupFn are similar to those of F_open_success, except the 
file being opened is found to be already open. 

" F_DupFn displays the dialogue diaB_DupFn to warn the user of this duplication, and 
suggests that the file should be opened as "UntitledX" 

F_DupFn 

Edit Windows 14: 42: 04 

tf. 1 
1 abcdefghi j k1 mnopgrstuvwxyz 123456 
2: ebcdefghi j k1 nnopgrstuvwxyz 123456' 
3: eb 
4: bb 
5: 

bb 
The file "tf. 1 " is elreadU open. Do 

6: bb you wani to open it again as 
abcd "Untitledl "? 
8: bb 
No. 9 
10: a OK 
11: 8 

F_open_untitIed 

diaB_DupFn 
cBtn_'OK' 
cBtn_'Cancel' 

Cancel 

F_open_cancel 

Figure B. 3 A WinSTD showing the diaB_DupFn dialogue box and associated functions 

210 



B. ]. 9 Function F_open_untitled 

----- Specification_for_function F_open_untitled 

Variables :n: integer, 0 <_ n _< maxWind 

From-state : at_DupFn 
F_state predicate : T_state-predicate(F_DupFn) 

Inputs : is_inside(mp?, cBtn-'OK') Tand mb? =<click> 

To-state Post 
- 

Insert 
T_state predicate : is_visible(wind_edit#n) and 

I X'=X+1 
filename' = "Untitled"// X' 
and text(wind_edit#n. tBar') = filename' 

------------------------------------------------- 
Explanations: 

" F_open_DupFn allows the user to open the duplicated file for editing as "UntitledX", 
by choosing the 'OK' command button. X is an integer of a value ranging from 1 to 
maxWind. 

B. 1.10 Function F DupFn_cancel 

----- Specification 
_for _function 

F_DupFn_cancel: 

Variables : n : integer, 0 <_ n< maxWind 

From-state : at_DupFn 
F_state predicate : T_state_predicate(F_DupFn) 

Inputs : is_inside(mp?, cBtn_'Cancel') Tand mb? =<click> 

To state : at File menu 
T_state predicate : is_not_visible(DiaB_DupFn) 

and n' =n-1 and 
if n' < maxWind then ( is_enabled(mOpt_'New') 

and is_enabled(mOpt_'Open') ) 

Explanations: 

" As an alternative to F_open_DupFn, the user could choose to abandon the opening of 
the duplicated file, by selecting the 'Cancel' command button in the diaB_dupFn 

dialogue box. 

211 



B . 1.11 Function F_open 
J 
fail 

----- Specification_for_function F_open_fail: 

Variables :n: integer, 0 <_ n <_ maxWind 
filename : string 

From-state : at_read -wait F_state_predicate : T_state_predicate(F_open_open) 

Inputs : App_msg_recv = "readError" 

To-state at-open-fail 
T_state_predicate : is_modal(diaB_readError) and 

text(texB_errMsg) = "I/O error while reading from file" 
// filename 

---------------------------------------------------------- 

Explanations: 

" Following the execution of F_open_open, a file-name is sent to the application 
routines responsible for opening files, a reply will eventually be received from the 
application routines. 

" If the message received (App_msg_recv) is "readError", the interaction function 
F_open_fail will take control. 

" The user is presented with a modal dialogue box, which communicates that a read- 

error was encountered while opening the file. 

F_open_fail 

F_clear_open_fail 

Figure B. 4 A WinSTD showing the diaB_readError and associated functions 

212 



B. 1.12 Function F_clear openJ fail 

----- Specification_for_function F_clear_open_fail: 

From-state : at_open_fail 
F_state_predicate : T_state_predicate(F_open_fail) 

Inputs : is_inside(mp?, diaB_readError) Tand mb? =<click> 

To-state : at_File_menu 
T_state_predicate : is_not_visible(diaB_readError) 

and n'=n-1 and 
if n' < maxWind then ( is_enabled(mOpt_'New') 

and is_enabled(mOpt_'Open') ) 

Explanations: 

" In the presence of the modal dialogue box (diaB_readError), the only allowable user 
action is a mouse button click within the dialogue box. This will clear the dialogue 
box, and reverts n' to n-1, to keep an accurate count of the number of editing 
windows opened. 

213 



B. 2 Saving the contents of an editing onto a disk file 

Having covered the 'New' and 'Open' menu options of the 'File' menu, the 'Save' 
option of the 'File' menu is specified in this section. 

B. 2.1 Function F_saveIle 

----- Specification_for_function F 
_save : 

Variables :n: integer, 1 <_ n <_ maxWind 
filename : string 

From-state : at file_menu 
F_state_predicate : dirtFlag = true 

Inputs : is_inside(mp?, mOpt_'save') Tand mb? =<up> 

To-state at-write_wait 
T_state_predicate : filename' = text(wind_edit#n. tBar) 

Output_msg : App_msg_sent = "write file: " J/ filename' 

Explanations: 

" When the 'Save' menu option is selected, an application message is sent to the 
application routines, requesting that the content of the editing be saved. 

" It will be saved to the disk file having the same name as the title of the editing window. 

B. 2.2 Function F save success 

----- Specification_for_function F_save_success: 

From-state 
F_state_predicate 

Inputs 

To-state 
T_ state_predicate 

-------------- 

at-write-wait 
T_state_predicate(F_save or F_saveAs_fn) 

App_msg_recv = "writeSuccess" 

at file menu 
dirtFlag'=false 
and is_disabled(mOpt_'Save') 

Explanations: 

" Following the execution of F save, an application message of "writeSuccess" may be 

received. This signals that the content of the editing has been saved onto a disk file. 

"A couple of housekeeping tasks, clearing the dirtFlag and disabling the 'Save' menu 

option, are performed. 

214 



B. 2.3 Function F_save, fail 

----- Specification_for_function F save fail: 

From state : at-write-wait 
F_state_ predicate : T_state_predicate(F_save or F_saveAs_fn) 

Inputs : App_msg_recv = "writeError" 

To-state : at_save_fail 
T_state_predicate is-modal(diaB_write Error) and 

text(texB_errMsg) = "I/O error while writing to file" 
// filename 

Explanations: 

" Following the execution of F_save, the modal dialogue box diaB_writeError will be 
displayed if an application message of "writeError" is received. 

