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Abstract 52 
 53 
Physico-chemical properties of surface water and groundwater samples from some 54 

developing countries have been subjected to multivariate analyses by the non-parametric 55 

multi-criteria decision-making methods, PROMETHEE and GAIA.  Complete ranking 56 

information necessary to select one source of water in preference to all others was obtained, 57 

and this enabled relationships between the physico-chemical properties and water quality to 58 

be assessed. Thus, the ranking of the quality of the water bodies was found to be strongly 59 

dependent on the total dissolved solid, phosphate, sulfate, ammonia-nitrogen, calcium, iron, 60 

chloride, magnesium, zinc, nitrate and fluoride contents of the waters. However, potassium, 61 

manganese and zinc composition showed the least influence in differentiating the water 62 

bodies. To model and predict the water quality influencing parameters, partial least square 63 

analyses were carried out on a matrix made up of the results of water quality assessment 64 

studies carried out in Nigeria, Papua New Guinea, Egypt, Thailand and India/Pakistan. The 65 

results showed that the total dissolved solid, calcium, sulfate, sodium and chloride contents 66 

can be used to predict a wide range of physico-chemical characteristics of water. The 67 

potential implications of these observations on the financial and opportunity costs associated 68 

with elaborate water quality monitoring are discussed.   69 
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Introduction 87 
 88 
Water is vital to health, well-being, food security and socio-economic development of 89 

mankind. Therefore, the presence of contaminants in natural freshwater continues to be one 90 

of the most important environmental issues in many areas of the world, particularly in 91 

developing countries, where several communities are far away from potable water supply 92 

(WHO, 1993; WHO, 1996).  Low-income communities, which rely on untreated surface 93 

water and groundwater supplies for domestic and agricultural uses are the most exposed to 94 

the impact of poor water quality. Unfortunately, they are also the ones that do not have 95 

adequate infrastructure to monitor water quality regularly and implement control strategies 96 

(Ongley and Booty, 1999). Many of such communities abound in developing countries, 97 

where irregular supply of electricity for continuous pumping of treated water, absence of 98 

piping systems in some areas, variability of rainfall and increased demand for water as the 99 

population grows seriously impede access to potable water supply. Drastic changes in 100 

climatic conditions make the situation worse. For example, as a result of the 1997 El Nino, it 101 

was estimated that over a million people in Papua New Guinea faced acute food shortage and 102 

at least 45, 000 people were without fresh water (UNOCHA, 1998). However, the problem of 103 

potable water supply is a global issue. Many of the earth’s major rivers and groundwater 104 

supplies are either overexploited or polluted due to population growth, agricultural activities, 105 

urbanisation and industralisation. In Poland, three quarters of the rivers were thought to be 106 

too polluted even for industrial use; two-thirds of China’s rivers were regarded as 107 

contaminated; forty rivers in Malaysia were reported as not being able to support aquatic life 108 

due to pollution; and in Manila, Philippines, over 60% of the main rivers supposedly contain 109 

untreated sewage (IRC, 1995). Thus, it is increasingly desirable to obtain reliable 110 

assessments of water quality, which can be used for water resource planning and assessment 111 

of policy options in order to sustain human well being, industrial growth and food security.  112 
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 Differences in the pollutant loading of freshwaters from different sources may result 113 

from differences in the geological background, hydrological systems, anthropogenic 114 

activities and transformations of water components by microorganisms (Einax et al, 1997). 115 

Therefore, pollutant concentrations from different sampling sites and environmental phases 116 

are subject to high variability, which require careful evaluation and interpretation. In 117 

addition, water quality depends on a variety of physico-chemical parameters and meaningful 118 

prediction, ranking analysis or pattern recognition of the quality of water require multivariate 119 

projections methods for simultaneous and systematic interpretation.  Thus a wide range of 120 

multivariate projection methods has been applied to hydrospheric samples (Einax et al, 121 

1997). However, the multi-criteria decision making methods, PROMETHEE (Preference 122 

Ranking Organisation METHod for Enrichment Evaluation) and GAIA (Geometrical 123 

Analysis for Interactive Aid)  (Brans, 1991 and 2002; Brans and Mareschal, 1989 and 2005; 124 

Kokot and Phuong, 1999; Epinasse et al, 1997; Ayoko, et al, 2004) have not been employed 125 

in the literature for multivariate ranking analysis of the parameters that influence water 126 

quality. Similarly, there are relatively few applications of multivariate predictive modeling in 127 

environmental problems (Eriksson, 2001). 128 

To assess the quality of water for drinking and irrigation purposes, many variables are 129 

routinely monitored. This produces a large database but the process of data acquisition can be 130 

time-consuming, laborious and expensive while accurate interpretation of the multivariate 131 

data can be challenging.  132 

This paper reports the physico-chemical properties of some surface - and ground - 133 

waters and the interpretation of the data with the aid of Chemometrics methods. To provide 134 

scientific data, which can be used for water resource planning and assessment of policy 135 

options in countries where availability of potable water supply is a problem, we used data 136 

from exploratory water quality studies that were conducted in Nigeria, Papua New Guinea, 137 

