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Abstract

This paper examines the the effectiveness of feature mod-
elling to conduct 2D and 3D face recognition. In particular,
PCA difference vectors are modelled using Gaussian Mix-
ture Models (GMMs) which describe Intra-Personal (IP)
and Extra-Personal (EP) variations. Two classifiers, an IP
and IPEP classifier, are formed using these GMMs and their
performance is compared to that of the Mahalanobis cosine
metric (MahCosine). The best results for the 2D and 3D
face modalities are obtained with the IP and IPEP classi-
fiers respectively. The multi-modal fusion of these two sys-
tems provided consistent performance improvement across
the FRGC database v2.0.

1. Introduction

Multi-modal face recognition is a growing area of re-
search due to the fact that it is a non-intrusive biometric. A
plethora of work has been conducted in both 2D and 3D face
recognition. This work concentrates on the use of distance
metrics such as L1, L2 and cosine; for example in PCA re-
search [11]. However, limited work has been conducted in
the area of feature modelling.

Research into 2D face recognition has been conducted
for over 20 years. Several methods have been proposed to
conduct 2D face recognition ranging from Principal Com-
ponent Analysis (PCA) [13], free parts 2D Discrete Cosine
Transform (2D-DCT) [10] through to morphable models
[1]. The eigenfaces technique, a de facto standard of face
recognition, was introduced by Turk and Pentland in [13].
In this work a vector space is created using PCA and fea-
ture vectors are obtained by projecting a face image into
this vector space. The free parts 2D-DCT based technique
was proposed in [10] and extracts multiple 2D-DCT fea-
ture vectors by decomposing the face into free parts; the
information about the location of these parts is not retained.
These 2D-DCT feature vectors are modelled using Gaus-

sian Mixture Models (GMMs) where a background GMM
is derived and then used to generate client dependent mod-
els; verification is then performed using the log-likelihood
ratio of the background and adapted GMMs.

Face recognition using the 3D modality has received
greater interest recently due to the decreasing costs in accu-
rate capture devices such as laser range scanners and struc-
tured light scanners. Proposed methods for conducting 3D
face recognition include the use of point signatures [15],
isometric transformations [3] and PCA [4]. Some recent
work has explored the modelling of 3D data. In [5] the reg-
istration error from the Iterative Closest Point algorithm was
modelled with GMMs. For a more in depth review of 3D
face recognition readers are referred to [2].

Fusion of the 2D and 3D modalities for face recognition
is receiving greater attention, as it has thus far proved to
be a more effective recognition method than either modal-
ity on its own. The complementary nature of the 2D and
3D modalities means that the weaknesses from any one
modality can be reduced. Combining the two modalities,
2D and 3D, can be broadly divided into data fusion, feature
fusion and classifier fusion. This work and much of the cur-
rent work into fused 2D and 3D face recognition explores
methods for classifier fusion. In [4] separate 2D and 3D
classifiers were formed using PCA-based features, a hybrid
2D+3D classifier was then formed by fusing the individ-
ual classifiers with linear weights based on the Rank scores
for identification. In [6] log-Gabor features from 2D and
3D part face images were reduced with PCA and a 2D+3D
classifier was formed using weighted fusion.

The work presented in this paper examines the effective-
ness of feature modelling for the task of face recognition.
In particular the effectiveness of feature modelling across
two modalities, image data (2D) and structural data (3D), is
compared to the Mahalanobis cosine metric (MahCosine);
the MahCosine metric was shown in [7] to be an effective
distance metric. The experiments in this paper demonstrate
that feature modelling for the 3D modality yields an im-
proved classifier and that the hybrid 2D+3D classifier with
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feature modelling yields an improved classifier than either
modality alone. The fusion of the two modalities, 2D and
3D, is approached as classifier fusion and is shown to pro-
vide consistent performance improvements.

The paper is structured as follows. The methods used
for data normalisation are described in Section 2. Section
3 then describes the method for feature modelling of dif-
ference vectors. The experimental procedure is outlined in
Section 4 and the results are presented in Section 5. Con-
clusions and future work are then presented and discussed
in Section 6.

