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Many topics within the middle school mathematics curriculum connect to the concept of 
proportion. Interpretation of proportion situations and understanding of methods for 
solving proportion problems provides a structure than can be applied to other related 
topics. As a major resource for secondary mathematics, the extent to which popular 
textbooks link proportion-related topics was the focus of this study. Our analysis 
revealed little connectivity of ideas, confusing definitions and frequently illogical 
calculations. Questions are raised as to the messages texts send to students. 

Introduction 
In the middle years mathematics curriculum, many topics of study require 

proportional reasoning skills. For example, proportional reasoning is required in the 
study of the geometry of plane shapes, in trigonometry, in applications of percentage, as 
well as for the usual rate, ratio and proportion applications. According to Lesh, Post and 
Behr (1988) proportional reasoning is a prerequisite for the further study of 
mathematics: “Proportional reasoning is the capstone of children’s elementary school 
arithmetic and the cornerstone of all that is to follow” (p. 93-94). The development of 
proportional reasoning then, can be seen as an important goal of primary school 
mathematics. However, research indicates the elusiveness of such a goal, as many 
students struggle with proportion-related topics (Behr, Harel, Post & Lesh, 1992; Ben-
Chaim, Fey, Fitzgerald, Benedetto & Miller, 1998; Lo & Watanabe, 1997). 

In this paper we firstly provide a background to the teaching and learning of 
proportional reasoning from the extensive literature that has developed. We then report 
on part of an on-going investigation into the teaching of ratio, rate and proportion in 
lower secondary school. The study reported here is a preliminary investigation into the 
ways ratio and proportion are presented in junior secondary textbooks in an attempt to 
explain one factor that may contribute to the continuing difficulty middle school 
students experience with topics based on proportional reasoning. 

Background 

Proportional reasoning 
The complexity of the proportion concept appears to rest in the extent of prior 

knowledge required for its meaningful development. As outlined by Post, Behr and 
Lesh (1988), proportional reasoning: 

…requires firm grasp of various rational number concepts such as order and equivalence, the 
relationship between the unit and its parts, the meaning and interpretation of ratio, and issues 
dealing with division, especially as it relates to dividing smaller numbers by larger ones. (p. 80) 

Prerequisite knowledge necessary for proportional reasoning has been suggested by 
others. English and Halford (1995) stated that “fractions are the building blocks of 
proportion” (p. 254) and Behr et al. (1992) argued that “ the concept of fraction order 
and equivalence, and proportionality are one component of this very significant and 
global mathematical concept” (p. 316). Streefland (1985) suggested that “learning to 
view something ‘in proportion’ or ‘in proportion with’ precedes the acquisition of the 



  

proper concept of ratio” (p. 83). According to Behr et al., the development of an 
understanding of ratio and proportion is intertwined with many mathematical concepts, 
including multiplication, division, fractions and decimals, but the essence of 
proportional reasoning lies in understanding the multiplicative structure of proportional 
situations. Multiplicative structure is contrasted to additive structure in being able to 
view, for example, 4 in relation to 8 as multiplying by 2 rather than adding 4. 

As previously stated, research has indicated that students’ understanding of 
proportion is generally poor. As stated by Behr et al. (1992), “there is a great deal of 
agreement that learning rational number concepts remains a serious obstacle in the 
mathematical development of children” (p. 300). Several authors have suggested 
reasons for this state of play. According to Streefland (1985) “ratio is introduced too 
late to be connected with mathematically related ideas such as equivalence of fractions, 
scale, percentage” (p. 78). English and Halford (1995) suggested that proportional 
reasoning is taught in isolation and thus remains unrelated to other topics. Behr et al. 
(1992) stated that “the elementary curriculum is deficient by failing to include the basic 
concepts and principles relating to multiplicative structures necessary for later learning 
in intermediate grades (p. 300).  

The topic of proportion in the middle years curriculum 
In describing the topics of proportion in the middle years mathematics curriculum, 

Ben-Chaim et al. (1998) outlined the general types of proportional reasoning problems 
as comparisons of two parts of a whole (e.g., ratio of boys to girls in a class), rate or 
density problems (e.g., cents per litre, kilograms per cubic metre), and scaling problems 
(e.g., similar triangles). In Ben-Chaim et al.’s analysis, the solution methods for such 
problems required either a comparison of two complete ratios (e.g., which one is faster) 
or the calculation of a “missing value” when the other three values in an equivalent pair 
of ratios is known. The latter solution method arises from representation of the given 
ratios as a statement of proportion. 

