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ABSTRACT 

 

Background: Direct anchorage of a lower-limb prosthesis to the bone through an implanted 

fixation (osseointegration) has been suggested as an excellent alternative for amputees 

experiencing complications from use of a conventional socket-type prosthesis. However, an 

attempt needs to be made to optimize the mechanical design of the fixation and refine the 

rehabilitation program. Understanding the load applied on the fixation is a crucial step 

towards this goal. 

Methods: The load applied on the osseointegrated fixation of nine transfemoral amputees was 

measured using a load transducer, when the amputees performed activities which included 

straight-line level walking, ascending and descending stairs and a ramp as well as walking 

around a circle. Force and moment patterns along each gait cycle, magnitudes and time of 

occurrence of the local extrema of the load, as well as impulses were analysed.   

Findings: Managing a ramp and stairs, and walking around a circle did not produce a 

significant increase (P>0.05) in load compared to straight-line level walking. The patterns of 

the moment about the medio-lateral axis were different among the six activities which may 

reflect the different strategies used in controlling the prosthetic knee joint. 

Interpretations: This study increases the understanding of biomechanics of bone-anchored 

osseointegrated prostheses. The loading data provided will be useful in designing the 

osseointegrated fixation to increase the fatigue life and to refine rehabilitation protocol.  

Keywords: transfemoral amputation, prosthetics, osseointegration, transducer, activities of 

daily living. 
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INTRODUCTION 

 

The most common method of attaching a prosthesis to a residual limb is by means of a 

prosthetic socket, often with some suspensory devices to retain the socket when not load-

bearing. Although this attachment method has been used for over a century, problems of pain 

in the residual limb and skin breakdown sometimes arise (Gallagher et al., 2001; Hagberg and 

Branemakr, 2001; Hagberg and Branemark, 2001; Mak et al., 2001). High pressure applied 

from the prosthetic socket to the soft tissue of a residual limb that is not adapted to tolerate 

load has been suggested as the cause of the pain and skin breakdown. In addition, some 

residual limbs are too short to support the use of a conventional socket. 

 

In part to overcome these problems, a surgical technique (osseointegration) has been 

developed to allow a prosthesis to be directly anchored to the bone through a fixation based 

on a titanium implant. A coupling device (the abutment) is attached to the implant, while its 

distal end protrudes through the soft tissue to provide the attachment for the external 

prosthesis. In addition to alleviating the skin problems and residual limb pain (Sullivan et al., 

2003), studies have also shown that amputees using transfemoral osseointegrated prostheses 

enjoy a greater range of hip motion and better sitting comfort compared to the socket-type 

(Hagberg et al., 2005). They can walk further and be more active than using a conventional 

prosthesis (Robinson et al., 2004; Sullivan et al., 2003), and can have improved sensory 

feedback (through ‘osseoperception’) (Branemark et al., 2001). External components of the 

prosthesis can be attached to and detached from the abutment easily and the alignment is 

faithfully preserved. To date, there are over 80 transfemoral amputees world-wide who have 

been fitted with the transfemoral osseointegrated fixation developed by Dr. R. Brånemark 

(Branemark et al., 2001). However, factors such as steroid medication or anti-tumour 

chemotherapy which may interfere with bone healing, heavy smoking or diabetes which may 
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increase risk of bone sepsis, and body weight in excess of 100 kg are possibly contraindicate 

to the fitting of lower-limb osseointegrated prostheses (Robinson et al., 2004). 

 

As with amputees using socket-type prostheses, those who use osseointegrated prostheses 

undergo a rehabilitation process, which involves incremental static loadings on the abutment 

to prepare the bone to tolerate forces transmitted from the implant when performing essential 

activities. Understanding the load experienced during various activities might help refine the 

rehabilitation process. Previous studies have also indicated certain gait deviations among 

transfemoral amputees in walking on level and uneven terrains (Jaegers et al., 1995; James 

and Oberg, 1973; Murray et al., 1983; Schmalz et al., 2007), in spite of the improved 

prosthetic knee joint designs in locking and bending mechanics. In addition, mechanical 

failures of the abutment sometimes occur after long use or as the result of excessively high 

magnitude load application usually induced by a fall (Sullivan et al., 2003). The abutment is 

designed to fail in order to protect the bone from overload, but attempts can be made to 

optimize the strength of the fixation and to develop safety devices to protect the fixation and 

the bone with the understanding of the loads developed during common daily activities. To 

refine the rehabilitation program as well as to develop the fixation system, safety devices and 

different prosthetic components to address the mechanical problems and improving walking 

ability, it is important to have a comprehensive understanding of the load applied on the 

fixation. 