2. Data Normalisation

Data normalisation provides a common basis for com-
parison of two images (or signals). It was shown in [4] that
low resolution 3D face images significantly hinder recogni-
tion performance, however the same is not true of 2D face
images. For these experiments the 2D and 3D face images
were retained at different resolutions, the 2D face data has
a resolution of 64 × 64 pixels whereas the the 3D face data
has a resolution of 128 × 128 pixels. For both the 2D and
3D face images only part face images (above the mouth re-
gion and below the brow region) were used. This was done
to reduce the effect of expression variation.

For the 2D face data only in-plane rotations could be re-
covered and to achieve this the two eye corners were used
to perform the in-plane normalisation and cropping of the
images. Registration of the 2D images is based on the eye
corners; they reside on the same y-axis and are separated by
64 pixels. Illumination normalisation was conducted by ap-
plying local mean window normalisation; a technique pre-
viously used in [9]. An example 2D face image which is
cropped and fully normalised is provided in Figure 1.

The 3D data consisted of point cloud data on a semi-
regular x- and y-grid; there is limited variation along the
grid lines. Three landmark points are used to fully nor-
malise the 3D data for in-plane and out-of-plane rotations.
The three landmark points used are the right eye corner, left
eye corner and chin. After the data has been normalised for
all rotations the valid data is then interpolated onto a reg-
ular grid of 128 × 128 pixels. Further processing is then
conducted to remove erroneous points using a gradient fil-
ter. Finally the data is smoothed using a median filter to
reduce the effect of noise. An example of the final 3D data
is provided in Figure 2.

To provide a consistent basis for comparison the 3D
data is 3D registered and range normalised. Registration is
achieved by placing the eye corners on the same y-gridline
separated by 128 pixels. The 3D data is range normalised
so that the maximum value in every image is set to 255,
all the other values are adjusted to be relative to this value.
When processing the 3D face image the data is treated in

2D Face Dimensions
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Figure 1. A cropped and fully normalised 2D
face image. The image is of a size 64 × 64
pixels. Included in this image are the dimen-
sions defining the position of the registered
eye corners.
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Figure 2. A mesh plot of a interpolated and
smoothed 3D face image.

the same way as 2D data, thereby treating it as 2 1
2D data,

and example of this concept is provided in Figure 3.

3. Feature Modelling

Feature modelling of global, in this case PCA based, fea-
ture vectors is a difficult task due to the limited number
of training observations available. In most situations the
number of observations available for training is equal to the
number of training images,

Ntrain images =
D∑

i=1

ni, (1)

where D is the number of individuals (IDs) in the training
set and ni is the number of images available for the ith ID.
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3D Face Dimensions
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Figure 3. An example of how the 3D data can
be treated as 2D data, the 3D data is simply
treated as an image. Included in this image
are the points used to register the 3D data.

To increase the amount of training data, difference vec-
tors are formed. These difference vectors describe two
forms of variation, Intra-Personal (IP) and Extra-Personal
(EP).

The IP difference vectors are used to described varia-
tion that occurs between images of the same ID. However,
practical limitations mean that there is rarely enough data
to derive a client specific IP model. In this work a global
IP model, ΩIP , is derived, and as such all the IP difference
vectors in the training set are able to be used. It’s noted that
by deriving a global IP model there is an assumption that
the IP variation is similar for all individuals.

The EP difference vectors are used to described variation
that occurs between images of different people. Were this to
be modelled in a global manner this would result in a model
that describes noise. This is because it would be attempting
to model all variations between all the different individuals.
Therefore, the EP difference vectors are formed in a client
specific manner.

When forming the IP difference vectors all the permuta-
tions of the IP difference vectors are used. This means there
are,

NIP obs =
D∑

i=1

niP2, (2)

observations available for training. The client specific EP
model, Ωi,EP , is derived using the difference between the
enrolled feature vectors and all the training feature vectors.
Therefore, if there are E enrolled feature vectors there will
be,

NEP obs = 2 ∗ Nimages ∗ E (3)

observations to train Ωi,EP . The factor of 2 is introduced
because all the permutations are formed.

