View metadata, citation and similar papers at core.ac.uk

onference on
Multisensor Fusion and Integration for Intelligent Systems
September 3-6, 2006, Heidelberg, Germany

-
brought to you by .{ CORE

provided by Queensland University of Technology ePrints Archive

MoA02.3

Audio-Visual ASR from Multiple Views inside Smart Rooms

Gerasimos Potamianos*
Human Language Technology Department
IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598, USA

gpotam@us.ibm.com

Abstract— Visual information from a speaker’s mouth region
is known to improve automatic speech recognition robustness.
However, the vast majority of audio-visual automatic speech
recognition (AVASR) studies assume frontal images of the
speaker’s face, which is not always the case in realistic human-
computer interaction (HCI) scenarios. One such case of interest
is HCI inside smart rooms, equipped with pan-tilt-zoom (PTZ)
cameras that closely track the subject’s head. Since however
these cameras are fixed in space, they cannot necessarily obtain
frontal views of the speaker. Clearly, AVASR from non-frontal
views is required, as well as fusion of multiple camera views, if
available. In this paper, we report our very preliminary work
on this subject. In particular, we concentrate on two topics:
First, the design of an AVASR system that operates on profile
face views and its comparison with a traditional frontal-view
AVASR system, and second, the fusion of the two systems into
a multi-view frontal/profile system. We in particular describe
our visual front end approach for the profile view system,
and report experiments on a multi-subject, small-vocabulary,
bimodal, multi-sensory database that contains synchronously
captured audio with frontal and profile face video, recorded
inside the IBM smart room as part of the CHIL project.
QOur experiments demonstrate that AVASR is possible from
profile views, however the visual modality benefit is decreased
compared to frontal video data.

I. INTRODUCTION

Over the past two decades, considerable research activity
has concentrated on utilizing visual speech extracted from
a speaker’s face in conjunction with the acoustic signal, in
order to improve robustness of automatic speech recognition
(ASR) systems [1]. Even though a great deal of progress
has been achieved in audio-visual ASR (AVASR), so far
the vast majority of works in the field have focussed on
using video of a speaker’s fully frontal face. This however
is a rather strong assumption, unrealistic in typical human-
computer interaction scenarios.

One such scenario is meeting or lecture events inside smart
rooms [2], [3] that are equipped with a number of far-field
audio-visual sensors, including microphone arrays, fixed and
pan-tilt-zoom (PTZ) cameras. This scenario is of central
interest in the “Computers in the Human Interaction Loop”
(CHIL) integrated project currently funded by the European
Union [4]. A schematic diagram of one of the smart rooms
developed for this project, in particular the one located at
IBM Research, is depicted in Fig. 1. Clearly, audio-visual
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speech technologies, such as speech activity detection, source
separation, and speech recognition, are of prime interest in
this scenario, due to overlapping and noisy speech, typical in
multi-person interaction, captured by far-field microphones.
Data from the smart room fixed cameras are of insufficient
quality to be used for this purpose, as they typically capture
the participants’ faces in low resolution (see also Fig. 2).
On the other hand, video captured by the PTZ cameras
can provide high resolution data, assuming that successful
active camera control is employed, based on tracking the
person(s) of interest [5]. Nevertheless, since the PTZ cameras
are fixed in space, they cannot necessarily obtain frontal
views of the speaker. Clearly therefore, AVASR from non-
frontal views is required in this scenario, as well as fusion
of multiple camera views, if available. In this paper, we
report our very preliminary work on the subject, namely
the design of an AVASR system that operates on profile
face views instead of the traditional frontal-view AVASR. In
addition, we are particularly interested in comparing system
performance between the two, as well as fusing the two
systems into multi-view frontal/profile AVASR.

In the literature, there is surprisingly little work on the
subject of visual speech from side views: we have found
only three relevant studies. In the first paper, Yoshinaga et al.
[6] extracted lip information from the horizontal and vertical
variances of the mouth image optical flow. In this paper, no
mouth detection or tracking was performed. In [7], Yoshinaga
et al. refined their system by incorporating a mouth tracker,
which utilizes Sobel edge detection and binary images, and
used the lip angle and its derivative as visual features on
a limited data set. The improvement sought from these
primitive features was minimal as expected, essentially due
to the fact that only two visual features were used, compared
to most other frontal-view systems that utilize significantly
more features [1]. The third study was a comprehensive
psychological study conducted by Jordan and Thomas [8].
Their findings were rather intuitive, as the authors determined
that human identification of visual speech became more
difficult as the angle (from frontal to profile view) increased.
To the best of our knowledge, no other effort to solve this
particular problem has been made. As such, we believe our
paper to be the first real attempt in determining how much
visual speech information can be automatically extracted
from profile views, and to compare this with visual speech
information obtained from frontal images.