 

Over the past two decades, loadings applied at the distal end of prosthetic sockets have been 

studied (DiAngelo et al., 1989; Stephenson and Seedhom, 2002; Nietert et al., 1998; Berme et 

al., 1975; Frossard et al., 2003). The load has been calculated using inverse dynamics relying 

on the motion of the prosthesis captured by a motion analysis system and the ground reaction 
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forces measured by a force plate (DiAngelo et al., 1989; Stephenson and Seedhom, 2002). 

The load can also be measured directly using appropriate load transducers (Berme et al., 

1975; Nietert et al, 1998). Frossard and colleagues (Frossard et al., 2003) measured the direct 

load applied at the transfemoral socket end using a commercial load transducer mounted 

between the prosthetic knee joint and the socket, and suggested that direct load measurement 

could improve accuracy and allow measurement to be taken for unlimited walking steps.  In 

addition, direct measurement allows loadings to be measured for any type of activity and on 

any terrain. 

 

Although the application of such direct measurement technics to transfemoral amputees using 

osseointegrated prostheses has been reported (Frossard et al., 2001), the data were limited to 

one subject only. Comprehensive understanding of the load applied on osseointegrated 

fixation during level walking is important. It is also crucial to understand the load in various 

activities of daily living such as climbing stairs and walking inclines. Because of the loss of 

some musculature and joint mobility, functional demands may increase dramatically when 

performing daily activities. In addition, amputees may employ different loading strategies to 

help them manage different activities, all of which may pose a potential danger to the 

structural integrity of the fixation system and the bone. 

 

The aim of this study is to use a direct measurement method to compare the load applied on 

the osseointegrated fixation of nine transfemoral amputees performing several activities of 

daily living including managing ramps, stairs and walking around a circle which are believed 

to be the most commonly performed activities during daily living.  
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METHODS 

 

Participants and prostheses 

A total of two female and seven male unilateral transfemoral amputees fitted with 

osseointegrated fixation participated in this study. The demographic details of each subject 

are summarized in Table 1. All participants have been walking with the fixation for at least 

one year, and can walk 200m independently without additional walking aids. Load 

measurement took place in a clinical environment at Sahlgrenska University Hospital, 

Gothenburg, Sweden where the participants were recruited.  Human research ethical approval 

was received from the Queensland University of Technology. Written consent was obtained 

from all participants. 

 

Amputees were fitted with their regular prosthetic components, as presented in Table 1, with 

the load transducer substituted for the adaptor which connected the Rotasafe to the knee joint. 

Rotasafe is a safety device, based on a clutch, which prevents excessive torque on the 

abutment. A compromise was made for three participants who could not retain a Rotosafe due 

to the lack of space to fit the load transducer. The transducer was fitted by a prosthetist who 

replicated the usual alignment of the prosthesis for each amputee. 

 

Apparatus 

The technique used to measure the load is similar to the one described in previous studies 

(Frossard et al., 2003; Frossard et al., 2001). A six-channel load transducer (Model 45E15A; 

JR3 Inc., Woodland, USA) was used to measure directly the 3-dimensional forces and 

moments applied to the abutment. The transducer was mounted to customized plates that were 
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positioned between the abutment and the prosthetic knee. The transducer was aligned so that 

its vertical axis was co-axial with the long (L) axis of the abutment and femur. The other axes 

corresponded to the anatomical antero-posterior (AP) and medio-lateral (ML) direction of the 

abutment as depicted in Figure 1. Forces acting along the AP, ML and L axes were denoted as 

FAP (anterior was positive), FML (lateral was positive), and FL (compression was positive), 

respectively. Moments about the three axes were denoted as MAP (lateral rotation was 

positive), MML (anterior rotation was positive) and ML (external rotation was positive), 

respectively. The maximum capacity was 2,273N for FL, 1,136N for FAP and FML, and 130Nm 

for moments about the three axes. Accuracy was 0.1% of the maximum capacity. Each 

channel was sampled at 200 Hz. A wireless modem (Ricochet Model 21062; Metricom Inc., 

Los Gatos, USA) was used to transmit data from the transducer to a nearby laptop computer. 

