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Abstract

Tracking systems are typically targeted towards
tracking a single class of object. In many real world
situations, and in the ETISEO evaluation, it is advan-
tageous to be able to track multiple classes of objects.
In this paper we describe the adaptation of a single
class tracking system to a multi-class tracking system,
and describe a modified version of the condensation fil-
ter that can be used to track all objects, of all classes.
We show that by using simple targeted detectors, we
can achieve accurate tracking and can accurately dis-
tinguish between classes.

1 Introduction

Tracking systems[3, 13, 5] are typically targeted to-
wards tracking a single class of object (i.e. people,
cars, or a generic object/blob), limiting their func-
tionality. The majority of systems that track multi-
ple classes[1, 4, 9] do so by using a generic detector to
detect every object, and then use rules or models to
determine object classes.

In the ETISEO 1 evaluation (an evaluation of track-
ing and action recognition systems), many of the
datasets require a system that can distinguish between
multiple classes of objects. We adapt an existing sin-
gle class tracker (person tracker) to be able to handle
multiple classes (people and vehicles), by using mul-
tiple detectors targeted at the different object classes.
We use a single condensation filter to track all objects
in the system, and use a master-slave configuration to
allow each tracker to have its own particle set, and al-
low the filter’s particle count to be scaled as the system
changes.

We test the resulting system on part of the prelim-
inary ETISEO dataset (the RD datasets, captured on

1Information on the ETISEO evaluation can be found at
www.etiseo.net

an outdoor roadway), and show that by using a detec-
tor for each class, we achieve accurate tracking results
and are able to accurately distinguish between classes.

2 Existing Work

A wide variety of tracking systems have been de-
veloped for various purposes, most focus on tracking
only a single class of object (typically people), how-
ever a small number of multi-class trackers have been
developed[1, 4, 9]. Bose et al.[1] and Ellis et al.[4] rely
on a generic detection process to locate all objects of
interest. Siebel et al.[9] used independent processes to
locate both people and vehicles.

Single class person detectors are far more com-
mon and typically use some form of background
segmentation[13, 5, 3], or optical flow[11, 8] as a basis
for tracking; and use Kalman filters, or motion models
(first or second order) to track and predict object posi-
tions. Haritaoglu et al.[5] developed a system for track-
ing objects using the expected motion of the object to
restrict the search space, and relied on the matching
of silhouettes to verify the object. Rather than track-
ing blobs Zhao et al.[13] proposed a system that used
an ellipsoid shape model to locate and segment people
from the motion image. Yamane et al.[11] proposed
a method using optical flow and uniform brightness
regions (a section where the optical flow cannot be de-
tected) to track people, while Okada et al.[8] combined
optical flow and depth information to track.

Other tracking systems such as those proposed by
Kang et al.[7] and Zeng et al.[12] use particle filtering
techniques. Kang et a. [7] modified the condensation
algorithm to track multiple people in a crowded envi-
ronment. A competition rule was introduced, such that
each tracker suppresses the weights of samples around
features belonging to another tracker, helping to avoid
multi-modal distributions that can occur when multi-
ple objects are close to one another. Zeng et al.[12] used
active particle filtering (combining traditional particle
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filters with curve fitting) to track heads. Each particle
is fitted to its local maxima prior to weighting, allowing
the systems to use less particles to track objects.