Egypt, Thailand and India/Pakistan to (i) model and predict the relationships between the 138 
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factors (X) and the water quality influencing responses (Y), (ii) understand which X variables 139 

influence particular Y variable(s) and (iii) which X variables can be used as surrogates to 140 

provide information about water quality. The work enhances basic knowledge of the physico-141 

chemical quality of ground - and surface - waters from developing countries, and provides a 142 

guide to the understanding of the relationships between the factors and responses, and the 143 

implementation of predictive models for water quality.  144 

Materials and methods 145 

 Samples of surface water from rivers and groundwater from boreholes were collected 146 

in Papua New Guinea at a period that coincided with the end of dry season and the beginning 147 

of the raining season (November to December). For comparison, the quality indicators for 148 

water samples from Hudiara drain which extends over a distance of 44.2 km in India and 54.4 149 

km in Pakistan (Afzal et al, 2000), as well as various groundwater and surface waters in  150 

Nigeria (Okoye,1991; Olajire et al, 2001; Agbu, 1984 and Alaribe, 1984, Ibe and Njemanze, 151 

1999) Chao Praya and Mae Klong rivers in Thailand (Kruawal et al, 2005), groundwater 152 

samples from Egypt (El-dars, 2005) and Fly river in Papua New Guinea (Salomons and 153 

Eagle, 1990) were used as reported in the literature. 154 

 High-density polyethylene containers capable of taking up to 1L of water and 155 

equipped with screw caps were used for sample collection. Each container was washed with 156 

1M HCl and rinsed several times with deionized water before sample collection. The samples 157 

were stored in an Esky containing ice and then transported immediately to the laboratory, 158 

where they were filtered through 0.45 μm millipore filters. The filtrates were acidified to pH 159 

<2 with 6M HNO3 and stored at 4oC in a refrigerator until analysed for the metals by 160 

standard methods (APHA, 1989).  The pH, temperature, conductivity and Total Dissolved 161 

Solid (TDS) measurements were done on site using a Metrohm 620 pH meter for pH 162 

measurements and Hach conductivity/Total Dissolved Solid meter for electrical conductivity, 163 
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temperature and total dissolved solid measurements.  All other parameters were determined 164 

within two days of sample collection. 165 

 Ammonia-nitrogen was determined by the Nessler method. HACH 5 DR/2000 166 

spectrophotometer, digital titrator was used for measurements of physical and inorganic ions 167 

( HACH, 1989) and Atomic Absorption Spectrometer (Perkin Elmer 310) was employed for 168 

the determination of the metals. Standard calibration curves were obtained by analyzing 169 

standards prepared by serial dilution of 1000 ppm stock solutions. Duplicate determinations 170 

were made on most samples and the blank and standard curves were checked after every 10 171 

determinations. The replicated measurements did not differ by more than 5%.  172 

Data processing 173 

All analytical data were initially processed using Microsoft Excel 2003 software for 174 

Windows (Microsoft Corporation) and then subjected to PROMCALC software and Decision 175 

LAB 2000 (Brans, 1991; Decision Lab 2000, 1999) for multi-criteria decision making 176 

(MCDM) analysis by the PROMETHEE and GAIA procedures or to SIMCA–P 10.0 177 

Umetrics AB for principal component analysis and partial least squares.  178 

PROMETHEE and GAIA Procedures 179 

PROMETHEE and GAIA procedures have been described by various researchers (Brans, 180 

1991 and 2002; Brans and Mareschal, 1989 and 2005; Kokot and Phuong, 1999; Epinasse et 181 

al, 1997; Ayoko, et al, 2004). Essentially, they are non-parametric methods based on pairwise 182 

comparisons of the objects and variables. PROMETHEE facilitates the ranking or ordering of 183 

a number of objects (in this work, the water bodies) according to preference and weighting 184 

conditions, which have been pre-selected by the user and are applied to the variables (e.g. 185 

concentrations of nutrients, pH, temperature, conductivity, and total dissolved solid). 186 

Therefore, the first step was to choose a preference function, which provides the 187 

mathematical basis for selecting one object in preference to another. Of the six preference 188 

functions available in the procedures, the V-shaped function (P), which required a threshold 189 
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value to be applied to each variable was used in this work. The threshold was set at the WHO 190 

Limit for each variable. But when there is no WHO Limit for a variable, the highest value of 191 

the variable in a given column was used. Additionally, since a lower value indicates a better 192 

water quality, it was specified that lower variable values are preferred by choosing the 193 

‘minimise’ function when modeling each variable. 194 

To refine the preference selection process, positive and negative outranking flows, φ + 195 

and φ - respectively were computed within PROMETHEE. The former expresses how each 196 

object outranks all others while the latter indicates how each object is outranked by all the 197 

other objects. By applying the set of rules described previously (Brans, 1991 and 2002; Brans 198 

and Mareschal, 1989 and 2005; Kokot and Phuong, 1999; Espinasse et al, 1997; Ayoko, et al, 199 

2004), PROMETHEE II , which provides a full ranking of all objects from the best to the 200 

worst based on their net outranking flow was obtained.  201 

 GAIA, on the other hand, uses principal component analysis techniques to evaluate 202 

and display PROMETHEE results visually. It facilitates the interpretation of the global 203 

performance of each object with reference to a decision vector, π, which appears in the 204 

biplot.  Thus, useful information about the underlying trends in the data matrix such as 205 

clustering of objects or variables and characterisation of outliers may be obtained from GAIA 206 

biplots. One of the marked advantages of GAIA procedures over other multivariate data 207 

analysis methods is that the reduction and standardization of data to unit variance is 208 

unnecessary (Massart et al, 1997) since PROMETHEE serves as a data pre-treatment 209 

procedure for GAIA. Furthermore, PROMETHEE and GAIA use only two principal 210 

components to produce results that are similar to those from principal component analysis. 211 