 

Protocol 

Approximately 15 minutes of practice with the instrumented prosthetic leg was allowed 

before load measurement to ensure subject confidence and comfort. Then, the participants 

were asked to perform each of the activities including: straight-line level walking; walking 

upstairs, downstairs, upslope, and downslope; and walking along a circle. Detailed 

descriptions of each activity are shown in Table 2. Load data was measured for at least five 

steps of the prosthetic limb for each activity. The amputees were required to walk and manage 

the stairs and slope at a self-selected, comfortable speed. The order of each activity was 

randomized. Finally, the prosthesis was detached from the residuum to enable a one-minute 

recording without load applied on the transducer for calibration purposes. 

 

Data processing 
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The raw force and moment data was imported and processed by a customized Matlab 

software program (The MathWorks Inc., MA, USA). The load data was offset according to 

the magnitude of the load recorded during unloaded conditions. The first and last strides 

recorded for each trial were also removed in order to avoid the initiation and termination of 

walking. The patterns of the three-dimensional forces and moments for each gait cycle were 

analysed. The heel contact and toe-off time was determined according to the curve of the 

long-axis force. A gait cycle was defined as the period between two consecutive heel contacts.  

 

The magnitude of local extrema of the three components of forces and moments presented in 

Figure 2 were determined for each step of the prosthetic limb. Resultant forces (Fr) were 

calculated by the vector sum of FAP, FML and FL. The time of occurrence (expressed in 

percentage of stance phase time) as well as the magnitude (expressed in percentage of body 

weight) of the local extrema of Fr were identified. Impulse (IAP, IML, IL and IR) for each step of 

the prosthetic limb was calculated by using the conventional trapezoid method to integrate the 

area under the force-time curves (FAP, FML, FL and Fr). Each parameter (the local extrema, 

time of occurrence and impulse) was averaged across steps for each subject. To discuss the 

differences in loading strategies among various activities of daily living, the means and 

standard deviations of each parameter across subjects were computed for each activity. 

Statistical analyses were performed in SPSS statistical software (LEAD technologies, Inc.). 

Differences among the activities were determined by repeated measures analysis of variance 

(ANOVA). A post-hoc Tukey’s test was used to identify the significant difference. A 

significance level of P< 0.05 was used. 

 

 

RESULTS 
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Patterns of forces and moments 

Figure 2 shows the typical patterns of forces and moments in straight-line level walking. It 

can be seen that although the three loading axes (AP, ML, L) were fixed relative to the limb 

during ambulation, the three components of forces followed a pattern that was similar to the 

ground reaction forces obtained with a fixed force-plate (Perry, 1992; Zahedi et al., 1987). As 

expected, FL was the largest in magnitude among the three components of forces and 

presented two peaks and a valley. Small plateaus were found immediately before the first 

peak of the curve in a few subjects, which may be explained by a sense of insecurity or 

discomfort. During level walking, the abutment experienced some posterior braking forces at 

the early stance phase, and anterior propulsive forces at the late stance phase, and consistently 

experienced some lateral forces throughout the entire stance phase of the gait. Lateral 

rotational moment was consistently experienced during the stance phase of the gait. Anterior 

rotational moment was experienced during the mid-stance phase, and posterior rotational 

moment at the late-stance phase related to unlocking of the prosthetic knee joint was 

experienced when performing level walking. Due to the traction created by gravity acting on 

the mass of the prosthesis which was located below the transducer, the forces and moments 

had small magnitudes during the swing phase. All subjects demonstrated similar patterns of 

forces and moments for level walking, except for ML which showed inconsistent patterns 

among participants (Figure 3). 