In order to classify a difference vector using the two
models, ΩIP and ΩEP , the log-likelihood ratio (LLR),

g(x) = ln(p(x | ΩIP )) − ln(p(x | ΩEP )), (4)

is used. The LLR can be viewed as providing score normal-
isation to ΩIP by using information from ΩEP . The term
p(x | ΩIP ) is the probability that observation x belongs to
class ΩIP and p(x | ΩEP ) is the probability that observa-
tion x belongs to class ΩEP .

The LLR, Equation 4, is a reduced form of the discrimi-
nant function,

g(x) = ln(
p(x | ΩIP )
p(x | ΩEP )

) + ln(
P (ΩIP )
P (ΩEP )

), (5)

where P (ΩIP ) represents the probability of class ΩIP and
P (ΩEP ) is the probability of class ΩEP . By considering
both classes to be equally likely, P (ΩIP ) = P (ΩEP ) =
0.5, then Equation 5 simplifies to Equation 4.

4. Experiments

The experiments were conducted on the validation set of
the FRGC v2.0 database [12]. This database was split into
two sessions, Fall and Spring. The Fall session consists of
2D data and 3D data collected in Fall 2003 while data for the
Spring session was collected in Spring 2004; within each
session there is at least a 1 week time lag between subse-
quent image captures. This data was further split into 4 dis-
joint sets in order to perform cross-validation experiments.
These disjoint sets were split between the Train, Tune and
Test sets with a 2:1:1 ratio. The Train set was used to derive
the PCA space, global IP GMM and for background data to
train client specific EP GMMs. The Tune set was used to
derive fusion weights and the Test set was used to perform
testing; including enrollment. Using these cross-validation
splits two sets of experiments were defined.

The first set of experiments examined the effectiveness
of the IP and IPEP feature modelling techniques for the 2D
and 3D modalities respectively. The second set of experi-
ments explored methods for combining the 2D and 3D clas-
sifiers to form a fused 2D+3D classifier. Both sets of exper-
iments examined the effect of same-session and between-
session Train and Test conditions. Same-session conditions
examined the effect of training and testing on the same ses-
sion of data (same-session variation); for example train on
Fall and test on Fall. Whereas, between-session conditions
examined the effect of training and testing on data from
different session (between-session variation); for example
train on Fall and test on Spring.
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4.1. Enrollment and Background Data

For these experiments the Train set and enrollment data
were used to derive the GMMs [14]. The enrollment pro-
cess consisted of randomly taking E (for these experiments
E = 4) images for every ID in the set (Tune or Test) with
E + 1 images; this left at least 1 image, for each enrolled
ID, to be used for testing. The IP GMMs were derived glob-
ally, to describe all the IDs rather than an individual one, by
forming all the permutations of those IDs in the Train set
with E images; this was done to avoid any bias in the train-
ing scheme. The EP GMMs were derived for each enrolled
ID using the comparison of every enrolled image against
all the images used to derive the IP GMM. The number of
components for the GMMs range from 4 to 16; these limited
sizes were used as there was limited training data available.
The E enrollment images meant that for each ID multiple
scores were obtained which provide multiple chances for
the correct decision to be made. To perform score mod-
elling the best score was chosen as the matching core.

5. Results and Discussion

The experimental results indicate that the IPEP system
is an effective classifier for the 3D face modality and the
IP system is an effective classifier for the 2D face modality.
Furthermore, it is shown that the fusion of 2D IP and 3D
IPEP classifiers outperforms the fused 2D and 3D MahCo-
sine classifiers. The feature modelling systems were found
to perform best with 16 components and so only these re-
sults are presented. An in depth analysis of the results is
provided below.

5.1. Feature Modelling - 2D

The results for the 2D modality demonstrate that the best
overall recognition system is the IP classifier. The results
for the 2D experiments, Table 1, indicate that for same-
session conditions the IPEP classifier outperforms all other
systems while for the between-session conditions the IP
classifier outperforms all other systems. It is noted that al-
though the IP system is the worst performing classifier for
the same-session conditions it performs significantly better
for the between-session conditions, which is the more diffi-
cult test case.

The DET plot provided in Figure 4 highlights that when
there are between-session variations the IP recognition sys-
tem performs significantly better. It can also be seen that
the use of the EP model leads to a significant reduction in
performance. This reduction in performance is most likely
due to the significant time lapse between the Fall and Spring
sessions leading to increased variation in the capture condi-
tions.
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Figure 4. A DET plot for the 2D face modality.
Training is conducted on the Fall session and
testing is conducted on the Spring session.