The task of recognizing visual speech from profile views is
in principle very similar to that from frontal views, requiring
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to first detect and track the mouth region and subsequently
to extract visual features. However, the problem is far more
complicated than in the frontal case, because the facial
features required to detect and track the mouth lie in a
much more limited spatial plane, as can be seen in Fig. 3.
Clearly, much less data is available compared to that of
a fully frontal face, since many of the facial features of
interest (eyes, nostrils, mouth, chin area, etc.) are fully or
partially occluded. In addition, the search region for all
visible features is approximately halved, as the remaining
features are compactly confined within the profile facial
region. These facts remove redundancy in the facial feature
search problem, and therefore make robust mouth tracking a
much more difficult endeavor.

Nevertheless, one can still achieve mouth region tracking
by employing techniques similar to frontal facial feature de-
tection. In particular, in the AVASR literature, most systems
use appearance-based methods for face and facial feature
detection. Some are based on ‘“strong” classifiers, such as
neural networks [9], support vector machines (SVMs) [10],
eigenfaces [1], hidden Markov models (HMMs) [11], or
Gaussian mixture models (GMMs) [12], and others utilize
cascades of “weak” classifiers, such as the Adaboost frame-
work of Viola and Jones [13], later extended by Leinhart and
Maydt [14]. In this paper, we use the latter approach to first
detect the face and subsequently the facial features in profile
views, as described in more detail in Section II.
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Fig. 2. Examples of image views captured by the IBM smart room
cameras. In contrast to the four corner cameras (two upper rows), the two
PTZ cameras (lower row) provide closer views of the lecturer, albeit not
necessarily frontal (see also Fig. 1).

Following that, Section III focuses on the AVASR system
description, namely visual feature extraction based on the
tracked mouth region and audio-visual fusion. In addition,
details of a number of systems used in our experiments
are given, including a baseline frontal-view AVASR system
that has been refined in our previous work [1]. Section IV
presents our experimental results, and, finally, Section V
concludes the paper with a summary and a few remarks.

II. MOUTH DETECTION AND REGION-OF-INTEREST
EXTRACTION FROM PROFILE VIEWS

For the task of mouth detection and region-of-interest
(ROI) extraction, we devised a similar strategy to that of
Cristinacce et al. [15], employing a boosted cascade of
classifiers based on simple Haar-like features to detect the
face and subsequently the facial features. These classifiers
were generated using OpenCV libraries [16].

The positive examples used for training these classifiers
were obtained from a set of 847 training images, with 17
manually labeled points for each face. Due to the compact-
ness of the facial features within the dataset, we initially

(a)

Fig. 3. Synchronous (a) frontal and (b) profile views of a subject recorded
in the IBM smart room (see Section IV). In the profile view, visible facial
features are “compacted” within approximately half the area compared to
the frontal face case, thus making their tracking more difficult.



Fig. 4. Labeled facial features: (a) left eye, (b) nose, (c) top mouth, (d)
mouth center, (e) bottom mouth, (f) left mouth corner, and (g) chin.

utilized only seven of the 17 annotated points, namely the
left eye, nose, top of the mouth, mouth center, bottom of the
mouth, left mouth corner, and chin, as depicted in Fig. 4.
This provided 847 positive examples for all seven facial
features. Approximately 5000 negative examples were used
for each facial feature. These negative examples consisted
of images of the other facial features that surrounded its
location, as these areas would be the most likely to cause
false alarms. The face training set was further augmented
by including rotations in the image plane by +5 and £10
degrees, providing 4235 positive examples. A similar amount
of negative examples of the background were also employed
in the training scheme. For the facial features however, since
they were located close to each other, we opted not to include
rotated examples in their training.

A dilemma we experienced was on selecting appropriate
facial feature points to use for image normalization. In the
frontal face scenario, eyes are predominately considered for
this task, but in the profile-view case we don’t have the
luxury of choosing two geometrically aligned features. We
instead chose to use the nose and the chin, with a normalized
constant distance of K = 64 pixels between them. This way,
the problem of head pose variation was minimized, compared
to the other possibilities (such as employing the eye-to-nose
distance, etc.). The top mouth, center mouth, bottom mouth,
and left mouth corner were trained on templates of size
10x 10 pixels, based on normalized training faces. Both nose
and chin classifiers were trained on templates of size 15x 15
pixels, whereas the eye templates were somewhat larger, at
20x20 pixels. For face detection, the positive face examples
were normalized to 16x 16 pixels (see also Fig. 5).