Nevertheless, their outcomes are comparable to those of their common alternatives (Brans 212 

and Mareschall, 1989; Geldermann, 2001)  and they have been rated as the best among 213 

sixteen multi-criteria decision making methods applied to solve a multi-criteria water bodies 214 

problem (Al-Shemmeri, 1997).  215 
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Partial Least Squares (PLS) 216 

PLS works with two matrices X (e.g. factors) and Y (e.g. responses). The main objectives of 217 

this technique are to: (i) well approximate X and Y and (ii) to model the relationship between 218 

them (SIMCA P 10.0,UmetricsAB; www.umetrics.com). The response block is represented 219 

by the Y scores, U, while the predictive block (X) is described by X scores, T.  PLS 220 

maximises the covariance between U and T by decomposing Y and X  as shown in the 221 

equations below. 222 

Y= UCT + F          (1) 223 

X= TPT + E          (2) 224 

where P and C are loadings or loadings vectors, and E and F are the residuals or errors in X 225 

and Y matrices respectively. 226 

Validation of PLS Models 227 

When data sets that were not originally designed for calibrations are analysed (as in this 228 

work), there is a high probability that over-fitting would occur and that chance correlation 229 

rather than real correlations are observed. To avoid this, model validation is performed by 230 

cross-validation (“leave-one-out” method) or by using a calibration set. In this work, internal 231 

validation using cross-validation, external validation and response permutation were used.  232 

Cross-validation: This involved keeping out parts of the data during model development, 233 

developing the model from the reduced data, predicting the parts kept out by different models 234 

and comparing the predicted values with actual values (Wold 1978). A predicted variation, 235 

Q2 (the fraction of the total variation of the X’s that can be predicted by a component) is 236 

calculated for the optimal number of PLS components and this can be compared with the R2 237 

(the fraction of the sum of squares explained by the component). In this work, cross-238 

validation was carried out using the software, SIMCA P 10.0,Umetrics AB. 239 
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External validation: The entire data matrix was split into two nearly equals. One half was 240 

used as the calibration set and the other as the prediction set.  241 

Response permutation: This was performed in order to confirm the significance of the R2Y 242 

(fraction of the sum of squares of all the Y’s explained by a component) and Q2Y (fraction of 243 

the total variation of Y’s that can be predicted by the component) values obtained from the 244 

internal validation process. Detailed results are presented under results and discussion. 245 

Results and discussion 246 

General description of the five of the ground - and surface - waters  247 

The results of the analyses carried out on the surface waters and groundwater from Papua 248 

New Guinea are presented in Table 1 (which also describes the abbreviations subsequently 249 

used for these water bodies).These results are the means of triplicate measurements, which 250 

agreed within ±5% of each other. It is evident that a wide variation exists in the quality of 251 

water from the water bodies sampled.  252 

The pH of all of the samples is generally within the optimum range of 6.5-9.5 (WHO, 253 

1996) with most having pH values less than 7. The pH of surface - and ground-waters usually 254 

reflects their humic acid, CO2, CO3
2- and HCO3

- contents (Olajire and Imeokparia, 2001; Jior 255 

et al, 1991) and the observed pH values may suggest the presence of acidic matter such as 256 

humic acids and free CO2 in these water samples. The temperature (27.3-28.60C) is also 257 

within the international allowable standard. While its value has no direct effect on human 258 

health and well-being, it may impact on the rate of chemical and biochemical reactions, the 259 

solubility of gases in the water, and in turn the taste and odour. Consequently, strong 260 

unpleasant odour from water may reflect the release of dissolved gases at high temperatures. 261 

 The electrical conductivity of the samples varied widely from 60 to 530 μmho/cm and 262 

reflects the amount of charged substances in the water samples. Similarly, the Total 263 

Dissolved Solids (TDS), which gives a good indication of the salinity ranged from 30 – 250 264 

ppm. WHO recommends that its value should be less than 500 ppm but pegs acceptable limits 265 
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for water potability at 1500 ppm (WHO, 1996). Additionally, TDS in excess of 1000 ppm are 266 

objectionable to consumers and have adverse effects on crop production (Pescod, 1977). 267 

 The concentrations of the inorganic anions (F-, NO3
-, NO2

-, PO4
3- and SO4

2- ) in the 268 

waters were generally well within their respective WHO limits. Although there are 269 

considerable concerns about the level of fluoride in water (Akher, 1998), the highest 270 

observed fluoride level was 0.1 ppm for the Papua New Guinea groundwater 2 (PGG2). Even 271 

at this level, it is well below the threshold concentration (14 ppm) for the onset of crippling 272 

fluorosis but it is within the limit for the onset of mild dental fluorosis (WHO, 1996). 273 