5.2. Feature Modelling - 3D

The results for the 3D modality demonstrate that the best
recognition system is the IPEP classifier. This results is con-
sistent for same- and between-session variations, as can be
seen in the EERs provided in Table 2. The DET plot pro-
vided in Figure 5 shows that the IPEP classifier is supe-
rior to both the IP and MahCosine classifiers. It is noted
that unlike the 2D modality the inclusion of the EP model
provides consistent improved system performance; across
both same- and between-session variations. This is most
likely due to the fact that variation of the 3D data (structural
data) is not as significant across time as variation of the 2D
data; for instance 3D data is less sensitive to illumination
and pose variations.

5.3. Fused 2D and 3D Classifier

Combining the classifiers from the 2D and 3D modalities
was conducted to demonstrate the complementary informa-
tion was still being captured, even when feature modelling
was being conducted. In this work the MahCosine classi-
fiers for both modalities, 2D and 3D, were combined and
the various combinations of IP and IPEP classifiers for both
modalities were explored. Fusion was conducted using the
sum rule which was shown in [8] to be an effective method
of combining classifiers. The results for these experiments
are provided in Table 3. It can be seen from these results that
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MahCosine IP GMM IPEP GMM
Train Set Test Set Classifier Classifier Classifier

Fall Fall 7.55% 8.65% 6.79%
Spring Spring 8.20% 8.89% 7.43%
Spring Fall 14.42% 11.87% 16.12%

Fall Spring 16.52% 12.77% 17.53%

Table 1. Results for the 2D face modality, the results are presented as EERs. Highlighted is the best
classifier for each test case.

MahCosine IP GMM IPEP GMM
Train Set Test Set Classifier Classifier Classifier

Fall Fall 4.33% 6.62% 2.88%
Spring Spring 5.02% 7.12% 3.65%
Spring Fall 5.51% 6.62% 4.66%

Fall Spring 9.09% 9.34% 7.94%

Table 2. Results for the 3D face modality, the results are presented as EERs. Highlighted is the best
classifier for each test case.

2D+3D MahCosine 2DIP + 3DIP 2DIPEP + 3DIP 2DIP + 3DIPEP 2DIPEP + 3DIPEP
Train Set Test Set Classifier GMM Classifier GMM Classifier GMM Classifier GMM Classifier

Fall Fall 2.88% 4.24% 3.65% 2.20% 1.78%
Spring Spring 3.37% 5.21% 4.51% 2.35% 2.16%
Spring Fall 4.33% 4.92% 5.51% 3.22% 3.82%

Fall Spring 6.67% 6.61% 8.20% 5.02% 6.29%

Table 3. Results for the various combinations of 2D+3D classifiers, the results are presented as
EERs. Highlighted is the best classifier for each test case.

for the same-session experiments the best system is the 2D
IPEP + 3D IPEP while for the between-session experiments
the best system is 2D IP + 3D IPEP; this outcome is consis-
tent with the results obtained from testing the 2D modality.
These results are highlighted in the DET plot provided in
Figure 6.

6. Conclusions and Future Work

It has been shown that IP and IPEP Feature modelling
can provide an improved recognition system than the Mah-
Cosine metric. For the 2D modality the best results were
obtained using the IP classifier; this classifier performed the
best in the most difficult test case of between-session vari-
ation. Whereas for the 3D modality the best results were
obtained using the IPEP classifier. It is noted that as the
number of components are increased the performance is in-
creased. For these experiments only 16 components were
used due to the limited amount of training data. It was also
demonstrated the the combined 2D IP and 3D IPEP recogni-
tion system provided a consistent system for both the same-

and between-session experiments.
Further work needs to be conducted to determine the op-

timal number of components, as there will be a threshold
where performance improvements will not occur. In addi-
tion, the reason for failure of the EP model in the 2D modal-
ity needs to be investigated to determine if this can be ad-
dressed by performing more normalisation on the 2D data.
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Figure 5. A DET plot for the 3D face modality.
Training is conducted on the Fall session and
testing is conducted on the Fall session.
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