The standard algorithm for proportional situations is the representation of equal 
ratios, that is a/b = c/d (Touriniare & Pulos, 1985), or a/b = c/x where a, b and c are given, 
and x is the unknown. The standard solution procedure for solving proportion equations 
is via algebraic means: “ cross-multiply and solve for x” (Post, Behr & Lesh, 1988, p. 
81) or through rule application: “multiply the two numbers across from one another and 
divide by the other number” (Robinson, 1981, p. 6). The teaching of either the standard 
algorithm or the rule, however, appears to be a controversial issue. For example, Hart 
(1981) stated, “Teaching an algorithm such as a/b = c/d is of little value unless the child 
understands the need for it and is capable of using it. Children who are not at a suitable 
level to the understanding of a/b = c/d will just forget the formula” (p. 101). Further, 
Cramer, Post and Currier (1992) stated, the “cross-product algorithm is efficient, [yet] it 
has little meaning. In fact, it is impossible to explain why one would want to find the 
product of contrasting elements from two different rate pairs…The cross-product rule 
has no physical referent and therefore lacks meaning for students and for the rest of us 
as well” (p. 170).  

As an historical interlude, the rule application for proportion situations outlined 
above (multiply the two numbers across from one another and divide by the other 
number), is generally known as the Rule of Three. The significance of the Rule of Three 
is outlined by Swetz (1992): 

The ‘Rule of Three’, commonly known in its time as the ‘Golden Rule’ or the ‘Merchant’s rule’ 
was highly esteemed in the fifteenth and sixteenth century as being a powerful mathematical 
technique applicable to solve many problem situations. Today this rule would be recognised as a 



  

statement of simple proportion involving three quantities from which a fourth must be found. (p. 
373) 

It is through Swetz’s words that the Rule of Three is seen as an ancient, efficient 
and very “handy” rule for solving proportion equations. However, developing meaning 
for the rule is an issue in developing conceptual understanding of proportion. 

One strategy for giving meaning to the cross-multiply method for solving proportion 
equations (Rule of Three) has been outlined by Robinson (1981) where the construction 
of ratio “boxes” to correspond to the information given in a ratio situation is advocated. 
In a manner similar to the ratio tables advocated by Streefland (1985) and English and 
Halford (1995), Robinson’s ratio boxes are designed to reflect the multiplicative 
structure inherent in proportional situations. For example, the situation of John catching 
2 fish to Jim’s 3 would be represented as follows: 

John’s fish 2 
Jim’s fish 3 

When asked to determine how many fish John would have caught if Jim caught 15, 
the table would be extended as follows: 

John’s fish 2 2 2 2 2 = 10 
Jim’s fish 3 3 3 3 3 = 15 

In simplified terms, the table would show the situation as a proportion equation:  
2  x    or even simpler: 2/3 = x/15.  
3 15  

According to Robinson, exploration of proportional situations in this form will lead 
children to discover the cross-multiply procedure for themselves.  

In the John’s Fish/Jim’s Fish example given above, the fractional representation of 
the proportion equation follows from the initial tabular representation. Yet the 
proportion equation (2/3 = x/15) is representing something quite different to a part/whole 
fraction situation. The fractional representation of a proportion situation clearly must be 
linked and connected to the proportional situation it is representing, but it must also be 
contrasted to the part/whole fraction meaning.  

Although there remains controversy over the explicit teaching of proportion 
equation-solving procedures, there is general consensus in the literature that the 
proportion equation must be introduced to students in a meaningful manner, with 
students provided with experiences to enable them to develop their own solution 
strategies. As proportional reasoning transcends, connects with, and is based upon many 
other mathematical concepts, instruction must focus on “connectedness” and “structure 
and context” which are two of a set of basic principles for the design of teaching (Bell, 
1993). As stated by Bell, in a constructivist teaching style, students should be helped to 
see the links between related mathematical ideas (connectedness). Further, Bell 
contended, most student do not recognise the common structure that underlies parts of 
mathematics presented as different topics, and hence do not appreciate that similar 
solution methods can be applied. With the centrality of the idea of proportional 
reasoning in the middle years mathematics, there is considerable scope for instruction to 
focus on helping students recognise the proportional structure of many topics (structure 
and context). Given that many secondary school teachers follow the prescribed textbook 
for planning instruction in mathematics (Lianghou & Kaeley, 2000), there is an 
expectation that secondary mathematics texts will assist students make connections 
between topics that are often presented in different chapters and units.  