" The dialogue box warns the user that the 'Save' command has failed, because of errors 
in writing to the disk file. 

F save fail 

F clear save fail 

Figure B. 5 A WinSTD showing the diaB_writeError and associated functions 

215 



B. 2.4 Function F__clear save) fail 

----- Specification_for_function 

From-state 
F_state predicate 

Inputs 

To-state 
T_state predicate 

-------------- 

F clear save fail: 

at-save-fail 
T_state_predicate(F_open_fail) 

is_inside(mp?, diaB_writeError) Tand mb? =<click> 

at file menu 
is_not_visible(diaB_writeError) 

Explanations: 

" The dialogue box diaB_writeError can be cleared by a mouse click within it. 

B. 2.5 Function F_saveAs 

----- Specification_for_function F_saveAs : 

Variables : dirtFlag : boolean 

From-state : at_File_menu 
F_state-predicate : dirtFlag = true 

Inputs : is_inside(mp?, mOpt_'SaveAs') Tand mb? =<up> 

To-state : at_diaB_saveAs 
T_state_predicate : is_modal(diaB_saveAs) 

21 6 



ine 1: a 
i ne 2: a 
i ne 3: a 
i ne 4: a 
ine 5: a 
ine 6: a 
7: a bci 

ine 8: a 
ine No 
i ne 
in 11: 

F_save As-folder 

i ne 13: 85 

diaB_saveAs 
menu-folder 

mOpt_folders (1) 

mOpt_folders (fdrLen) 

destList lines (1) 

lines (listLen) 

viewList lines (offset + 1) 

lines (offset + vListLen) 

vBar 
sBar _upArrow 
sBar_ pgUpRect 
sBar_ slideBox 
sBar_ pgDnRect 
sBar _dnArrow 

cBtn 'Drive' 
cBtn 'Eject' 

_ cBtn_ 'Save' 
cBtn_ 'Cancel' 

Fsave As-disk 

F cave Asscroll 

(Invisible if listLen 5 vListLen) 
(Invisible if listLen vListLen) 
(Invisible if listLen <_ vListLen) 

Figure B. 6 A WinSTD showing the diaB_saveAs dialogue box and associated functions 

217 

Fsave Aspcancel Fsave Assave 



B. 2.6 Function F 

Variables 

From-state 
I F_state_predicate 

Inputs 

To state 
T_state_predicate 

------------- 

F saveAs fn : 

n: integer, 0sn< maxWind 
dirtFlag : boolean 

at_diaBsaveAs 
is_modal(diaB_saveAs) 

kb? Tand 
is_inside(mp?, cBtn_'Save') Tand mb? =<click> 

at-write-wait 
text(wind_edit#n. tBar) = kb? 
Tand T_state_predicate(F_save) 

Explanations : 
" The function F_saveAs_fn allows the user to enter keyboard inputs, to specify the disk 

file in which the content of current editing should be saved. 
" As a consequence, the title of the current editing window is changed to the file-name 

entered, and the other parts of T_state predicate are the same as those of F_save. 

B. 3 Closing or quitting an editing window 

The last of the 'File' menu options being considered are the "Close" and 'Quit' options, 
used for terminating an editing window. The operations of the 'Quit' command vary 
according to the value of the flag dirtFlag, which states whether or not the text has been 

updated since the last save. 

The functions of "Close" are almost identical to those of "Quit". There are only two 
differences. The first one is that "Close" can be selected by a mouse click at the close 
box of the window, as well as by choosing the "Close" menu option. The second 
difference is the wording in the dialogue box that gives a warning against quitting (see 
Figure B. 7). The warning for "close" reads as "Do you want to save or discard ... 
before closing? ", instead of "... before quitting? ". 

Specifications for the "Close" functions are omitted, as they are almost identical to those 
for "Quit". The set of "Close" functions can be derived, by replacing the word "Quit" 

with "Close", in the specifications for "Quit" functions given in the following sections. 

F_Close_func ={ F_close, F_close_wam, F_close_cancel, F_close_discard, 
F_close_save } 

_saveAs-fn 
Specification_for_function 

218 



B. 3.1 Function F_quit 

----- Specification_for_function F_q uit: 

Variables :n: integer, 0 <_ n <_ maxWind 
quitFlag : boolean 

From-state : at File menu 
F_state_predicate : true 

Inputs : kb? =<cmd-Q> or 
(is_inside(mp?, menu-'File') Tand mb? =<down> 

is_inside(mp?, mOpt_'Quit') Tand mb? =<up> ) 

To state : 
T_statepredicate 

Explanations : 

Start 
if n <_ 0 then is_not_visible(icon_ThinkEdit) 
if n >_ 1 then quitFlag'=true 

" The F_quit function is invoked by selecting the "Quit" option in the "File" menu. 

" <cmd-Q> is the command key for mOpt_'Quit', see explanations at 8.4.10. 

" If an editing window has not been opened (n<_ 0), ThinkEdit will be terminated. 

" Otherwise, the quitFlag will be set to true. 

----- Specification_for_function F_q u it_n : 

I 
Variables 

From-state 
I F_state-predicate 

Inputs 

To-state 
T_state_predicate 

-------------- 

n: integer, 0<_ n <_ maxWind 

at File_menu 
quitFlag=true and n >_ 1 
and wind_edit#n. dirtFlag = false 
none 

at_File_menu 
is_not_visible(wind_edit#n) 
Tand n' =n -1 

Explanations : 

" Window wind_edit#n, being the front window, can be closed by choosing the 'Quit' 

menu option within the 'File' menu. 

" If the content of the editing window has not been updated (i. e. the dirty flag is false), 

the window is simply closed as there is no need to save to disk. 

219 



The value of "n" is decremented by 1. 
" Execution of F_quit_n will be repeated, as long as quitFlag=true and n? 1. 
" There is an alternative function to F_quit_n called F_quit_warn, which displays a 

warning dialogue suggesting the user saves the file before quitting, if dirtFlag=true. 