 

When performing the other activities of daily living, the patterns of forces and moments were 

close to those of level walking as described above. However, there were exceptions for FAP, 

ML, and MML. Figures 4a and 4b show FAP along a gait cycle when the majority of the 

subjects walked upstairs and downstairs. Unlike level walking with some posterior forces 
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exerted at the abutment at the early stance phase and anterior forces at the late stance phase, 

the abutments of seven subjects experienced posterior forces most of the time at the stance 

phase when they walked downstairs. When walking upstairs, the abutment of six subjects 

experienced anterior forces during the entire stance phase. The FAP patterns of the remaining 

subjects are displayed in Figures 4c and 4d, which show entirely different curve patterns. In 

calculating the local extrema of FAP, those remaining subjects were excluded. Patterns of FAP 

for walking inclines and around a circle follow those for straight-line level walking. All 

subjects demonstrated inconsistent ML patterns among the six activities depicted in Figure 5. 

Figures 6a-d display the different patterns of MML for all subjects among the four activities: 

ascending and descending stairs and a ramp. Walking upslope and upstairs produced an 

average anterior rotational moment of 17 Nm and 10 Nm respectively, while walking 

downslope and downstairs did not produce a prominent peak anterior rotation moment (Figure 

6). Walking around a circle produced similar MML patterns to level walking along a straight 

line. 

 

Local extrema  

A total of ten local extrema for the three components of forces and moments were studied, 

which represented the key features of the curve plotting force/moment data against time as 

presented in Figure 2. The local extrema were the turning points of the curves which 

presented the highest absolute magnitude of loads. Two local extrema were identified for the 

maximum anterior (FAP+) and posterior (FAP-) forces, one for the maximum lateral force 

(FML+), and two peaks for the axial force (FL1 and FL2). One local extrema was identified for 

the maximum lateral rotational moment (MAP+), two for the maximum anterior (MML+) and 

posterior (MML-) rotational moments and two local extrema were identified for the peak 

external (ML+) and internal (ML-) rotational moments. In addition, the magnitudes of the two 
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peaks (Fr1 and Fr2) and the time of occurrence of the two peaks (TFR1 and TFR2) were 

identified. 

 

Table 3 shows the mean and standard deviation across subjects of each local extrema in six 

different activities. There was no statistical difference among activities in each local extrema 

of the three components of forces and moments. As far as the body-weight normalized 

resultant forces are concerned as presented in Table 4, it was found that the Fr1 in walking 

upstairs [101% (SD 14%) body weight] was statistically higher than in walking downstairs 

[78% (SD 12%) body weight]. Meanwhile, the TFR2 in walking downstairs [56% (SD 11%) 

stance phase] was statistically earlier than other activities except walking downslope. The 

TFR1 in walking downstairs [26% (SD 33%) stance phase], in addition, appeared statistically 

earlier than walking upstairs [39% (SD 8%) stance phase]. Time of occurrence of local 

extrema in each particular component of force and moment was not computed because of the 

highly inconsistent patterns in some activities. 

 

Impulses 

The overall loading of the prosthesis over the support phase represented by the impulse is 

provided in Table 5. As expected, the impulse produced in long axis (IL) was the largest in 

magnitude among the three axes. IAP in walking upslope was statistically higher than that of 

walking downslope and downstairs, while IL and IR in walking downstairs was statistically 

lower than other activities except walking down the slope. 

 

DISCUSSION 
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Conventionally, the load experienced by prosthetic components, including implants in the 

lower limbs, can be estimated using inverse dynamics methods which are based on the motion 

of the limb and the ground reaction forces (DiAngelo et al., 1989; Stephenson and Seedhom, 

2002). The drawbacks of this method are that only one or two steps of walking can usually be 

measured, force-plate targeting can produce ‘un-natural’ gait (Wearing et al., 2001), and 

accurate determination of inertia of natural and prosthetic limb segments is needed. In 

addition, loads cannot be measured easily using force plates when walking on uneven terrain. 