  

The study 
The extent to which popular secondary mathematics texts incorporate Bell’s 

principles of connectedness and structure and context was the focus of this 
investigation. As part of a wider study into the teaching of proportional concepts in the 
middle years of schooling, the focus of this part of the study was to investigate the ways 
that proportional concepts are portrayed in the widely used mathematics textbooks that 
provide the foundation for much of the mathematics instruction in our schools. In this 
paper, we report on the contents of one chapter from each of two frequently prescribed 
textbooks, namely: (A) Atkinson & Ward (1996) and (B) Brodie and Swift (1989). (The 
two textbooks will be referred to as Text A and Text B respectively throughout this 
report). The selected chapters from the two texts are entitled “Ratio and Proportion” and 
“Ratios and Rates” respectively. Exploration of the selected chapters occurred through 
analysis of the given definitions, worked examples and exercises/problems. The aim 
was to uncover the underlying pedagogy implicit in the chapters. In particular, we were 
looking for evidence of explication of the structure of proportional reasoning as well as 
linking and consistency of approach across topics such as ratio, proportion and rate. The 
solution methods for the problems, particularly those involving finding the missing 
value in a proportion equation, were also a focus. 

Results 

Definition of ratio 
A common practice in mathematics textbooks is to highlight definitions of 

mathematical terms through the use of text boxes, coloured ink, and so on. In Text A, 
the presented definition of ratio is as follows:  

A ratio is a comparison of two or more quantities of the same kind and of the same unit.  (p. 
221) (their emphasis) 

This definition is followed by some examples using the colon notation such as “3 km:5 
km”. The quantities presented are the same units and show a part:part comparison or a 
whole:whole comparison. There is no mention that the “comparison” is relative 
(multiplicative) rather than an absolute (additive) one. Comparison by division is 
implied in the following statement, with ratio represented as a fraction and a percentage: 

Ratios can be written as a : b (we say ‘a is to b’) or as a fraction a/b (we say ‘a over b’) or as a 
percentage. 
Where possible, simplify ratios, so a and b are natural (whole) numbers. 
We can write 2:3 or 2/3 or 66.6% to all show exactly the same thing. (p. 221) 

It is interesting to note here that there is no specification of the quantities being 
compared in terms of parts and wholes. The definition given moves from real quantities 
(3km:5km) to mathematical symbols and manipulation where ratio is represented as a 
fraction and then as a percent. Implicit in the initial definition and example of ratio is 
the comparisons of part:part or whole:whole. However, the fraction representation 
provided shifts meaning from a part:part or whole:whole comparison to a part:whole 
representation in which students’ prior experience and most likely understanding of 
fractions is based. Therefore, the possibility of confusion for students is apparent as no 
qualification of the use of fraction notation to represent a ratio and the use of percentage 
(a part out of a whole of 100) to express a ratio is given.  

In Text B, no single definition of ratio is provided. Rather, the chapter opens with 
examples of ratios in use, including mixtures such as juice and 2-stroke fuel. The 



  

notations for expressing a ratio are defined using a pictorial example of 8 boys and 10 
girls on a beach with the accompanying description, that “this can be stated as: 8 to 10, 
8 is to 10, 8:10, 8/10.” In this example, the transition from a statement of ratio in words, 
to the use of a colon to substitute for the words “is to”, to the fractional representation is 
given, but legitimisation of the part:whole fraction notation to represent a clearly 
part:part or whole:whole situation is not. Further information about ratio representation 
is given as follows, with ratios as parts explicitly stated: 

The order of a ratio is important. If the ratio of sand to cement in mortar is 3:1, an entirely 
different mortar would result from a mix containing 1 part sand to 3 parts cement. 

Ratios may involve more than two parts. An example of this is the mixture for concrete, where 
sand, gravel and cement are mixed in the ratio 2:4:1. . . .  

It is possible to simplify ratios in the same way as fractions. 