B. 3.2 Function F_quit_warn 

----- Specification_ for_ function F_ qui t_w am 

Variables : n : integer, 0 <_ n <_ maxWind 

From-state : at File_menu 
F_state_predicate : quitFlag=true and n >_ 1 

and wind_edit#n. dirtFlag = true 
Inputs : none 

To-state : at-quit-warn 
T_state_predicate : is_modal(diaB_quit#n) 

Explanations : 
" diaB_quit denotes a dialogue box that warns the user of quitting from an unsaved 

editing. 

" is_modal() is a predicate stating that diaB_quit is a modal dialogue that will block all 
other inputs until it is cleared. 

F_quit warn 

Edit Windows Q 

1: abcdefghi j 
2: abcdefghi j 
3: abcdefghi j 
4: abcdefghi j 
5: a bcdefg hi j 
6: a bcdefg hi j 
o Kt-Aafn hi i lit m 

Do you went to save or discard the changes 
to "tf. 1 " before quitting? 

Save Discard Cancel 

nnrotiiv%. wii-7 1 7ZA CZ A 7A 

F_quit_save F_quit_discard F_quit_cancel 

diaB_quit . cBtn_'Save' 
. cBtn_'Discard' 

. cBtn_'Cancel' 

Figure B. 7 A WinSTD showing the diaB_quit dialogue box and associated functions 

220 



B. 3.3 Function F quit cancel 

----- Specification_ for_ function F_q ui t_ca n ce l: 

Variables : n : integer, 0 <_ n <_ maxWind 

Inputs : none 

From-state : at-quit 
- warn 

F_state_predicate : is_modal(diaB_quit#n) 
Inputs : is_inside(mp?, cBtn_'Cancel') Tand mb? =<click> 

To-state : at_File_menu 
T_state_predicate : is_not_visible(diaB_quit#n) and quitFlag'=false 

Explanations : 

" The dialogue box diaB_quit gives the user a choice of three command buttons: 'Save', 
'Discard', and 'Cancel'; each would clear the dialogue box with a different action. 

" The function F_quit_cancel is executed if the user chooses the 'Cancel' command 
button. The dialogue box diaB_quit is cleared. The editing window is not closed, nor 
is any action taken to save the content of the editing window to disk. 

B. 3.4 Function F_quit_discard 

----- Specification_for_function 

Variables 

From-state 
F_state_predicate 
Inputs 

To-state 
T_state predicate 

-------------- 

n: integer, 

F_quit_discard : 

0: 5 n <_ maxWind 

at_quit_warn 
is_modal(diaB_quit#n) 
is_inside(mp?, cBtn_'Discard') Tand mb? =<click> 

Start 
is_not_visible(diaB_quit#n) 
Tand is_not_visible(wind_edit#n) 
Tand n' =n -1 

Explanations : 
" Another way to clear the diaB_quit dialogue box is to select the 'Discard' command 

button. 

" This will close the editing window wind_edit#n without saving its contents to a disk 

file, discarding any updates. 

221 



B. 3.5 Function F_quit_save 

----- Specification 
_for_ 

function F_q u it_save : 

Variables : n : integer, 0 <_ n <_ maxWind 

From-state : at-quit - warn 
F_state predicate : is_modal(diaB_quit#n) 
Inputs : is_inside(mp?, cBtn_'Save') Tand mb? =<click> 

To state : at write wait 
T_state_predicate : is_not_visible(diaB_quit#n) 

Tand T_state_predicate(F_save) 
Tand is_not_visible(wind_edit#n) 
Tand n' =n -1 

Explanations : 
" The third alternative to clear the diaB_quit dialogue box is to select the 'Save' 

command button. 

" This interaction will produce the same T_state predicate as those of F_save, before the 

window is cleared. 

B. 3.6 Function F_to_menuJ func 

The functions : F_to_menu_func, F_to_sBar, F_to_wind_mgmt are dummy functions. 

They allow the user to change to different function groups, simply by moving the 

mouse pointer into the regions of the menu bar, the scroll bar or the window 

management region on the screen. 

222 



Appendix C Specification of scroll bar functions 

The set of scroll bar interaction functions identified for ThinkEdit is: 
FG_sBar = {F_sB_IineUp, F_sB_IineDn, F_sB pageUp, F_sB pageDn, F_sB_slider } 

These functions correspond to the five control regions within a scroll bar (see section 
8.3.1). These control regions (or components) are : 

vBar !A vertical scroll bar, having components 
. sBar_upArrow ! The "upArrow" shape at the top of a scroll bar. 
. sBar pgUpRect ! The area between upArrow and slider. 
. sBar_slideBox I The rectangular shape slider in the middle. 
. sBar_pgDnRect I The area between dnArrow and slider. 
. sBar_dnArrow ! The "downArrow" shape at the bottom. 

The physical appearance of a scroll bar and its control regions can be seen in Figure 4.2 
and Figure 8.1. 

C. 1 Using the slider to scroll text 

If the mouse button is held down when the mouse pointer is inside the slider 
(sBar_slideBox), the slider can be dragged up or down the scroll bar by subsequent 
mouse pointer movements. Scrolling of text in the editing window (viewRect) takes 
place in correspondence to the movement of the slider. This interaction is called 
function F_sB_slider in the following specification. 

----- Specification_for_function F_sB_slider : 

Variables: y1, y2 : integer, 
tops : integer, the y-coordinate of the top of the sliderBox. 
slidLen : integer, length that the sliderBox can be moved. 

offset : integer, 
where 0s offset 

From state : 
F_ state_predicate 

at SB 
true 

<_ (destLen - viewLen) 

Inputs : (is_inside(mp?, sBar_slideBox) and top_s=yl) 
Tand mb? =<down> Tand 
(is_inside(mp?, sBar_slideBox) and top_s=y2) 
Tand mb? =<up> 

To-state : at-SB 
T_state_predicate : offset' = offset + destLen *( (y2 - yl)/slidLen) 

I top-S'=y2 
-------- 

I 
--------------- 

223 



" The length along the scroll bar which the sBar_slideBox can be moved is represented 
by the integer "slidLen". 

" The geometry of the scroll bar can be modelled as follows. 
Given that the recto primitive returns the coordinates of the top-left and bottom-right 
corners of a rectangular object, 
rect(sBar_upArrow) = ((left_u, top_u), (right u, bottom-u)) 
rect(sBar_slideBox) = ((left-s, top-s), (right-s, bottom-s)) 

rect(sBar_dnArrow) _ ((left-d, top_d), (right-d, bottom-d)) . 