This study used a portable recording system based on a load transducer and a wireless 

modem. This allowed direct measurement of load applied to the abutment. In addition, the 

wireless system allowed the true loading to be measured in different environments, and 

subjects could walk unimpeded when they performed the various activities.  

 

The main objective of this study was to examine the differences in load applied on 

osseointegrated fixation during various activities of daily living. If level straight-line walking 

is considered to be the baseline, it was found that the other five activities which were believed 

to be more physically demanding did not produce any statistically significant increase in 

loading when compared to the baseline. This may imply that these five activities would not 

induce higher risk to the structural integrity of the fixation system. Impulses represented the 

utilisation of the prosthesis. IL in walking downstairs was statistically lower than in straight-

line walking, but it was also statistically lower than walking upslope, upstairs and around a 

circle.  

 

There was no statistical difference in local extrema identified in the three components of 

forces and moments between every pair of activities. Although there were large differences in 

some cases, for instance, FAP- in walking downstairs was 47% higher than the average of all 
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the other activities, a statistical difference was not reached because of the large standard 

deviations across subjects. Some statistical differences were found in the magnitude and the 

time of occurrence of peak resultant forces. Fr1 in walking downstairs was on average the 

lowest among all activities and was statistically lower than in walking upstairs. In addition, 

TFR2 in walking downstairs and downslope were statistically earlier than some other activities, 

while TFR1 in walking downstairs was statistically earlier than in walking upslope. The earlier 

peaks as well as lower magnitude of Fr1 are likely to be due to the rapid forward progression 

of the prosthetic limb, resulting from the lack of plantar flexion and active knee flexion of the 

prosthetic joints, which are important in maintaining stability when descending from a step or 

a ramp.  This also explains the significant reduction of impulses in walking downstairs. In 

addition, because of the lack of active motion of the joints, amputees tend to roll the 

prosthetic foot over the step edges when managing stair descent as reported for conventional 

transfemoral amputees (Schmalz et al., 2007). 

 

Similar patterns of forces and moments were seen in the six different activities, except for 

FAP, ML and MML.  Rotational moment (ML) was inconsistent among subjects and activities. 

The maximum absolute value of external and internal rotational moment fell within a narrow 

range between 3.0 Nm to 6.3 Nm among the six activities. This could have implications in the 

minimal torque required to tighten the abutment to the implant, as well as threshold value for 

the Rotasafe rational protective devices. The variations in the patterns of FAP and MML could 

suggest that amputees use different strategies in prosthetic knee joint control when they 

manage different activities. Walking upslope and upstairs produced some anterior rotational 

moment during stance phase. Walking downslope and downstairs, on the other hand, did not 

produce a prominent peak anterior rotation moment (Figure 5), which indicates the line of 

action of the ground reaction force was always kept behind the knee joint. There was a peak 



                Page 14 of 26 
 

posterior rotational moment at the late stance phase of the gait when the subjects performed 

level walking, managing slope, and walking around a circle. This could be explained by the 

effort of initiating knee flexion in order to provide foot clearance during the swing phase. 

  

Various strategies of prosthetic knee control might explain the different loading recorded in 

different activities. A good control of the prosthetic knee is critical for a smooth ambulation 

and there are different prosthetic knees in the market that employ various control mechanisms 

in giving motion and stability to the knee. The differences in loading may also be explained 

by the different walking patterns. For example, rolling the prosthetic foot over the edge of the 

step may explain the reduction of loads. Prosthetic alignment, which refers to the special 

position of the prosthetic foot relative to the residual limb, is also important. Variation in 

alignment can change the load transfer biomechanics as well as walking ability. In order to 

aid in precise explanation of the load, control of the prosthetic knee and alignment, future 

studies can collect simultaneous kinetic and kinematic data to determine body motion, knee 

joint angle and loading. Studies can also be performed to investigate the effect of different 

knee mechanisms and alignment on gait.  

 

This study focuses on the loading applied on the fixation system which will be helpful in the 

future mechanical design of the system and refining of the rehabilitation process. Future 

studies will perform experimental structural test and computational stress analyses to 

investigate the stress/strain distribution at the bone-implant interface and the entire fixation 

system and estimate the fatigue life using the existing load data. 