3 Tracking System

We modify an existing tracking system[3] to allow
it to track multiple classes of objects. We modify the
system such that two object detection processes are
run, each targeting a different class of object (people
and vehicles). A third, generic, detection process is
then run to locate any remaining regions, and match
these to unmatched tracks (see figure 1). Objects are
tracked using a modified condensation filter. We pro-
pose altering the filter so that the number of particles is
scalable, and the filter is capable of assigning particles
to one or more specific tracks. A simple colour model
is used to deal with any ambiguities that arise when
matching, and we propose a method to determine if a
colour check is required during matching. Inheritance
and polymorphism are used to provide a separate class
for each object type, allowing all tracks to be stored
in a common list, while still maintaining separation
between the various object types. The road datasets
(RD14 - 17) pose an additional challenge in that they
contain significant amounts of strong shadowing. To
overcome this, we perform raw fusion of the colour and
IR images, creating a single image. The colour image
is converted to Y’CbCr, and the luminance is substi-
tuted with the IR image. As all shadow information for
the moving cars and people (the trees leave a thermal
shadow) is contained in the luminance component the
shadowing caused by the traffic is removed while still
preserving the colour information (see figure 2). As the
area being monitored is an outdoor road, there is no
discernible thermal reflection from the moving objects.
It should be noted that this is not necessarily the case
for all environments, and it is likely that the same ap-
proach would not work as well in an indoor scene with
reflective surfaces (i.e. tiled/polished floors).

3.1 Object Detection

A simple detection method is targeted at each of
the classes we are tracking. The detectors share a hy-
brid motion detector-optical flow technique[2] as a ba-
sis, and scan for appropriate regions of motion. In the
case of vehicle detection, this is a large region with a
high amount of occupancy (we define occupancy as the
percentage of moving pixels within the bounding box).

Person detection is performed by splitting the im-
age into sub-regions which contain concentrated areas
of motion, and then locating heads and fitting ellipses

(a) (b)

(c)

Figure 2. Shadow Removal - The Luminance
in the colour image (a) is replaced with the IR
image (b) to generate (c)

within each region[5, 13]. Working within subregions
overcomes problems caused by people occupying a com-
mon column of the image. Heads are detected by com-
bining the vertical projection and pixel height of the
top contour (to aid in overcomming problems caused
by holes in the motion image), and finding local max-
ima; which are then filtered by analysing the surround-
ing region. Ellipses are fitted to the valid heads at an
aspect dependent on the candidate head, and if there
is a suitable occupancy the candidate is accepted.

Detection procedures make use of a simple perspec-
tive transform to scale various detection thresholds
(such as sizes, pixel counts) for objects at different
depths in the scene.

A third detection method is used to locate any re-
maining objects that could not be located using the tar-
geted detection procedures. This process locates any
remaining large blobs of motion and matches them to
unmatched tracks. No perspective transform is applied
and no objects are added as a result of this detection
stage. Rather it is used as a backup; and as a chance to
re-evaluate object class classifications, as objects may
be detected by this process because when they first
entered the system, they were detected and classified
incorrectly. When objects are updated by this process,
simple tests (at this stage based on geometric rules)
are carried out to determine if their classification is
correct. If, over the course of several detections, they
are consistently classified as a class different to the one
they were created as, they are re-created as the correct
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Figure 1. System Flow Chart

class.

3.2 Condensation Filtering

We use a condensation filter[6] to track objects in
the system. We use simple object statistics and some
basic rules governing how they relate to one another
to manage the particles. We use the object position
(x and y pixel coordinates), height, width, and the
number of moving pixels to define the objects state
(x, y, h, w, a). Each variable is free to move within the
dimension limits, dmin, dmax, which are defined by the
system (i.e. the limits of x and y are governed by
the image size). The distribution of each dimension
is Gaussian, with the mean at the the last observed
position, and the variance equal to the maximum ex-
pected movement of a dimension from one frame to the
next, emax. Our system uses a master-slave implemen-

Figure 3. Condensation Execution Structure

tation (see figure 3). The tracker contains the master
filter and each tracked object contains a slave. The
master contains the samples and their probabilities,
and is responsible for updating samples, re-sampling,
and adding/removing tracks. The slaves allow each

tracked object to communicate with the master, allow-
ing its expected position and movement to be passed;
and the slave to view its sample set, and make pre-
dictions about its location. When a slave is added, n
samples are added to the system. At any given time, a
slave si has ni samples associated with it.