 The sodium contents of the samples were within the desirable limit of 200 ppm for 274 

drinking water (WHO, 1996). WHO has no limit for potassium, which is usually present in 275 

water in lower proportions than sodium. The Ca and Mg contents are generally below 100 276 

ppm in these samples. This suggests that they are soft waters, which have high tendencies to 277 

be corrosive to water pipes (WHO, 1996). Although these cations are not present at toxic 278 

levels in the water samples, the water samples may still be phytotoxic and this could limit 279 

their use for agricultural purposes (Pescod, 1992). In contrast to the concentrations of Na, Ca, 280 

and Mg, the ammonia concentrations showed little variation from one sample to another but 281 

were generally lower than the WHO guideline value limit of 1.5 ppm as were the zinc 282 

concentrations. At 0.4 ppm, the concentration of iron in PGG2 was above 0.3 ppm, which is 283 

the limit above which iron stains laundry (WHO, 1993;WHO, 1996). The manganese 284 

concentrations of two of the Papua New Guinea wells (PGG2 and Papua New Guinea 285 

groundwater 4 (PGG4) are above the WHO guideline value of 0.4 ppm and this is a reason 286 

for concern since manganese is known to cause adverse neurological effects following 287 

exposure from drinking water (WHO, 1996).  The Cu, Pb, Cd, Zn and Ni concentrations of 288 

these waters were either below the detection limits of the Atomic Absorption Spectrometric 289 

method employed for the quantification of the metals or below the WHO guidelines values 290 

for the metals (WHO, 1993;WHO, 1996). 291 
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 Only a few (fluoride, arsenic, nitrate and lead) of the chemical substances present in 292 

drinking water are known to cause widespread health effects in humans. Thus, the health 293 

risks posed by chemical substances are not as acute as those posed by microbial contaminants 294 

(WHO, 1993; WHO, 1996). Nevertheless, significant health effects may arise from exposure 295 

to the chemical constituents of water over a prolonged period. In this respect, it is noteworthy 296 

that substances, such as heavy metals, which have cumulative toxic properties, are not found 297 

at prohibitory levels in these water samples.  298 

Ranking of water quality 299 

To rank the water bodies and unearth patterns in the parameters that influence water 300 

quality, the data were subjected to PROMETHEE and GAIA analyses. The PROMETHEE II 301 

complete ranking results indicated that the net flow for the water bodies are 0.13, 0.07, 0.06, 302 

0.03 and -0.02 respectively for PGS1, PGG2, PGS3, PGG5 and PGG4.. Thus, the most 303 

preferred source is PGS1 followed by PGG2, PGS3, PGG5 and PGG4 (in this order).  The 304 

net outranking flow shows the spread of the objects (the water bodies) in such a way that the 305 

farther apart the outranking flows of any two water bodies, the larger the preference of the 306 

water body with the more positive outranking flow over that with the more negative flow. 307 

Exploratory pattern recognition 308 

In order to examine the variables that were most important in the ranking of the 309 

surface waters and groundwaters, Principal Component Analysis (PCA) of the 5 waters was 310 

performed with the aid of SIMCA P 10.0,Umetrics AB software. To minimise the skewness 311 

of the data (as a result of missing values) a constant number (100) was added to all variables 312 

and the data was log transformed and auto-scaled (mean-centered and scaled to unit variance) 313 

before PCA modeling. Approximately 72% of the variance is explained by the first two PCs. 314 

A close study of the scores plot displayed in Figure 1a reveals the following instructive 315 

details:  The water samples were separated on the first principal component (denoted as t[1] 316 

in the SIMCA P-10 software). One cluster consisting exclusively of groundwater samples  317 
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from a particular locality (PGG4, and PGG5) had negative t[1] scores while water samples 318 

from other locations (PGS1, PGG2, PGS3,) had positive t[1] scores (Figure 1a). The 319 

preliminary conclusion from these exploratory PCA was that the principal basis for the 320 

discrimination on  t[1] is the geographic origin of the water supplies. It is well known that 321 

chemical constituents of water may arise from natural sources (e.g rocks and soils) as well as 322 

agricultural and industrial activities, which differ from one location to another (WHO, 1993; 323 

WHO, 1996). 324 

The loadings plot (Figure 1b) showed that the first principal component loading 325 

vector (denoted as p[1] in the SIMCA P-10 software) has fairly large positive coefficients for 326 

NO2
-, NO3

- and NH3-N, and relatively large negative coefficients for conductivity, Cl-, Fe, 327 

SO4
2- and PO4

3-. The second principal component loadings vector (p[2]) has relatively large 328 

positive coefficients for Na and K, and large negative coefficients for conductivity. Thus, 329 

these are the dominant variables in ranking the water bodies. Five broad groups of such 330 

variables are apparent from the loadings plot in Figure 1b. Group A consisted of  TDS, PO4 2-331 

, Cl- and   SO4 2-, group B is made up of conductivity, Mg, F- and Fe; group C consisted of  332 

Na and K ; group D is made up of NH3-N, NO2
- and NO3

- and group E contained Ca, Zn, pH 333 

and Mn.  334 

Exploratory comparison of international data 335 

Overall PROMETHEE ranking: For the purpose of multivariate data analysis, the primary 336 

water quality data in Table 1 was treated as matrix 1, while additional data obtained from 337 

previous water quality studies carried out on water samples from Nigeria and Papua New 338 

Guinea (Okoye,1991; Olajire et al, 2001; Agbu, 1984 and Alaribe, 1984; Ibe and Njemanze, 339 