The symbol left_u is the x coordinate of the top-left corner of sBar_upArrow. 
The symbol lefts is the x coordinate of the top-left corner of sBar_slideBox. 
The symbol left_d is the x coordinate of the top-left corner of sBar_dnArrow. 
The symbol top_u is the y coordinate of the top-left corner of sBar_upArrow. 
The symbol tops is the y coordinate of the top-left corner of sBar_slideBox. 
The symbol top_d is the y coordinate of the top-left corner of sBar_dnArrow. 
The symbols for the x and y coordinates of the bottom-right corners of these objects 
can be derived in a similar fashion. 

Effectively, the length that the slider can be moved is from the bottom of 

sBar_upArrow to the top of sBar_dnArrow, minus the length of the slider itself; 

slidLen = top_d - bottom_u - (bottoms - tops) . 

" To describe the position 

useful. 
F_sB_slider(at top) 
F_sB_slider(at middle) 
F_sB_slider(at bottom) 

F_sB_slider(at_x%) 

of the 

_> 

sB ar 

top. 
top. 
top, 

top. 

slideBox more effectively, a few abbreviations are 

s= bottom 
-u 

s= bottom_u + slidLen/2 
s= bottom_u + slidLen or bottoms = top_d 

s= bottom_u + slidLen * x% 

224 



C. 2 Scrolling one line of text 

If the mouse button is clicked when the mouse pointer is inside sBar_upArrow, any test 
in the viewRect is scrolled upwards by one line. This interaction is called function 
F_sB_lineUp in the following specification. 

----- Specification_for_function F_sB_IineUp : 

Variables: 

From-state 
I F_state_predicate 

Inputs 

To-state 
T_state_predicate 

-------------- 

x: integer, where 1x <_ viewLen 
y: integer, where 1 <_ y <_ viewWidth 

offset : integer, 
where 0s offset <_ (destLen - viewLen) 

at SB 
true 

is_inside(mp?, sBar_upArrow) 
Tand mb? =<click> 

at SB 
offset' = offset -1 
top_s' = top_s - slidLen / destLen 

Similarly, if the mouse button is clicked when the mouse pointer is inside 

sBar_dnArrow, any text in the viewRect is scrolled downwards by one line. This 

interaction is called function F_sB_lineDn in the following specification. 

----- Specification_for_function F_s B_I i ne Dn: 

Variables: 

From-state 
I F_state_predicate 

Inputs 

To state 
T_state_predicate 

-------------- 

x: integer, where 1 <_ x <_ viewLen 
y: integer, where 1 <_ y <_ viewWidth 

offset : integer, 
where 0 <_ offset <_ (destLen - viewLen) 

at SB 
true 

is_inside(mp?, sBar_dnArrow) 
Tand mb? =<click> 

at SB 
offset' = offset +1 
top_s' = top_s + slidLen / destLen 

225 



C. 3 Scrolling one page of text 

If the mouse button is clicked when the mouse pointer is inside sBar_pgUpRect, any 
text in the viewRect is scrolled upwards by one page. This interaction is called 
F_sB pageUp in the following specification. 

----- Specification_for_function F_sB_pageUp : 

Variables: x: integer, where 1x viewLen 
y: integer, where 1 <_ y <_ viewWidth 

offset : integer, 
where 0 <_ offset <_ (destLen - viewLen) 

From state : at SB 
F_state_predicate : true 

Inputs : is_inside(mp?, sBar pgUpRect) 
Tand mb? =<click> 

To-state : at-SB 
T_state predicate offset' = offset - viewLen 

top_s' = top_s - slidLen * (viewLen / destLen) 

------------------------------------------------------------ 

Similarly if the mouse button is clicked when the mouse pointer is inside 

sBar_pgDnRect, any text in viewRect is scrolled downwards by one page. This 
interaction is called F_sB_pageDn in the following specification. 

----- Spec ification_for_function F_sB_pageDn : 

Variables: x: integer, where 1 <_ x viewLen 
y: integer, where 1<y <_ viewWidth 

offset : integer, 
where 0< offset <_ (destLen - viewLen) 

From-state : at-SB 
F_state_predicate : true 

Inputs : is_inside(mp?, sBar pgDnRect) 
Tand mb? =<click> 

To-state : at-SB 
T_state_predicate : offset' = offset + viewLen 

tops' = top_s + slidLen * (viewLen / destLen) 

226 



Appendix D Specification of window management functions 

D. 1 Selecting a window 

---Specification_for_function F_select_wind (wind_x): 

variables : 

From-state : 
F_state_predicate 

Inputs : 

wind_x, winder : windows 

at WM 
is_at_front(wind_y) 

is_inside(mp?, wind_x) 

To state : at-WM 
T_state_predicate : is_at_front(wind_x) 

is_next_beh ind(wi nd_y 

Tand mb? =<click> 

and 

, wind-x) 

The object state primitive is_at_front() was introduced in section 5.3, to denote that a 
certain window is currently the front or active window. In an expanded specification, it 
is necessary to expose the visual states of a front window, in terms of lower level 

objects (such as the window's title bar, scroll bar and close box) that become visible as 
the window is brought to the front. 

is_at_front(wind_x) _> 
is_visible (wind_x. (tBar A sBar A cloB A zomB A sizB) ) 

D. 2 Moving a window 

The function F_drag_wind allows a user to move a window around and within the 

screen, an operation commonly called dragging. It begins when the user moves the 

mouse pointer inside the drag region of the window. In general, the title bar is the drag 

region supported by most window managers. A mouse-down input is then generated by 

the user. The point where the mouse button was depressed (denoted as (x l, y l) in global 

coordinates), is remembered as the startPt. The user then moves the mouse pointer to a 

desired location within the screen, whilst holding the mouse button down. A dotted 

outline of the window, following the movements of the mouse, is displayed until the 

button is released at a location endPt, with coordinates (x2, y2). When the mouse button 

is released, the window is moved to its destination with the displacement calculated 

from (x2, y2) - (xl, yl). This window will become the front or active window, if it was 

not already so before being moved. 