 

CONCLUSIONS 
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This study measured and compared the load acting on the fixation of nine transfemoral 

amputees fitted with osseointegrated fixation performing six different activities of daily 

living. The magnitudes of local extrema as well as the curve patterns of each component of 

forces and moments were revealed. Results suggested that managing ramp and stairs, and 

walking around a circle did not produce a significant increase in load compared to straight-

line level walking. Results also suggested that different strategies were used to control the 

prosthetic knee joint for different activities. Future studies will attempt to utilize this load data 

to optimize the fixation design as well as to refine the rehabilitation process, and to collect 

kinematic data to produce full explanation of the load data. 
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APPENDIX 

 

Abbreviations list: 

FAP: Antero-posterior force 

FML: Medio-lateral force 

FL: Long-axis (of residual femur) force 

Fr: Resultant force 

MAP: Moment about the antero-posterior axis 

MML: Moment about the medio-lateral axis 

ML: Moment about the long-axis 

FAP-, FAP+: The most positive and negative values of FAP 

FML+: The most positive value of FML 

FL1, FL2: The two peaks of FL 

MAP+: The most positive value of the MAP 

MML+, MML-: The most positive and negative value of the MML 

ML+, ML-: The most positive and negative value of the ML 

Fr1, Fr2: The two peaks of Fr 

TFR1, TFR2: Time of occurrence of Fr1 and Fr2 

IAP: Impulse of FAP (integrated the area under the force-time curve) 

IML: Impulse of FML (integrated the area under the force-time curve) 

IL: Impulse of FL (integrated the area under the force-time curve) 

IR: Impulse of FR (integrated the area under the force-time curve) 
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Table 1. Subject characteristics. (*The total mass includes body mass plus the mass of the 
instrumented prosthesis) 

 
Subject 
number 

Gender 
(M/F) 

Age 
(years) 

Height 
(m) 

Total 
mass* 
(kg) 

Side of 
amputation

(R/L) 

Footwear Prosthetic 
foot 

Prosthetic 
knee 

Rotasafe 

1 F 57 1.63 61.1 R Sandals Total 
concept 

Total knee Yes 

2 
 

M 50 1.81 74.3 L Sandals TruStep Total knee No 

3 M 59 1.89 87.1 R Leather 
shoes 

TruStep Total knee No 

4 F 49 1.58 53.3 R Sandals Total 
concept 

Total knee Yes 

5 M 41 1.77 96.6 R Running 
shoes 

C-Walk Total knee No 

6 M 26 1.78 90 R Leather 
shoes 

Carbon 
Copy 

C-leg Yes 

7 
 

M 46 1.99 99.5 L Sandals C-Walk Total knee Yes 

8 M 50 1.82 99.8 R Leather 
shoes 

Flex Foot GaitMaster Yes 

9 M 45 1.72 80.4 R Running 
shoes 

TruStep Total knee Yes 

Mean 47 1.78 82.5      

Standard deviation 9.7 0.12 16.8      

 
 
 
 
 
 
Table 2. Descriptions of the 6 various activities performed during direct measurement of load. 
 

Activities Descriptions 
Level walking Level walking along a level, straight-line walkway 
Downslope Descending a 6.5 degrees of slope 
Upslope Ascending a 6.5 degrees of slope 
Downstairs Descending stairs of 30 cm height x 34 cm deep 
Upstairs Ascending stairs of 30 cm height x 34 cm deep 
Circle Level walking around a circle of 2 m diameter with the prosthetic leg outside 
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Table 3. Mean and standard deviation (in bracket) across subjects of the nine local extrema. 
No statistical differences were found in those local extrema. (A “–“ indicates that 
there were no consistent peaks/valleies in that activity) 

 Walking Downslope Upslope Downstairs Upstairs Circle 

FAP- (N) -74 (36) -93 (44) -53 (34) -137 (98) - -69 (29) 

FAP+ (N) 101 (19) 87 (29) 90 (25) - 74 (20) 84 (27) 