In the last statement, permission is given for ratios to be expressed and manipulated 
in the same way as fractions, but no conceptual link is provided. The text then goes on 
to provide a worked example of how ratios and fractions can be simplified: 

Write the ratio of boys to girls in figure 7.1 in simplest form. 
Solution Boys : Girls  = 8:10 
    = 8/10 (written as a fraction) 
    = 84/10

5 (cancel) 
    = 4:5 or 4/5 
Ratios compare quantities of the same kind. If measurements are compared they must have the same 

units. (p. 257) 

In this case the word “part” is used in the discussion but again there is no distinction 
drawn between the nature of comparison in a ratio (part:part) and the comparison in a 
fraction (part:whole). The text uses the words “written as a fraction” and “simplify 
ratios in the same way as fractions”, but does not clarify the distinction between the 
two. No indication of ways to work with ratios containing more than two parts is given 
and the subsequent exercises do not contain any examples with more than two parts. 

Sharing quantities 
The exploration of ratios in terms of parts and their relationship to the whole 

features in both texts through “sharing” problems. The unitary method is presented to 
enable students to solve sharing problems. That is, the component unit value of the 
ratios are explored in terms of their relation to the whole. The setting out of the 
examples in the two texts is virtually identical. Both texts use the term “parts” to 
describe the sharing. An example from Text B follows: 

Share $42 in the ratio 3 : 4. 
Total number of parts = 3 + 4 = 7                 So 3 parts = 3 × $6 = $18 
             Each part = $42 ÷ 7                           And 4 parts = 4 × $6 = $24 
   = $6            Total = $42 (p. 262) 

Proportion problems 
Both texts introduce problems involving two equal ratios with one number 

unknown. Text B first introduces the idea of equivalent ratios and demonstrates two 
methods to test whether two ratios are equivalent. The first method involves cross-
multiplication: “The cross products are equal, so the ratios are equivalent” (p. 265). The 
second method involves reducing each ratio to a ratio to one and seeing if the first 
numbers are equal (e.g., 1.72:1 and 1.75:1 are not equivalent). 



  

Text B provides two methods for solving a proportion problem with one unknown 
as in the following example. 

The ratio of boys to girls in a class is 4:5. If there are 15 girls, how many boys are in the class? 
First we write the proportion using the information given. 

Number of boys = 4 ⇒ Number of boys = 4 
Number of girls     5  15     5 

Now give the unknown number a variable name so that it is easier to write.   
Let the number of boys = b.  So b/15 = 4/5 

To solve the proportion you could use either method below. 

METHOD 1     METHOD 2 
  b = 4      b   =   4  (Cross multiply) 
 15   5     15       5   
    × 3     5b  = 4 × 15    
Numerator and denominator      b  = 4 × 15 3     (Cancel) 
     must be multiplied by               5 1   
        the same number.      b  = 12 
           So b = 4 × 3 
                = 12   There are 12 boys in the class. 

Text A does not discuss equivalent ratios before introducing the following 
proportion example: 

Four car tyres cost $240 all together. How many tyres could you buy for $300? 
 Steps to follow     Solution 2 
1.  Write as ratio     4 new tyres : n new tyres  = $240 : $300 
2.  Substitute pronumerals                        4 : n  = 240 : 300 
3.  Write as a fraction           4 / n  = 240 / 300 
4.  Solve the equation                          4 / n × 300n  = 240 / 300 × 300n 
             1200 = 240n 
                   5 = n 
5.  Write your answer    ∴five tyres could be purchased 

Both books present solutions for this type of problem by writing the ratios in 
fraction notation and solving for the unknown. Text A uses an algebraic equation-
solving method that amounts to multiplying both sides of the equation by a number 
equal to the lowest common denominator of the two fractions. Method 1 in Text B 
involves the multiplicative idea of proportion. The students are encouraged to think of 
the multiplier operating between the two known denominators and then apply that 
multiplier to the numerators including the unknown. Method 2 uses cross-multiplication 
and then equation solving, rather than a direct application of the Rule of Three. 

Rate 
Rate is defined similarly in both texts. The definitions presented below are from 

Text A and Text B respectively: 
A rate is a comparison of quantities of different kinds. (p. 268) 

A rate is a comparison of two quantities of different kinds, with different units. (p. 230) 

Again there is no mention of the idea that this is a comparison by division. Both 
texts discuss commonly used rate types and their units. Text B then focuses mainly on 
speed as an example of rate. Speed is defined as distance divided by time and the 
examples use direct substitution into the formula. There are also a number of examples 
using the idea of a “ready-reckoner”. Graphs are used for some situations and a link is 
made with direct proportion. 