227 



---Specification_for_function F_drag_wind(wind_x, x1, y1, x2, y2) : 

Variables 

From-state 
F_state_predicate 

Inputs 

To-state 
I T_state_predicate 

-------------- 

wind_x : window 
x1, y1, x2, y2 : integer 
top, left, bottom, right : integer 

at-WM 
rect(wind_x)=(top, left, bottom, right) 

is_inside(mp?, wind 
_x. 

tBar) and Loc(mp? )=(x1, yl ) 
Tand mb? =<down> 
Tand Loc(mp? )=(x2, y2) Tand mb? =<up> 

at WM 
rect(wind_x')=(top+y2-y1, Ieft+x2-x1, bottom+y2-yl, 

right+x2-x1) 
and is_at_front(wind_x') 

Explanations: 

" The notation rect(wind_x) represents the rectangular borders within which window 
wind -x 

lies. 

" The borders of wind_x can be specified in terms of its top-left hand corner having 
(x, y) coordinates (left, top) , and its bottom-right hand corner having (x, y) coordinates 
(right, bottom) . 

" The drag region for wind -x 
is anywhere inside its title bar, excluding its close box and 

zoom box, which also lie within the title bar. 

" (x 1, y l) and (x2, y2) are the coordinates of the drag action's startPt and endPt as 
described above. 

" The rectangular border of wind_x, after the execution of F_drag_wind, is denoted 

rect(wind_x'), which is calculated from its previous value rect(wind_x), and the 
displacement between the startPt and the endPt, as shown in the T_state_predicate. 

D. 3 Resizing a window 

The interaction needed to resize a window is similar to that of dragging a window, 

except the "size box" is used instead of the title bar. A user changes the size of a 

window by holding down the mouse button while the mouse pointer is inside the size 
box. The point within the size box where the mouse button was depressed is denoted as 
(xl, yl) in global coordinates. The user then moves the mouse pointer to a desired 

location within the screen, while still holding the mouse button down .A 
dotted outline 

of the bottom and right hand borders of the window is displayed, following the 

movements of the mouse, until the button is released at a location denoted as (x2, y2). 
When the mouse button is released, the dotted outline of the window's bottom and right 

hand borders will become the resultant borders. Since the top and left hand borders 

228 



remain fixed, while the bottom and right hand borders are moved, the size of the 
window is effectively varied, in proportion to the displacement calculated from (x2, v2) 
- (x1, yl). 

---Specification_for_function 

Variables 

From-state 
F_state_predicate 

Inputs 

To-state 
T_state_predicate 

-------------- 

F_resize_wind(wind_x, x1, y1, x2, y2) : 

xtop, xleft, xbottom, xright : integer, initial borders of wind_x 
x1, y1, x2, y2 : integer 
top, left, bottom, right : integer, current borders of wind_x 
ztop, zleft, zbottom, zright : integer, zoomed borders of wind_x 

at WM 
is_at_front(wind_x) 
rect(wind_x)=(top, 

and 
left, bottom, right) 

is_inside(mp?, wind _x. sizB) and Loc(mp? )=(x1, yl) 
Tand mb? =<down> 
Tand Loc(mp? )=(x2, y2) Tand mb? =<up> 

at WM 
rect(wind_x')=(top, left, bottom+y2-yl , right+x2-xl) and 
if rect(wind_x') : t- (xtop, xleft, xbottom, xright) 

then (ztop, zleft, zbottom, zright) = rect(wind_x') 
else (ztop, zieft, zbottom, zright) = rect(wind_x) 

Explanations: 

" The notation rect(wind_x) = (top, left, bottom, right) again represents the current 

rectangular border of wind-x. 
" (xtop, xleft, xbottom, xright) denotes the initial border of wind_x when it was 

created. 
" (ztop, zleft, zbottom, zright) represents an alternative (also called zoomed) border of 

wind x. 
" The size box of wind _x 

is denoted as wind_x. sizB 

" The resultant rectangular border of wind_x is denoted as rect(wind_x'), with its new 
bottom and right hand border calculated as shown in the T_state_predicate. 

" If rect(wind_x') is not the same as the initial borders, it is stored in (ztop, zleft, 

zbottom, zright), as the zoomed border. 

" If rect(wind_x') is the same as the initial border before the execution of 
F_resize_wind, the old zoomed borders are retained. 

229 



D. 4 Zooming a window 

A window has two alternative sets of borders, representing two rectangles, one larger 
than the other. The user can choose between the alternative sizes of a window by 
generating a mouse click within the "zoom box" 

. 

---Specification_for_function F_zoom_wind(wind_x) : 

Variables : xtop, xleft, xbottom, xright : integer, initial borders of wind_x 
wind_x : window 
top, left, bottom, right : integer, current borders of wind x 
ztop, zleft, zbottom, zright : integer, zoomed borders of wind 

-x 
From-state : at WM 
F_state_predicate : is_at_front(wind_x) and 

Inputs : is_inside(mp?, wind_x. zomB) Tand mb? =<click> 

To state : at_W M 
T_state_predicate : if rect(wind_x)=(xtop, xleft, xbottom, xright) 

then rect(wind_x')=(ztop, zleft, zbottom, zright) 
else rect(wind_x')=(xtop, xleft, xbottom, xright) 

Explanations: 

" The notation rect(wind_x) = (top, left, bottom, right) again represents the current 
borders of wind x. 

" Upon a mouse button click at the zoom box, the borders of wind_x will be toggled 
between its initial set of borders (xtop, xleft, xbottom, xright), and its zoomed 
borders (ztop, zleft, zbottom, zright) . 

---Specification_for_function F_zomB_track(wind_x) : 

From_state : at-WM 
F_state_predicate : rect(wind_x)=(top, left, bottom, right) 

Inputs : is_inside(mp?, wind_x. zomB) Tand mb? =<down> 
Tand is_not_inside (mp?, wind_x. zomB) Tand mb? =<up> 

To-state at-WM 
T_state_predicate : rect(wind_x')=rect(wind_x) 

Explanations: 

" The notation rect(wind_x) = (top, left, bottom, right) again represents the current 

borders of wind-x. 
" If the mouse pointer is moved outside the close box before the mouse button is 

released, the size of the window remains unchanged. 