1999; Salomons and Eagle, 1990) were treated as matrix 2, literature data on similar 340 

investigations conducted on Indian/Pakistani waters (Afzal et al, 2000) were treated as  341 

matrix 3 and data from Thai and Egyptian studies (Kruawal et al, 2005; El-dars, 2005)  were 342 

treated as matrix 4.  The water sources were compared because they represented examples of 343 
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surface - and ground- waters qualities in developing countries where water resource planning 344 

and water quality assessment policy options are most urgently required.  In order to compare 345 

the results of the multivariate analysis obtained in the current study with those from other 346 

similar water quality studies carried out in Nigeria and Papua New Guinea (matrix 2) and 347 

India/Pakistan (matrix 3) and Thailand and Egypt (matrix 4), the four matrices were 348 

combined into a single matrix, the variables were given equal weights and the matrix 349 

analysed by PROMETHEE. A complete PROMETHEE II outranking flow for the combined 350 

matrix is presented in Table 2.  Sample NGS21 (surface water no.21 from Nigeria (Okoye, 351 

1991) has the most positive outranking flow value. Therefore, its quality outranks those of all 352 

other water samples. Conversely, sample EGG52 has the lowest net outranking flow value 353 

and it is outranked by all other water samples. Generally, based on the physico-chemical 354 

properties of the water samples, most Nigerian water samples (Okoye, 1991; Ibe and 355 

Njemanze, 1999; Ekpo and Inyang, 2000) are among the best performing water bodies. The 356 

Indian/Pakistani water samples are generally amongst the medium and best performing 357 

waters, the Papua New Guinean water samples were generally medium performers and the 358 

Thai and Egyptian samples were among the least performing. Evidently, the qualities of the 359 

water samples are significantly influenced but not solely determined by their geographic 360 

origins. It is, however, noteworthy that variables such as PO4
3-, SO4

2-, NH3-N, TDS, Mn, 361 

NO2
-, Mg, Cl, Ca, Na, and K, which account for large data variances in the analysis of the 362 

combined matrix, contribute significantly to the ranking of the water bodies. 363 

Selection of global key variables 364 

Overall Principal Component Analysis : Next, using SIMCA P-10 software, we carried out 365 

PCA on matrices consisting of (i) matrix 1,  (ie results from the current study) (ii) matrix 2 366 

(results from published studies conducted in Nigeria (Okoye, 1991; Ibe and Njemanze, 367 

1999;;Ekpo and Inyang, 2000) and Papua New Guinea (Salomons and Eagle, 1990) (iii) 368 

matrix 3 (data obtained from a study carried out by Afzal et al (Afzal et al, 2000) in 369 
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India/Pakistan, matrix 4  (data obtained from Kruawal et al, 2005; El-dars, 2005 studies) and 370 

(iv) a combination of matrices 1, 2, 3 and 4. When variables reported in these literature 371 

references were weighted equally, the most important and least important variables identified 372 

from each PCA are presented in Table 3. Of these variables TDS, Ca, SO4
2- , Na and Cl 373 

appear among the most important variables in each of the matrices in Table 3. Therefore, they 374 

were selected as the most important variables influencing the water qualities.  Interestingly, 375 

the scores plot for the combined matrix (Figure 2) showed that the water bodies from matrix 376 

1 and most from matrix 2 (Agbu, 1984 and Alaribe, 1984 Okoye, 1991; Ibe and Njemanze, 377 

1999; Ekpo and Inyang, 2000) had positive t[1] scores (Cluster C) while all of the 378 

India/Pakistan water bodies had negative t[1] and t[2] scores (Cluster A). However, some of 379 

the objects from matrix 2 (Salomons and Eagle, 1990) had negative t[1] and t[2] scores 380 

(Cluster A) while most of the objects from matrix 4 had positive t[2] but negative t[1] scores 381 

(Cluster B).  382 

The key variables for prediction  383 

Overview PLS model: The main conclusions from the above analyses are (i) the water 384 

bodies were separated to a large extent on t[1] and t[2] on the basis of their geographic 385 

origins, although this is not the only parameter influencing their qualities and (ii) TDS, Ca, 386 

SO4
2-  Na and Cl- are the most important variables that influence the water qualities. Kettaneh 387 

et al (2005) have suggested that not all variables in a matrix are important. If there are N (26 388 

in this case) variables in a matrix, they suggested that the salient feature of the matrix will be 389 

dominated by √N variables (about 5 in this case). We therefore set out to test whether the five 390 

variables identified as the most important variables could be used as surrogates to predict 391 

physico-chemical properties of water in developing countries where, due to lack of the 392 

necessary infrastructure and expertise, it is not possible to carry out elaborate water quality 393 

studies. Thus, a PLS model in which TDS, Ca, SO4
2-  Na and Cl- were used as X variables 394 

was developed for the combined data matrix (N = 57) yielding two significant components 395 
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with the cumulative R2X (sum of squares for the X-block) = 0. 84; cumulative R2Y (sum of 396 

squares for the Y block) = 0.34 and cumulative Q2 (fraction of the total variation of the X’s 397 

that can be predicted by the components) = 0.30. According to Sun (Sun, 2004), Q2  values 398 

equal or higher than 0.3 can be interpreted,  Q2  greater than 0.5 is associated with a good 399 

model while Q2  is greater than 0.9 for an excellent model. Furthermore, the inner 400 

relationship of the Y-block PLS scores (denoted as u[1] in the SIMCA p-10 software) against 401 

the X-block scores (t[1]) was linear with the regression equation y = x -7 x 10-7, R2 = 0.72 402 

and N = 57 at 95% confidence level.  This indicates that the correlation between the Y block 403 

and X block is significant at 95% confidence level and that the X variables can be used to 404 

predict the Y variables encountered in this study. 405 

 To confirm the validity of the model, several parallel models in which the X (factors) 406 

data in the calibration set is kept constant and the Y (responses) data randomly reordered 407 

were developed [Eriksson et al, 2001]. New values of R2Y and Q2Y computed from the 408 

permuted Y data were then compared with the estimates of the R2Y and Q2Y from the parent 409 