To judge performance of the adopted scheme, all classifiers
were tested on a small validation set of 37 images. This
provided us with an indication of what particular features
can be most reliably tracked. Table I depicts the detection
accuracy of the seven facial feature classifiers, with a feature
considered detected, if the location error is less than 10%
of the annotated nose-to-chin distance. Clearly, the left eye
and left mouth corner yielded the best results, therefore we
decided to use them for scale normalization during testing.
Compared to using the nose and chin (as discussed in the
previous paragraph), this amounts to changing the scaling
factor K from 64 to 45. Concerning face detection accuracy,
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TABLE I
DETECTION ACCURACY, %, FOR SEVEN FACIAL FEATURES OF INTEREST,
REPORTED ON A SMALL VALIDATION SET (37 ANNOTATED IMAGES).

FACIAL FEATURE ACCURACY (%)

Left Eye 86.49
Nose 81.08
Top Mouth 78.37
Center Mouth 81.08
Bottom Mouth 72.97
Left Mouth Corner 86.49
Chin 62.16

all 37 faces were correctly located in the selected validation
set.

The entire profile mouth detection and tracking employed
in our AVASR system is outlined in Fig. 5. Given the video of
a spoken utterance, face detection is first applied to estimate
the location of the speaker’s face at different scales, since the
face size is unknown. Once the face is detected, the search
for the left eye and nose commences over specific regions of
the face, based on training data statistics. While developing
the system, we observed that the lower boundary of the face
bounding box was often inaccurate, being far below or well
above the bottom of the subject’s actual face. As the face
box defines the search region for the various facial features,
this caused the system to miss detecting the lower regions of
the face. To overcome this, we used the ratio (metricl) of the
vertical eye-to-nose distance over the vertical nose-to-lower
face boundary distance. If metricl was lower than a fuzzy
threshold, as determined by training statistics, the lower part
of the box was lengthened, whereas if it was greater than
the threshold, the lower part was shortened. We observed
that this greatly improved the detection of the mouth area
(trained on normalized 32x32 mouth images), which was
located next. This procedure is illustrated in Fig. 6(b).

Once the general mouth region is found, the left mouth
corner is detected. The next step is to define a scaling metric,
so that all ROI images get normalized to the same size. As
mentioned previously, the ratio (metric2) of the vertical left
eye to left mouth corner distance over constant K = 45
is used to achieve this (see Fig. 6). A (48 x 48)-metric2
pixel normalized ROI, based on the left mouth corner is
then extracted (see Fig. 6). The ROI is then subsequently
downsampled to 32x32 pixels, for use in the AVASR system
(see Section III).

Following ROI detection, the ROI is tracked over consecu-
tive frames. If the detected ROl is located too far away from
the previous frame, this is regarded as a detection failure
and the previous ROI location is used instead. A mean filter
is then used to smooth the tracking. Due to the real-time
speed of the boosted cascade of classifiers, this detection
and tracking scheme is used for every frame.

Overall, the accuracy of the ROI detection and tracking
system was very good, with only a very few number of
poorly or mistracked ROIs in the dataset. A major factor
affecting performance was due to random head movement



— —-
/ Nose (15x15) and ",
Ny Eye (20x20) C]assiﬁcrg)

Video

Face Yes Del‘inle Detect Calculate Lenghthen/
Detection | Nnrmallz.ed Eye & Nose [  Rescaling Shorten
Search Regions Metric (metricl) Face Box
; i
i No No i
i i
' | No Detect Mouth Mouih
. o . /
er irack v b lnglon ) ! Classifier: ,
1 Retrac, | elow nose 30x32 !
i frame N0 -
i ! l
! R —
Track Downsample Normalize ROT Calculate ROI -1 Dclccl //Leﬂm_o}nh ~
~— Smoothing Mouth || ROI (ékZX'??) | (48x48)based on =— Rescaling Yes Leftmouth =" Classifier: |
a s Leftmouth Corner Metric (metric2) ’ Corner _ (ox10)
Tracked
Mouth
(32x32) Fig. 5. Block diagram of the face and mouth detection and tracking system for profile views.

and some head pose variability, where subjects exhibit a
somewhat more frontal pose than the profile view of the
majority of the subjects — see also Fig. 7, where examples of
accurately and poorly tracked ROIs are depicted. The latter
is also the reason why we were not able to employ any
rotation normalization. Many different configurations were
experimented with, however they seemed to cause more
problems than they solved. For example, we tried rotating
the ROI according to the angle between the left eye and
the left mouth corner, however the head pose variation in
the data made this problematic. Another attempt was made
to rotate the ROI employing the angle between the mouth
center and the left mouth corner. This also failed, as the
distance between these two points was too small (around
20 pixels), and any slight detection inaccuracy caused large
rotation errors.