One problem that can occur with this configuration
is that the particle assignments can become unbalanced
(in a system with two tracks, one track may have 250
particles, while the other only has 50). We define the
system as being out of balance when one or more tracks
has a particle count of less than half the intended num-
ber of particles, ni < n/2. When this occurs, we re-
move samples from the tracks that have ’too many’
(where ni > n) and create new samples for the tracks
that have ’too few’ (where ni < n).

3.2.1 Updating

When calculating weights for samples, samples are ’as-
signed’ to one of more objects, in a manner similar
to the competition rule described by Kang[7]. Each
sample has its probability calculated according to each
slave, and the sample is added to the distributions of
the top m slaves. A given track may contain sam-
ples which are first, second and third best match to
it. This assignment prevents the weight of samples
that belong to one object effecting other objects and
predictions, and allows objects of different classes to
have distinct sample sets. Each track has its proba-
bilities normalised separately, ensuring that each track
has a total probability of 1, without having every track
associated with every sample. Updating the filter is
done by re-sampling the sample set, as shown in figure
4. We look to emphasis particles that have proved to
be a good match, rather than just randomly selecting
particles to copy into the new set. For particles that
have high probabilities we take multiple copies, while
we ignore particles that have poor probabilities. Par-
ticles are selected from the set and copied at a rate of
Psample/Pave, where Pave = 1/n, and Psample is the
probability of the sample as calculated after the previ-
ous frame. We round the fraction down to the nearest
whole number, unless it is less than one in which case it
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Figure 4. Condensation Process - At time t, the system has the state shown in the top graph. At time
t + 1, the image in the middle is processed, and the system is updated as shown in the lower graph.
Yellow and blue samples are those that are distinct to the slaves, and gray samples indicate samples
shared by both slaves.

is rounded to 1, ensuring any sample can be retained.
We use the ideal number of samples per track when

calculating the average, so that for tracks with more
than the ideal number of samples their average proba-
bility will be less than Pave, and so fewer samples will
be copied; while for tracks with too few samples, the
average probability will be higher than Pave, resulting
in more samples being copied. This aids in keeping all
slaves with the close to the ideal number of particles.

Part of the re-sampling procedure is adding a ran-
dom value to each new sample. Rather than just add a
random vector to each new sample, we propose adding
the expected movement as well, allowing the sample
set to move with the track.

Sn+1 = Sn + R + Mi (1)

where Sn+1 is the new sample; Sn is the old sample;
R is the random sample, which is within the range of
−emax to +emax, and Mi is the expected movement for
the track, i. By adding the expected movement, we aim
to have samples that are associated with a given track,
remain associated with that track. This will help to
improve tracking performance, and reduce the number
of times we need to rebalance the system.

As part of all particle updating and creation, we ap-
ply a set of rules to each particle, to check that it is
describes a valid object. These rules fall into two cate-
gories, limits placed on the individual dimensions (i.e.
position cannot exceed the range dmin to dmax), and
rules which describe a relationship between multiple
dimensions. For our system we use one rule, and place
limits on each dimension.

Sarea <= Sheight × Swidth (2)

3.2.2 Object Model

Typically, condensation filters are used to track objects
that have well defined models with clear state tran-
sitions. We are not fitting any rigid models, and so
need a flexible model to evaluate candidates. We use
two components; the probability of the next position
according the distribution; and a simple position fit;
which we combine to obtain a probability for a match.
The first component is calculated directly from the dis-
tribution for the track.

The position fit provides a simple estimation of the
match of a track to a sample. It is used primarily as a
backup check, in case of anomalies in the distribution,
such as those that may occur when the system becomes
unbalanced.

Epos = |tx − sx| + |ty − sy| (3)
Ebb = |tl − sl| + |tr − sr| + |tt − st| + |tb − sb| (4)

pfit = 1 − Epos + Ebb − Errmin

Errmax
(5)

where Epos and Ebb are the position and bounding box
errors respectively; t and s are the observed track po-
sition and sample position; Errmin is the tolerance for
the error; and Errmax s the maximum error. If the ac-
tual error is greater than the maximum allowed error,
the result of this equation will be negative, in this case
we simply assign a value of 0.