PLS model in order to appraise the statistical significance of the latter values. In this work, 410 

the permutation procedure were repeated two hundred times and if every time lower R2Y and 411 

Q2Y values were obtained than those from of the original data, the significance of the “real” 412 

PLS model was confirmed (Eriksson, 2001). The result of response permutation obtained in 413 

the present work showed that the intercepts obtained for plot of R2Y and Q2Y (Y-axis) 414 

against the correlation coefficients between the permuted and original response variables (X-415 

axis) for a model in which X = Total Dissolved Solid, Ca, SO4
2-, Na and Cl- ; Y= 416 

Conductivity and  number of samples = 57 were R2 = 0.0, 0.04 and Q2 = 0.0, -0.06. Eriksson 417 

et al (2001) have shown that when R2 < 0.3-0.4 and Q2 < 0.05 the explanatory and predictive 418 

powers of the model are much higher than those obtained from randomly fitted Y data. 419 

Therefore the present model is valid. 420 
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When the water bodies with odd sample numbers (N =29) were used for model 421 

calibration and those with even sample numbers (N = 28) were used as validation sets, the 422 

correlation coefficients (R2) of plots of the observed and predicted variable values together 423 

with the root mean square errors of prediction (RMSEP) are presented in Table 4. Given the 424 

facts that (i) the water bodies are from widely different origins, (ii) the studies were 425 

undertaken under different conditions and (iii) the limit of acceptable R2 at 95% coefficient 426 

level is 0.28 for 50 samples (Minium et al, 1993), it is evident that variables like PO4 
3-, NH3-427 

N, Mg, NO3
-, NO2

-, Fe, F-, Mn, As, Se and B can be confidently predicted. The root mean 428 

square of the errors of prediction (RMSEP), which might have arisen from (i) errors in the 429 

calibration set, (ii) errors in the prediction set, and (iii) errors in the prediction, are generally 430 

low (cf Eriksson, 2001). Similarly, the percentage absolute error (defined as 100 X (observed 431 

value-calculated value/observed value) is generally below 10% (Haus et al, 2003). Hortwitz 432 

(1982) suggested that at 1 ppm level, about 16% error is expected in the interlaboratory 433 

comparison measurements. Thus, the prediction efficiency of the model for these variables is 434 

comparable to the interlaboratory analysis experience.  435 

Implications 436 

The paper reported the use of PROMETHEE and GAIA procedures for the systematic 437 

interpretation of surface - and ground - waters quality in developing countries. 438 

PROMETHEE ranked the water bodies based on 26 water quality-influencing variables. 439 

Importantly, apart from the present study, the data used for the modeling and prediction was 440 

obtained from various investigations, indicating that globalization of information with the use 441 

of chemometrics is a very feasible approach for studying performance and prediction issues 442 

in water quality. Information from modest, cost-effective and affordable water quality studies 443 

may be brought together for meaningful exploratory (or large) investigations. In this 444 

exploratory study, the application of chemometrics techniques to a moderate size data set, 445 

consisting of globally diverse samples, has led to the extraction of information, which 446 
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potentially could have significant benefits for lowering water analysis costs, especially in the 447 

developing countries.  Patterns from PCA plots identified TDS, Ca, SO4
2-, Na and Cl- as the 448 

most important variables influencing the ranking of the water bodies. These variables were 449 

subsequently found (by PLS analysis) to be useful for modeling and predicting the levels of 450 

the other water pollutants. Available methods for monitoring the variables are comparatively 451 

cheap and it is palpable that the chemometrics procedures highlighted in this paper could (i) 452 

reduce the financial and opportunity cost associated with extensive monitoring of the 453 

chemical and physical qualities of surface water and groundwater and (ii) be used in 454 

developing countries to obtain reasonably good estimates of the levels of other pollutants in a 455 

water resource from the TDS, Ca, SO4
2-  Na and Cl- contents. Although the modeling 456 

described did not produce satisfactory prediction for some water quality indicators 457 

,considering the fact that data used for the modeling were obtained for investigations that 458 

were not carried out under identical conditions, the results provide a support for the viability 459 

of our concept – the possibility of using multivariate data analysis methods to predict water 460 

quality from a few easily measured variables. More work is required on this concept in order 461 

derive appropriate types of indicators from which water quality can be confidently predicted. 462 
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 568 

Table 1: Physico-chemical characteristics of the surface waters and groundwaters from Papua 569 