230 



D. 5 Closing a window 

---Specification_for_function 

From-state : at WM 
F_state_predicate : is-at-font 

F_close_wind(wind_x) : 

(wind_x) 

Inputs : is_inside(mp?, wind_x. cloB) Tand mb? =<click> 

To-state : at-WM 
T_state_predicate : is_not_visible (wind-x') 

---------------------------------------------------- 

Explanations: 

" The notation is_at-front(wind_x) states that wind_x is currently the front or active 
window on the screen, which implies wind_x is visible. 

"A mouse button click when the mouse pointer is inside the close box of wind_x will 
cause wind_x to be closed (i. e. disappear from the screen). 

---Specification_for_function F_c Io B_t ra c k(wind_x) 

From-state 
F_state_predicate 

Inputs 

To state 
T_state_predicate 

-------------- 

at WM 
is-at-font (wind_x) 

is_inside(mp?, wind_x. cloB) Tand mb? =<down> 
Tand is-not-inside (mp?, wind_x. cloB) Tand mb? =<up> 
at-WM 
is-at-font (wind_x') 

Explanations: 

" The F_state predicate for F_cloB_track is the same as that of F_close_wind, except 
that the mouse pointer is moved outside the close box before the mouse button is 

released. 
" Effectively the movement of the mouse pointer is tracked (or followed) between the 

mouse-down and the subsequent mouse-up input. As the mouse button is released 

outside the close box, wind_x is not closed and remains as the front window. 

" F_cloB_track appears to have achieved nothing, functionally speaking. However the 

availability of F_cloB_track may be considered important in human-factors designs. It 

allows the user a "safety exit" between a mouse-down and a mouse-up. The mistake of 

closing the wrong window frustrates a user and upsets the planned sequence of 
interaction, inevitably costing time and effort to rectify . 

" Function F_cloB_track provides an escape path from F_close_wind, in order to get 
back to the previous state without closing the window. This can be seen in a WinSTD 

as an arc that starts from one state and finishes by returning to the same state. A 

WinSTD is useful in exposing possible "safety exits" in a user interface design, such 

as F_c1oB_track. 

231 



Appendix E Bibliography 

[Alexander87] Heather, "Executable Specification as an aid to dialogue design", in 
[INTERACT'87], p739-744. 

[Alty87] J. L., Mullin J., "The Role of the Dialogue System in a User Interface 
Management System", in [INTERACT'87], p1007-1012. 

[Apple87] Computers Inc., "Human Interface Guidelines: The Apple Desktop 
Interface", Addison-Wesley 1987. 

[Balcer89] M. J., Hasling W. M., Ostrand T. J., "Automatic Generation of Test Scripts 
from Formal Test Specifications", in [TAV89]. 

[Bauer79] J. A., Finger A. B., "Test plan generation using formal grammars". Proc. 
4th Intl. Conf. on Soft. Eng., p425-432, Munich 1979. 

[Bird83] D. L., Munoz C. U., "Automatic generation of random self-checking test 
cases", IBM Systems Journal, 22(3), p229-245,1983. 

[Bloomfield86] R. E., Froome P. K. D., "The Application of Formal Methods to The 
Assessment of High Integrity Software", IEEE Trans. Soft. Eng., 12(1), p988-993, 
Sept 1986. 

[Boehm76] B. W., "Software Engineering", IEEE Trans. on Computers, 25(12), 
p1226-1241, Dec. 1976. 

[Boniwell88] S., "Portable User Interfaces", Computer Graphics' 88, p125-133, 
published by On-Line Publications (Middx, U. K. ). 

[Brown89] J. M., Gilg T. J., "Sharing testing responsibilities in the Starbase/X1119, 
Hewlett-Packard Journal, 40(6), p42-46, Dec 1989. 

[Buckley79] F., "A standard for software quality assurance plan", Computer, 
12(8), P43-50, Aug 1979. 

[Buxton83] W., et al, "Towards a comprehensive user interface management 
system", ACM Computer Graphics, 17(3), p35-42, July 1983. 

[Chang871 S. K., "Visual Languages :A Tutorial and Survey", IEEE Software, p29- 
39, Jan 1987. 

[Chang89] S. K., et al, "A Visual Language Compiler", IEEE Trans. Soft. Eng., 15(5), 

p506-525, May 1989. 

[CHI'8x], Proceedings of ACM CHI'8x Conf. on Computer-Human Interaction, e. g. 
CHI'88, CHI'89, published by Addison-Wesley. 

[Cohen86] B., Harwood W. T., Jackson M. I., "The Specification of Complex Systems", 

Addison-Wesley Publishing Company, 1986. 

[Davison88] A., et al, "Current technology in distributed window systems", 
Computer Graphics'88, p75-83, On-Line Publications (Middx, U. K. ). 

232 



[DeMillo87] R. A., McCracken W. M., Martin R. J., Passafiume J. F., "Software Testing and Evaluation", Benjamin/Cummings Publishing Company, Inc. 1987. 

[Deutsch82] M. S., "Software Verification and Validation, Realistic Project Approaches", Prentice-Hall Inc., 1982. 

[Dijkstra75] E. W., " Guarded Commands, non-determinacy & formal derivation of programs", Comms. of the ACM, 18(8), p453-457,1975. 

[Dix87a] A. J., Harrison M. D., "Formalising models of interaction in the design of a display editor", in [INTERACT'87], p409-414. 

[Dix87b] Alan John, "Formal Methods and Interactive Systems: Principle and Practice", PhD thesis, University of York, 1987. 

[Duce88a] D. A., "Integration through standards", Computer Graphics'88, p135- 144, published by On-Line Publications (Middx, U. K. ). 

[Duce88b] D. A., et al, "Formal specification of a small example based on GKS", ACM 
Trans. Graphics, 7(3), p180-197,1988. 

[Dudley87] Tim, "Report Generation Using a Visual Programming Interface", in 
INTERACT'87, p521-528. 

[Dunham89] J. R., "V &V in the next decade", IEEE Software, p47-53, May 1989. 

[Durham88] University of Durham, Faculty of Science, "Administrative Notes for the 
Guidance of Supervisors and Postgraduates", Sept 1988. 