FML+ (N) 89 (35) 79 (22) 93 (39) 53 (14) 76 (30) 93 (34) 

FL1 (N) 671 (139) 699 (149) 697 (153) 587 (157) 769 (171) 706 (165) 

FL2 (N) 675 (138) 660 (146) 704 (144) 649 (112) 715 (170) 703 (148) 

MAP+ (Nm) 21 (10) 25 (9) 22 (8) 18 (8) 19 (8) 27 (9) 

MML+ (Nm) 9 (10) - 17 (12) - 10 (14) 11 (11) 

MML- (Nm) -20 (9) -30 (20) -20 (9) - - -18 (6) 

ML+ (Nm) 3.7 (1.2) 5.3 (2.7) 3.2 (1.7) 5.3 (3.6) 3.0 (1.1) 3.8 (1.7) 

ML- (Nm) 5.0 (2.0) -3.8 (1.3) -6.3 (2.5) -3.5 (1.0) -3.7 (1.2) -5.4 (1.2) 

 
 
 
 
Table 4. Mean and standard deviation (in bracket) across subjects of the peak resultant forces 

and the time of occurrence of the peaks. A pair of *,#,+,£ &,$  in each parameter 
represents a statistical difference. 

 Walking Downslope Upslope Downstairs Upstairs Circle 

Fr1 (%BW) 89 (6) 89 (8) 91 (5) *78 (20) *101 (14) 91 (6) 

Fr2 (%BW) 93 (9) 86 (7) 94 (8) 85 (16) 94 (7) 93 (6) 

TFR1 (% SP) 32 (8) 30 (6) *39 (8) *26 (11) 30 (6) 34 (7) 

TFR2 (% SP) *70 (3) &,$63 (8) #,&72 (4) *,#,+,£56 (11) +,$79 (3) 
£70 (4) 

 
 

 

 

Table 5. Mean and standard deviation (in bracket) across subjects of  impulses. A pair of *,#,+,£ 

in each parameter represents a statistical difference. 
 Walking Downslope Upslope Downstairs Upstairs Circle 

IAP (Ns) 108 (37) *75 (38) *,#130 (39) #67 (33) 104 (35) 113 (33) 

IML (Ns) 58 (41) 51 (36) 65 (47) 42 (27) 54 (38) 62 (42) 

IL (Ns) *363 (76) 332 (56) #385 (79) *,#,+,£256 (31) +367 (69) £388 (79) 

IR (Ns) *386 (81) 348 (59) #415 (85) *,#,+,£271 (35) +388 (72) £411 (82) 
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Figure 1. Example of a typical prosthetic leg setup used to directly measure the forces and 

moments applied on the fixation of transfemoral amputee (left: front view, right: side view). 

A commercial transducer (A) was mounted to specially designed plates (B) that were 

positioned between the adaptor (C) connected to the fixation (D) and the knee mechanism (F). 
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Figure 2.  The local extrema and typical patterns of (a) forces and (b) moments along the 

anteroposterior (AP), mediolateral (ML), and long axis (L) axes of subject 1 

performing straight-line level walking. 
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Figure 3.  External/internal rotational moment (ML) for all subjects performing straight-line 

level walking. 
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(a) Downstairs, n=7 (c) Downstairs, n=2 

 

 

 

 

 

 

 

 

 

 

 

 (b) Upstairs, n=6 (d) Upstairs, n=3 

 

 

 

Figure 4.  Anteroposterior force for (a) seven subjects walking downstairs, and (b) six 

subjects walking upstairs. The remaining subjects are shown in (c) walking 

downstairs, and (d) walking upstairs, which showed different curve patterns from 

the majority of the amputees. 
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Figure 5.  Typical external/internal rotational moment (ML) for in the six different activities  
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 (a) Downslope  (c) Upslope 

 

 

 

  

 

 

 

 

 

 (b) Downstairs  (d) Upstairs 

 

 

 

Figure 6.  Moment about the mediolateral axis (My) for all subjects managing (a) 

downslope, (b) downstairs, (c) upslope, and (d) upstairs. 
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