New Guinea*.  570 

 Tempa Condb pHc TDS SO4 
2- PO4 

3- Cl F NH3-
N 

NO3- NO2- Na K Ca Mg Fe Mn Zn 

PGS1 27.6 60 6.8 30 0.1 0.1 0.1 0.1 0.09 <0.1 <0.01 1.8 0.8 1.3 2 0.1 0.01 0.01 

PGG2 27.3 120 6.8 60 3.0 0.1 0.1 0.2 <0.010.1 <0.01 3.2 1.8 0.6 4 0.4 0.2 0.02 
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PGS3 27.5 60 6.8 30 0.1 0.1 0.1 0.1 0.08 0.1 <0.01 8.0 13.5 1.2 2 0.1 0.04 0.01 

PGG4 28.6 530 7.0 250 1.0 0.1 0.5 0.1 0.06 <0.1 <0.01 12.5 0.7 24 25 <0.011.2  0.01 

PGG5 28.5 410 7.5 220 0.1 0.1 1.8 0.01 0.04 <0.01<0.01 17.0 0.2 48 9 <0.010.04 0.09 

 571 

 * The Cu, Cd, Zn and Ni contents of the waters were generally below the detection 572 

limit of the atomic absorption spectrometric method used. a in 0C; b in μs cm-1; c in pH 573 

unit; all other measurements are in ppm; PGS1 = Papua New Guinea surface water 1; 574 

PGG2 = Papua New Guinea groundwater 2; PGS3 = Papua New Guinea surface water 575 

3; PGG4 = Papua New Guinea groundwater 4; PGG5 = Papua New Guinea 576 

groundwater 5;  577 



Table 2: PROMTHEE II complete ranking results for the water bodies from this study as well 
as other similar studies conducted in Nigeria, Egypt, Thailand, Papua New Guinea and 
India/Pakistan. 
 

Object* 

φ +  φ - 

Net 
outranking 
flow (φ) 

Rank Origin* Ref 

NGS21 0.0385 0.0035 0.0350 1 NG Ibe and Njemanze, 1999 
NGS10 0.0384 0.0036 0.0348 2 NG Ibe and Njemanze, 1999 
NGS12 0.0382 0.0040 0.0342 3 NG Ibe and Njemanze, 1999 
PGS22 0.0382 0.0043 0.0340 4 NG Salomons and Eagle, 1990 
NGS20 0.0381 0.0044 0.0337 5 NG Ibe and Njemanze, 1999 
NGS11 0.0382 0.0048 0.0334 6 NG Ibe and Njemanze, 1999 
NGS9 0.0377 0.0045 0.0332 7 NG Ibe and Njemanze, 1999 
NGG6 0.0375 0.0043 0.0331 8 NG Agbu, 1984 
NGG7 0.0373 0.0045 0.0329 9 NG Alaribe, 1984 
NGS8 0.0374 0.0046 0.0327 10 NG Ibe and Njemanze, 1999 
NGS13 0.0373 0.0056 0.0316 11 NG Ibe and Njemanze, 1999 
PGS1 0.0358 0.0060 0.0298 12 PG This work 
NGS19 0.0335 0.0088 0.0247 13 NG Ekpo and Inyang, 2000 
IPG43 0.0238 0.0062 0.0177 14 IP Afzal et al, 2000 
IPG45 0.0238 0.0062 0.0177 15 IP Afzal et al, 2000 
EGG46 0.0238 0.0061 0.0177 16 EG El-dars, 2005 
NGS15 0.0245 0.0079 0.0166 17 NG Ibe and Njemanze, 1999 
NGG18 0.0228 0.0079 0.0149 18 NG Ibe and Njemanze, 1999 
NGS14 0.0222 0.0102 0.0120 19 NG Ibe and Njemanze, 1999 
PGG2 0.0254 0.0148 0.0106 20 PG This work 
NGG16 0.0203 0.0112 0.0091 21 NG Ekpo and Inyang, 2000 
PGS3 0.0258 0.0213 0.0045 22 PG This work 
IPG32 0.0164 0.0119 0.0045 23 IP Afzal et al, 2000 
IPG31 0.0163 0.0128 0.0035 24 IP Afzal et al, 2000 
PGG5 0.0234 0.0208 0.0026 25 PG This work 
IPG29 0.0142 0.0144 -0.0001 26 IP Afzal et al, 2000 
PGS23 0.0142 0.0145 -0.0003 27 PG Salomons and Eagle, 1990 
IPG40 0.0125 0.0159 -0.0034 28 IP Afzal et al, 2000 
IPG44 0.0126 0.0164 -0.0038 29 IP Afzal et al, 2000 
PGS24 0.0134 0.0179 -0.0045 30 NG Salomons and Eagle, 2000 
IPG39 0.0122 0.0169 -0.0047 31 IP Afzal et al, 2000 
EGG46 0.0121 0.0170 -0.0049 32 EG El-dars, 2005 
IPG42 0.0121 0.0171 -0.0050 33 IP Afzal et al, 2000 
PGG4 0.0157 0.0215 -0.0058 34 PG This work 
IPG37 0.0119 0.0179 -0.0060 35 IP Afzal et al, 2000 
IPG30 0.0110 0.0186 -0.0075 36 IP Afzal et al, 2000 
IPG36 0.0121 0.0199 -0.0078 37 IP Afzal et al, 2000 
IPG38 0.0107 0.0210 -0.0103 38 IP Afzal et al, 2000 
IPG28 0.0104 0.0213 -0.0108 39 IP Afzal et al, 2000 
IPG26 0.0102 0.0211 -0.0109 40 IP Afzal et al, 2000 
IPG27 0.0102 0.0211 -0.0109 41 IP Afzal et al, 2000 
IPG35 0.0098 0.0216 -0.0119 42 IP Afzal et al, 2000 
IPG34 0.0098 0.0220 -0.0123 43 IP Afzal et al, 2000 
IPG25 0.0099 0.0232 -0.0133 44 IP Afzal et al, 2000 
EGG49 0.0126 0.0263 -0.0137 45 EG El-dars, 2005 
NGG17 0.0158 0.0304 -0.0145 46 NG Ekpo and Inynag, 2000 
IPG33 0.0092 0.0239 -0.0147 47 IP Afzal et al, 2000 
EGG48 0.0121 0.0296 -0.0176 48 EG El-dars, 2005 
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IPG41 0.0089 0.0281 -0.0192 49 IP Afzal et al, 2000 
EGG51 0.0112 0.0359 -0.0247 50 EG El-dars, 2005 
THS57 0.0079 0.0386 -0.0307 51 TH Kruawal et al, 2005 
EGG50 0.0055 0.0444 -0.0388 52 EG El-dars, 2005 
EGG54 0.0057 0.0450 -0.0392 53 EG El-dars, 2005 
THG56 0.0049 0.0488 -0.0439 54 TH Kruawal et al, 2005 
EGG53 0.0044 0.0503 -0.0458 55 EG El-dars, 2005 
EGG55 0.0036 0.0574 -0.0539 56 EG El-dars, 2005 
EGG52 0.0027 0.0660 -0.0633 57 EG El-dars, 2005 
 