The two measures are combined as shown, to give
the probability of a sample arising from a track.

psample =
(

i<numDims
i=0

∏
pi

)
pfit (6)

where i is the dimensions and numDims is the number
of dimensions, pi is the probability of the dimension,
and psample is the sample probability. This is used
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during the update of the condensation filter when each
sample is evaluated; and during the candidate match-
ing process, when objects are located in the incoming
frame and matched to those in the system.

3.2.3 Dynamic Sizing

Rather than have a fixed number of samples for the fil-
ter, we propose dynamically altering the sample count
as objects enter and leave the scene. For each track,
we have an arbitrary number of samples, n, that are
initially created about the objects initial position, and
associated with that object.

snew = onew + 2 × r (7)

where snew is the new sample, onew is the new objects
state, and r is a random value, in the range −emax

to +emax. This initialisation gives each tracked ob-
ject a set of samples to model it immediately, rather
than needing to allow a period of frames for the sys-
tem to adapt to its presence. When an object leaves, n
samples are removed from the system. Samples are re-
moved according to how well they match candidates
within the system. Samples that match no candi-
dates are removed first, followed by samples that match
poorly until enough samples are removed. Resizing the
system, ensures that no unnecessary updates are done,
and improves CPU utilisation.

3.3 Colour Model

A simple histogram model [10] is used to store colour
information for each tracked object. We use the Cb
and Cr channels to form the histogram. By ignoring
the luminance channel, we remove any variation that
is brought about by changed light conditions within
the scene. The histogram uses bins that have a small
overlap (20%), so slight variations from frame to frame
do not result in a matching error as there is tollerance
built into the histogram. The histogram is updated at
a specified rate (about every 10 frames), and is used to
match objects when the match from the condensation
filter is ambiguous.

We define a fit quality metric to determine the level
of ambiguity. We divide the fit of the second best
match by the fit of the best match, to get a quality
measure. If the quality measure is too low, we use the
colour model to determine the correct match.

q =
fj,k

fi,k
(8)

where fi,k is the fit for track i to the detected object
k, and fj,k is the fit for track j to object k.

4 Results

The system was tested using the RD datasets con-
tained within the first stage of the ETISEO evaluation
database. As there is no ground truth data available
yet, testing was conducted via visual inspection. The
system runs without any user interaction (a parameter
file is loaded at start up containing all required set-
tings). The system performed well in testing, produc-
ing no major errors (tracks being swapped, prolonged
incorrect classification). Small errors were observed
when objects first entered, or as they exited the scene.
Tracking became less reliable at these times (see figure
6(f)), and in some instances this resulted in a newly
created object being lost and re-created. Occlusions
were handled well and the different detectors were able
to correctly segment their intended targets. Figures 5
and 6 shows a portion of the tracking results from the
datasets, RD15 and RD16 respectively. The coloured
rectangles indicate the tracks ID and type. The outer
rectangle indicates the tracks ID; the inner rectangle
indicates the type, red for person, yellow for vehicle.

5 Conclusions and Future Work

We have described the process of converting a sin-
gle class person tracker into a system capable of track-
ing and distinguishing between people and vehicles, us-
ing simple targeted detectors. We have described how
a condensation filter can be used to track all objects
within the one filter, yet still have distinct groups of
particles for each object; and how the number of parti-
cles processed by the filter can be scaled as the number
of objects in the system changes. We have also shown
how a simple colour model can be selectively used to
provide an additional check when matching. Future
work will focus on expanding the detection options,
providing multiple detectors for each class, and detect-
ing additional classes. Further work will also be done to
expand the condensation filters so that they can apply
separate rules and limits to different classes, allowing
further flexibility in the tracking; and to investigate al-
ternate means of image fusion for the incoming images.
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