III. THE AVASR SYSTEM

We now proceed to briefly describe the remaining compo-
nents of the AVASR system, following detection of the mouth
ROI. There exist two main such components, overviewed
in the next two subsections: (a) feature extraction, which
includes the visual features that complete the visual front
end sub-system, and of course the audio feature extraction
step; and (b): the audio-visual fusion (integration) step. In
this work, neither component exhibits significant differences
between the introduced profile-view AVASR system and our
baseline frontal-view AVASR system refined in previous
work [1]. These systems will be compared in Section IV.B.
Furthermore, performance of a combined AVASR system that
uses both profile and frontal views will also be discussed
there. Specifics of all three AVASR systems are briefly
overviewed in Section III.C.

A. Feature Extraction

Following ROI extraction, a two-dimensional, separable,
discrete cosine transform (DCT) is applied to it, with the
100 top-energy DCT coefficients retained. The resulting
100-dimensional vectors are available at the video rate (30
Hz). In order to simplify integration with audio and to
improve system robustness, the vectors are interpolated to

the audio feature frame rate of 100 Hz, and are mean-
normalized, independently over each utterance. Furthermore,
for dimensionality reduction, an intra-frame cascade of lin-
ear discriminant analysis (LDA) followed by a maximum-
likelihood linear transform (MLLT) is applied, resulting
to 30-dimensional “static” visual features. Subsequently, to
incorporate dynamic speech information, 15 neighboring
such features over £+7 adjacent frames are concatenated, and
are projected via an inter-frame LDA/MLLT cascade to 41-
dimensional “dynamic” visual feature vectors. More details
can be found in [1].

In parallel to visual feature extraction, 24-dimensional
mel-frequency cepstral coefficients (MFCCs) are extracted
at a 100 Hz frame rate, based on the audio signal. After
mean normalization, the features are processed by an inter-
frame LDA/MLLT cascade over £5 frames to produce 60-
dimensional acoustic features.

B. Audio-Visual Integration

Following feature extraction, time-synchronous audio and
visual features are available at 100 Hz with dimensions
60 and 41, respectively. In this work, we consider two
commonly used audio-visual integration techniques [1]. The
first one is feature fusion, where the bimodal feature vectors
are concatenated, resulting in our case to 101-dimensional
features that are subsequently projected onto 60 dimensions
using an LDA/MLLT cascade (note that this equals the audio
feature vector dimensionality). The second is decision fusion,
based on multi-stream HMMs. The latter method typically
yields significantly better results than the feature fusion
technique, but requires optimizing the modality integration
weights (typically on held-out data). Notice that these fusion
mechanisms will also be used in our experiments to combine
the profile- and frontal-view visual-only ASR (lipreading)
systems into a “multi-view” lipreading system, as discussed
next.

C. The Speech Recognition Systems

In our experiments below, we will be comparing three
AVASR systems: The introduced profile-view AVASR sys-
tem, a baseline AVASR system based on frontal views [1],
and a combination of the two, namely a “multi-view” AVASR

38



metricl = yl1/y2

(c) (d)

Fig. 6. (a) An example of face detection. (b) Based on the face detection
result, a search area is obtained to detect the left eye and nose. The face
bounding box is lengthened or shortened according to metricl. (c) The
left mouth corner is detected within the general mouth region. The ratio
(metric2) is then used for normalizing the ROIL. (d) An example of the
scaled normalized detected ROI of size (48 x 48) - metric2 pixels.

system. Furthermore, audio-only and visual-only systems
will also be compared. All such systems are designed in
this work to recognize connected-digit sequences (10-word
vocabulary with no grammar). All single-stream HMMs are
trained by employing the expectation-maximization algo-
rithm over an available training set (see Section IV.A), and
have an identical topology, containing 104 context-dependent
states and approximately 1.7k Gaussian mixture components.
For multi-stream HMM based AVASR, the audio and visual
stream HMMs are separately trained and then combined us-
ing fixed integration weights, that are optimized to minimize
the word error rate on held-out data.