[Dyer87] M., "A Formal Approach to Software Error Removal", The Journal of 
Systems & Software 7, p109-114,1987. 

[Edmonds84] E. A., Guest S., "The SYNICS2 Interface Manger", Proc. INTERACT'84, 
p52-56. 

[Fairley85] R. E., "Software Engineering Concepts", McGraw-Hill 1985. 

[Foley87] James D., Kim W. C., Gibbs C. A., "Algorithms to transform the formal 
specification of a user-computer interfaces", in [INTERACT'87], p1001-1006. 

[Gimnich87] R., Ebert J., "Constructive Formal Specifications for Rapid 
Prototyping", in [INTERACT'87], p1047-1052. 

[Goodfellow86] M. J., "WHIM, the Window Handler and Input Manager", IEEE 
Computer Graphics & Applications, 6(5), p46-52, May 1986. 

[Green83] M., "Report on Dialogue Specification Tools", Proc. Seeheim Workshop, 
p9-20, Nov 1983. 

[Guest82] S. P., "The Use of Software Tools for Dialogue Design", Intl. Journal of 
Man-Machine Studies, 16, p263-285. 

[Guttag78] J. V., Horning J. J., "The algebraic specification of abstract data types", 
Acta Informatica, 10, p27-52,1978. 

233 



[Hamlet88] R., Special section on software testing, Comms. of the ACM 31(6), June 1988. 

[Harbert90] A., et al, "A Graphical Specification System for User Interface Design". IEEE Software, p12-20, July 1990. 

[Hayes86] I. J., "Specification Directed Module Testing", IEEE Trans. Soft. Eng., 12(1), p124-133, Jan. 1986. 

[HCI'8x], Proceedings of HCI'8x Conf, e. g. "People and Computer IV" for HCI'88, 
published by Cambridge University Press. 

[Henderson86] P., "Functional Programming, Formal Specification and Rapid Prototyping", IEEE Trans. Soft. Eng., 12(2), p241-250, Feb. 1986. 

[HenneI190] M. A., "A comparison of static and dynamic conformance analyses", in 
[Wolverhampton90]. 

[Hetzel88] Bill, Gelperin D., "The Growth of Software Testing", Comms. of the ACM, 
31(6), p687-695, June 1988. 

[Hoeber88] T., "Face to Face with Open Look", BYTE, p286-296, Dec 1988. 

[Holcombe87a] M., "Goal Directed Task Analysis and Formal Interface 
Specifications", Intl. CIS Journal, 1(4), p14-22,1987. 

[Holcombe87b] M., "Formal methods in the specification of the human-machine 
interface", Intl. CIS Journal, 1(2), p24-34,1987. 

[Howden80] W. E., "Functional Testing and Design Abstractions", The Journal of 
Systems and Software, 1, p307-313,1980. 

[Hurley89] W. D., Silbert J. L., "Modelling User Interface-Application Interactions", 
IEEE Software, p71-77, Jan 1989. 

[Ince87] D. C., "The Automatic Generation of Test Data", Computer Journal, 30(1), 
p63-69,1987. 

[INTERACT'8x], Proceeding of Human-Computer Interaction - INTERACT'8x Conf., 
e. g. INTERACT'87, Bullinger H. J., Shackel B. (eds), published by North Holland. 

[Jeffries9l] Robin, "User Interface Evaluation in the Real World: A Comparison of 
Four Approaches", p205-220, Proc. Pacific North West Software Quality 
Conference 1991. 

[Johnson92] P., "Human Computer Interaction, Psychology, Task Analysis and 
Software Engineering", McGraw-Hill Book Company, 1992. 

[Jones89] Oliver, "Introduction to the X Window Systems", Prentice-Hall 1989. 

[Kantorowitz89] E., Sudarsky O. (Technion-Isreal Institute of Technology). "The 
Adaptable User Interface", Comms. of ACM, 32(11), p1352-1358, Nov. 1989. 

234 



[Karam9l] G. M., Buhr R. J. A., "Temporal Logic-Based Deadlock Analysis For Ada", IEEE Trans. Software Engineering, 17(10), Oct. 1991. 

[Kemmerer85] R. A., "Testing Formal Specifications to Detect Design Errors", IEEE Trans. Soft. Eng., 11(1) p32-43, Jan 1985. 

[Kernighan88] B. W., Ritchie D. M., "The C Programming Language", 2nd Ed., Prentice-Hall 1988. 

[Konsynski85] B. R., et al, "A View on windows: Current approaches and neglected 
opportunities", Proc. AFIPS Conf. vol 54, NCC 1985. 

[Kooij89] M., "Interface specification with temporal logic", Proc. 5th Intl. 
Workshop on Software Specification and Design, May 1989. 

[Kopetz79] H., 'Software Reliability', Technical Univ. of Berlin, The MacMillan 
Press Ltd., 1979. 

[Kuo88] F. Y., Karimi J., "User interface design from a real time perspective", 
Comms. of the ACM, 31(12), p1456-1466, Dec 1988. 

[Laski88] J. W., "Testing in Top-down Program Development", in [TAV88], p72- 
79. 

[Laski89] J., "Testing in the program development cycle", Soft. Eng. Journal, Mar 
1989. 

[Leveson90] N. G., et al, "The Use of Self Checks and Voting in Software Error 
Detection: An Empirical Study", IEEE Trans. Soft. Eng., 16(4), p432-443, April 
1990. 

[Lindquist88] T. E., Jenkins J. R., "Test-Case Generation with IOGen", IEEE Software, 
p72-79, Jan 1988. 

[Lutz90] Mike, "Testing Tools", IEEE Software, p53-57, May 1990. 

[Marick9l] B., "The Weak Mutation Hypothesis", in [TAV91 ], p190-199, Oct 
1991. 

[McMullin82] P. R., "DAISTS: A system for using specifications to test 
implementations", Ph. D. dissertation, Dep. Comput. Sci., Univ. of Maryland, 1982. 

[Miriyala9l] K., Harandi M. T., "Automatic Derivation of Formal Software 
Specifications from Informal Descriptions" , IEEE Trans. Soft. Eng., 17(10), Oct., 
1991. 

[Morris88] D., et al, "Human-Computer Interface Recording", The Computer 

Journal, 31(5), p437-444,1988. 