  

The worked examples on rate in Text A are set out in steps, as shown below. 
Simplify each of these rates: (a) 8 kilometres in 2 hours  (b) 320 tonne of wheat in eight trucks 
Steps to follow  Solution a  Solution b 
1 Write the question  8 km in 2 h  320 t in 8 trucks 
2 Change to fraction form = 8 km / 2h  = 320 t / 8 trucks 
3 Simplify if possible  = 4 km / 1 h  = 40 t / 1 truck 
4 Write your answer  = 4 km/h  = 40 t/truck (p. 231) 

The text reminds students of the definition of ratio and the difference between ratio 
and rate. It also notes that working with rate is similar to working with ratio: 

As with ratio, you should simplify the rate so that the quantities being compared are natural or 
whole numbers. (p. 231) 

Discussion 
The aim of this investigation was to examine the use of the concept of proportional 

reasoning in teaching students about ratio and rate, with the textbook being the major 
teaching resource. We were particularly interested in finding if explicit use was made of 
this concept and how explicitly the ideas in the related topics of ratio, proportion and 
rate were linked. While the aim was not to criticise the authors of the chosen texts, it is 
inevitable that criticism is implied in our comments. 

Both texts introduce definitions of ratio and rate similar to those used in many other 
texts. Neither text distinguishes between absolute comparisons (subtraction) and relative 
comparisons (division) in their definitions of ratio and rate. The use of division becomes 
apparent through the examples. In the definition of rate, the meaning of comparing two 
quantities of different kinds is not pursued. All that is implied is that division is used but 
the meaning of “comparing” kilometres with hours is not discussed. In Text A there is 
no notion of rate as a measure of change, that is, the proportional idea that as one 
variable changes, the other changes in a related way. Text B makes use of the idea of 
ready-reckoners which demonstrates proportionality. However, in the text no explicit 
mention of this link is made and the idea is not discussed with the definition of rate. 

The use of fraction notation to work with ratios, proportions and rates is a feature of 
both texts. However, neither makes the distinction between ratio, a part:part comparison 
in most of the applications discussed, and fraction and percentage which are normally 
part:whole comparisons. The notion of parts and wholes only arises when “sharing” 
problems are addressed. Also, no reasons for the writing of ratios in fraction notation 
are provided, being presented as the conventional way of working with these problems. 

The use of proportional (multiplicative) thinking is presented in these texts as an 
aside, rather than the main structural idea unifying the topics. Text B has some explicit 
use of multiplicative thinking in the work on ready-reckoners and in one method of 
solving a proportion problem. However, the main solution methods presented for the 
problems involve solving the proportion equation by cross-multiplication and algebraic 
methods. The solution method for rate problems does not acknowledge the link with 
proportion at all, relying entirely on the use of a formula. Neither text makes explicit the 
proportional structure underlying all the problem types investigated, nor do they 
capitalise on the possible connections that could be made to help students develop a 
deeper understanding of the ideas. 

Conclusion 
This brief analysis of just two chapters within two textbooks reveals the limitations 

of such texts in their definitions, worked examples and suggested solution procedures 



  

for the topics of ratio, rate and proportion. The symbolic representation of proportion 
situations and subsequent manipulation of numbers within proportion equations 
provides little meaning, either to the real-context of examples presented, or to prior 
knowledge of other related mathematics topics (e.g., particularly the topic of fractions 
and percent). The treatment of the topics of ratio, rate and proportion in these two texts 
appears to offer little connectedness and does little to expose the predominantly 
part:part (or whole:whole) structure of proportion situations; a structure that can 
contextualise to other related topics. The definitions and worked examples taken from 
the texts illustrate the brevity of background information provided for textbook users, 
suggesting that such information would be quite unhelpful for students and possibly 
parents. It could be argued that the confusing nature of information given would 
reinforce a view of mathematics as a meaningless, rule-dominated and highly-
specialised subject, accessible to few people. As a first step to exploring the complexity 
of the topic of proportion, this study has indicated that school texts appear to be limited 
in their ability to assist students (and teachers) to develop the proportional thinking 
skills necessary for the successful and meaningful learning of school mathematics. 
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