Before moving on to our experiments, we should empha-
size a few differences between the compared systems: The
“multi-view” visual-only system operates on 60-dimensional
visual features that result from an LDA/MLLT cascade
applied on the concatenated single-view (frontal + profile)
visual-only feature vectors having a combined dimension of
82 (=41+41). This is in contrast to the single-view (profile,
or frontal) visual-only systems, that use 4I1-dimensional
features. In addition, one should note that the visual front end
sub-systems of the frontal- and profile-view AVASR systems
differ in two aspects: One concerns the face and mouth region
tracking algorithm, where the frontal view system tracking is
based on a set of “strong” classifiers, as described in detail
in [1], [12]. The second difference lies on the size of the
extracted ROIs, before DCT feature extraction is applied.
It is 32x32 pixels for the profile-view system, but 64 x64
pixels for frontal-view AVASR.
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Fig. 7. Examples of accurate (a-d) and inaccurate (e,f) results of the
detection and tracking system. In (f), it can be seen that the subject exhibits
a somewhat more frontal pose compared to the profile view of the other
subjects.

IV. EXPERIMENTAL RESULTS

We now proceed to report a number of experimental results
on the performance of the developed profile-view AVASR
system. The experiments are conducted on a multi-sensory
audio-visual database, recorded in the IBM smart room, that
is briefly described next.

A. The Audio-Visual Database

A total of 38 subjects uttering connected digit strings
have been recorded inside the IBM smart room, using two
microphones and three pan-tilt-zoom (PTZ) cameras. Of
the two microphones, one is head-mounted (close-talking
channel — see also Fig. 3) and the other is omni-directional,
located on a wall close to the recorded subject (far-field
channel). The three PTZ cameras record frontal and two side
views of the subject, and feed a single video channel into a
laptop via a quad-splitter and an S-video—to—DV converter.
As a result, two synchronous audio streams at 22kHz and
three visual streams at 30 Hz and 368x240-pixel frames
are available. Among these available streams, in the reported
experiments we utilize the far-field audio channel and two
video views: the frontal and one of the two side views,
namely the one that consistently provides views closest to
the profile pose (see also Fig. 3). A total of 1661 utterances
are used in our experiments, partitioned using a multi-speaker
paradigm into 1247 sequences for training (1 hr 51 min in
duration), 250 for testing (23 min), and 164 sequences (15
min) that are allocated to a held-out set. The test set reference
contains 2155 digit words.

B. Recognition Results

In the first experiment, we report the visual-only system
performance on this dataset. The word error rate (WER) of
the baseline frontal-view system [1] on the test set is 25.4%.
In contrast, the developed profile-view system achieves a
significantly worse performance of 39.9% WER, a relative
degradation of about 60% compared to the frontal view
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has been applied on the far-field audio channel.

results. Nevertheless, the profile system is clearly capable
of recognizing visual speech, but of course less so than the
frontal system, in line with human lipreading experiments
reported in [8]. Interestingly, by combining the two systems
using feature fusion, the resulting “multi-view” visual-only
performance becomes 23.7%, which demonstrates that there
may exist information in the profile view, not captured by
the frontal-view system (possibly that of lip protrusion).

When combining the three systems with the far-field audio
channel using a two-stream HMM (decision fusion), the
audio-only system performance of 1.62% WER improves
somewhat to an audio-visual WER of 1.53%, 1.53%, and
1.48%, when incorporating the frontal-, profile-, and “multi-
view” visual information, respectively. These differences are
however not significant due to the small database size.
Of course, they become more pronounced, if we corrupt
the audio channel by additive noise; in our experiments,
“speech babble” is used for this purpose. The results are
depicted in Fig. 8, and have been obtained using feature
fusion to simplify and speed up the experiments (no opti-
mization of integration weights is required). These results
further verify the experimental observations of the previous
paragraph. As expected, in high noise environments, the
visual modality benefit to ASR is dramatic, with the “multi-
view” system demonstrating the biggest gains, mostly due
to the contribution of the frontal view video — especially for
the low noise region. Interestingly, the profile view system,
although lagging compared to the frontal view one, is still
capable of providing much of the visual modality benefit to
ASR. We view this result as very encouraging for AVASR
applications in scenarios where a frontal view cannot always
be guaranteed.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an AVASR system capable of
extracting visual speech information from profile views. To
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our knowledge, this is the first serious attempt to lipreading
from side views that allows quantifying the performance
degradation as compared to lipreading from the traditional
frontal view of the speaker’s mouth. In our experiments,
we demonstrated that profile views contain significant visual
speech information, sufficient to improve ASR robustness to
noise. Such benefit is of course less pronounced than when
using the frontal view, however is not totally redundant to the
frontal video, as the “multi-view” experiments demonstrated.

In further work, we will extend these experiments to
more complex recognition tasks, such as connected letters,
alpha-digits, and large-vocabulary speech, to verify whether
our conclusions generalize well. We have already collected
the appropriate multi-view database for such experiments
and plan to report results soon. We view such work as
the first step towards head-pose independent AVASR, which
we believe may open the field to natural human-computer
interaction scenarios in environments such as the CHIL smart
rooms.
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