[Newton90] Jenny, Hanlon M., "Data Logic FOREST Case Study :A MAL Specification 

of the MVC paradigm as applied to SmallTalk-80", Internal report (Data Logic), 
Sept. 1990. 

[Niguidula87] D. A., vanDam A., "Pascal on the Macintosh, A Graphical Approach", 

235 



Addison-Wesley 1987. 

[Olsen84] Dan R. Jr, "Push Down Automata for User Interface Management", ACM Trans on Graphics 3(3), p177-203, July 1984. 

[Olsen851 D. R. Jr, "Input / output linkage in a user interface management system", Computer Graphics, p191-197, July 1985. 

[Olsen86] D. R. Jr, "MIKE: The Menu Interaction Kontrol Environment", ACM Trans 
on Graphics, 5(4), p318-344, Oct 1986. 

[Olsen86a] D. R. Jr, "Editing Templates: A User Interface Generation Tool", IEEE CG&A, p40-45, Nov. 1986. 

[Olsen87] D. R. Jr, "Larger Issues in User Interface Management", Computer 
Graphics, p134-137, April 1987. 

[Ostrand88] T. J., Balcer M. J., "The category-partition method for specifying and 
generating functional tests", Comms. of the ACM, 31(6), p676-685, June 1988. 

[Ould86] M. A., Unwin C. (eds), "Testing in Software Development", British 
Computer Society Monographs in Informatics, Cambridge University Press 1986. 

[Ould9l] Martyn, "Testing -a challenge to method and tool developers", Software 
Engineering Journal, p59-64, March 1991. 

[Pagan8l] F. G., "Formal Specification of Programming Languages", Prentice-Hall, 
1981. 

[Peeling89] N. E., Youll D. P., "Past and future trends for portable tools interfaces", 
Information and Software Technology, 31(4), p175-180, May 1989. 

[Perlman88] Gray, "User Interface Development", SEI Curriculum Module SEI-CM- 
17-1.0, April 1988. 

[Philips87] E. M., Pugh D. S., "How to get a PhD", Open University Press 1987. 

[Ramamoorthy76] C. V., Ho S. F., Chen W. T., "On the Automated Generation of Program 
Test Data", IEEE Trans. Soft. Eng., 2(4), p293-300, Dec 1976. 

[Roberts88] W. T., et al, "NeWS and X, Beauty and the Beast? ", Dept. of Computer 
Science, Queen Mary College, 1988. 

[Roper88] R. M. F., Smith P., "A specification-based functional testing method for 
JSP designed programs", Information and Software Technology, p89-98, March 
1988, Butterworth & Co (Publishers) Ltd. 

[SDT85] Proceedings -A Second Conference on "Software Development Tools, 
Techniques, and Alternatives", December 2-5,1985, San Francisco, California. 

[Stott88] J. W., Kottemann J. E., "Anatomy of a Compact User Interface Development 
Tool", Comms. of the ACM, 31(1), p56-67, Jan 1988. 

[Sum86] R. N., "An Approach to Operating System Testing", The Journal of System 

236 



and Software 6, p273-284, Elsevier Science Publishing Co. 

[SummerSchool8l], Chandrasekaram B., Radicchi S. (eds), "Computer Program Testing", North-Holland 1981. 

[Szekely87] P., "Modular Implementation of Presentations", Proc. SIGCHI+GI87. ACM New York, p235-240,1987. 

[TAV86] Clarke L. A. (ed), Proceedings - ACM SIGSOFT Workshop on Software Testing, July 1986, Banff, Canada. 

[TAV88] White L. (ed), Proceedings of the ACM SIGSOFT'88 Symposium on Software 
Testing, Analysis, and Verification (TAV2), 1988, Banff, Canada. 

[TAV89], Kemmerer R. A. (ed), Proceedings of the ACM SIGSOFT'89 Symposium on Software Testing, Analysis, and Verification (TAV3), in Software Engineering Notes 
Vol. 14, No. 8, December 1989. 

[TAV91], Leveson N. G. (Program Chair), Proceedings of the ACM SIGSOFT'91 
Symposium on Software Testing, Analysis, and Verification (TAV4), Victoria, Oct 
1991. 

[Tsai90] W. T., et al, "Automated Test Case Generation for Programs specified by 
Relational Algebra Queries", IEEE Trans. Soft. Eng., 16(3), p316-324, Mar 1990. 

[Velasco87] F. R. D., "A Method for Test Data Selection", The Journal of Systems & 
Software 7, p89-97,1987. 

[Vince86] John, "The Computer Graphics Jig-Saw Puzzle", Computer Graphics'86, 
published by On-Line Publications, London. 

[Visual86], Ichikawa T., Korfhage R. R. (eds), Proc. IEEE Computer Society Workshop 
on Visual Languages, Dallas, June 1986. 

[Wa1189] C. T., "An evaluation of three user interface management systems", UMIST 
1989. 

[Wallace89] D. R., Fujii R. U., "Software Verification and Validation: an overview" 
IEEE Software, p10-17, May 1989. 

[Wasserman86a] A. I., et al, "Building Reliable Interactive Information Systems", 
IEEE Trans. Soft. Eng., 12(1), p147-156, Jan 1986. 

[Wasserman86b] A. I., et al, "Developing Interactive Information Systems with the 
User Software Eng. Methodology", IEEE Trans. Soft. Eng., 12(2), p326-345,1986. 

[Weyuker86] Elaine, "Axiomatizing software test data adequacy", IEEE Trans. Soft. 

Eng., 12(12), p1128-1138, Dec 1986. 

[Weyuker88] Elaine, "The Evaluation of Program-Based Software Test Data Adequacy 
Criteria", Comms. of the ACM, 31(6), p668-675, June 1988. 

[Williams86] A., "An Architecture for User Interface R&D", IEEE CG&A, 6(7), 

p39-50, July 1986. 

237 



[Wood89] C. A., Gray P. D., "User Interface - Application Communication in the 
Chimera UIMS", Druid Project Research Report R-89-2, Dept. of Computing 
Science, University of Glasgow 1989. 

[Zei188] S. J., "Complexity of the EQUATE Testing Strategy", The Journal of Systems 
& Software, 8(2), p91-104, Mar 1988. 

238 