*NG =Nigeria; PG = Papua New Guinea; IP= India/Pakistan; EG= Egypt; TH= Thailand; G =groundwater; S = 

surface water; and the suffix Arabic numeral the sample numbers. 
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Table 3: The PCA results for the water bodies from Nigeria, Egypt, Thailand, Papua New 
Guinea and India\Pakistan 
 

 

Matrix Percent of 
variance 
accounted for by 
p[1] and p[2] 

No of 
Objects 

Most important 
variables (those 
with p[1] loadings 
>0.20 or <-0.20 
or p[2] loadings 
>0.35 or < 0.35.) 

Least Important 
variables (those with 
p[1] loadings >0.20 
or <-0.20 or p[2] 
loadings >0.35 or < 
0.35.) 

This study 72 
 

5 PO4
3-, NH3-N, 

SO4
2-, pH, F-, Na, 

Ca, Fe, K, Mg, 
TDS, 
Conductivity, 
NO3

-, Cl-, NO2
- 

 Mn, NO2
-, K, Zn 

Other studies 
from Papua 
New Guinea 
and Nigeria 

71 19 Temp, Cl-,  pH, 
TDS, SO4

2-, NH3-
N, Zn, Na, K, Mg, 
NO3

-, Ca,  

F-, NO2
-, Fe, Mn, Li, 

B, PO4
3-, NO3

-, pH, 
conductivity.  

A study from 
India/Pakistan 

48 21 SO4
2-, Ca, TDS,, 

pH, Na,  Cl-, K, 
NO2

-
,  Li, NO3-   

Fe, B, Cr, Cd, As, P, 
Se, Hg 

Egyptian and 
Thailand 
samples 

87 12 Cl-, NO3
-, Mg, 

PO4
3-, NH3-N,  

TDS, SO4
2-, Ca, 

Na, K, Se, As 

 

Entire data 55 57 Temp, Cl-, B, 
NO3

-, Mg, PO4
3-, 

NH3-N,  TDS, 
Mn, F-, SO4

2-, pH, 
NO2

-, Na, Ca, Li, 
Se,  

Conductivity, Zn, 
Cd, Fe, As, Cr, K, P, 
Hg 



 26 

 
 
 
 
Table 4: Correlation coefficients and errors of prediction for the validation set.  
 
Y Variable Correlation coefficient of observed Vs 

predicted value plot 
Root mean square of root of 
prediction (RMSEP) 

Temperature 0.045 0.032 
 

Conductivity 0.63 0.29 
 

pH 0.13 0.003 
 

Phosphate 0.62 0.01 
 

Fluoride 0.70 0.001 
 

NH3-N 0.60 0.08 
 

NO3
- 0.34 0.05 

 
NO2

- 0.69 0.001 
 

K 0.19 0.028 
 

Fe 0.67 0.04 
Mn 0.60 0.003 

 
Zn 0.54 0.002 

 
Li 0.18 0.005 

 
B 0.69 0.001 

 
Mg 
 

0.60 0.04 

Cd 0.05 0.0000042 
 

Cr 0.26 0.00005 
 

P 0.22 0.0001 
 

As 0.69 0.000034 
 

Se 0.41 0.000035 
 

Hg 0.21 0.000024 
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Figure 1: Scores (a) and loadings (b) plots for the water samples 
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Figure 2: PCA Scores plot for the entire data matrix. Cluster A consists mainly of objects 

from India\Pakistan ; Cluster B contains most objects from the Egyptian and Thai studies  

and Cluster C contains many objects from the present and previous studies carried out in 

Papua New Guinea and  Nigeria . 
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