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ABSTRACT 

Recent studies implicate bone’s extracellular matrix as a “living electrophoresis and ion 

exchange column” with low pass filter function at the matrix level; whereas small 

molecules pass through the matrix microporosity, larger molecules penetrate the tissue 

through the pericellular space. In this study, stochastic network modeling principles 

were applied, for the first time to our knowledge, to build in silico, nano- to microscale 

models of bone. Small volumes of bone were modeled to include hierarchical levels of 

porosity comprising the bone matrix microporosity and the pericellular network. Flow 

and transport through the network was calculated for molecules from 1,000 to 100,000 

Daltons. Based on this study, two contrasting effects determine the rate and direction of 

transport of different size molecules through the hierarchical porous network of bone. 

Whereas diffusivity of a given molecule decreases with increasing molecular size, size 

exclusion effects of bone’s low pass molecular sieve translate into increasing flow 

velocities for large molecular species along transport paths located in the immediate 

vicinity of the cells. Both phenomena are expected to have a profound effect on the 

formation of molecular gradients at a tissue level, providing cues for tissue generation 

and repair by cellular “micromachines”, e.g. osteoclasts and osteoblasts.  

 

 

Keywords: Computational model, lacunocanalicular network, bone matrix 

microporosity, interstitial fluid flow, molecular transport 
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NOTATION 

α1 effective molecular radius of solute A, m 

∆ci normalized concentration difference, - 

Ci, Cj concentration of a solute at the nodes i and j, kg m-3 

d pore diameter, m 

Dmf free molecular diffusion coefficient, m2 s-1 

DP pore diffusion coefficient for solute A through network, m2 s-1 

εP network porosity, - 

JDA diffusion rate of solute A in a pore, kg s-1 

KADA effective diffusion coefficient, m2 s-1  

lp pore length, m 

µ fluid viscosity, kg m-1 s-1 

MW molecular weight, Daltons (Da) 

NDA mass flux of solute A through pore, kg s-1 

Qij volume flow rate through pore, m3 s-1 

P permeability of solute A through pore, m2 s-1  

∆pij pressure gradient across pore between nodes i and j, N m-3  

pi, pj pressure at nodes I and j, N m-2 

RP characteristic distance of network, m 

rp pore radius, m 

rs Stokes radius for a molecule, m 

rg radius of gyration for a molecule, m 

vDA diffusion velocity of solute A, m s-1 

vP flow velocity through porous medium, m s-1 



  

  4 

INTRODUCTION 

At an organ level, bone provides more surface area for ion exchange, protein elution and 

filtration of solutes than any other organ in the body.5,23,26 Within the interconnected 

porous network of bone, gradients of chemokines, cytokines, growth factors and other 

biomolecules not only influence but also provide a means to assess the physiological 

state of a cell at a local level. Furthermore, these molecular gradients provide cues for 

tissue generation and repair, e.g. osteoclastic resorption and subsequent osteoblastic 

apposition. The transport of paracrine and endocrine factors through bone tissue is 

poorly understood. The concentration of a given molecule depends on the size of that 

molecule and its binding sites, conformation, as well as diffusive and convective flow 

effects that influence the local (cellular) and global (tissue) dwell time of a given 

molecule within the system.5,6,9,10 Due to the interplay between bone’s mechanical 

function and the formation of these time and location dependent chemical gradients, 

current theory of bone adaptation has shifted. Whereas previous adaptation theories 

emphasized direct transfer of mechanical signals from the systems level, through the 

organ and tissue levels, to the cells that have the machinery to remodel, current theory 

accounts for redundant mechanisms of transduction, e.g. mechanical modulated 

transport of bio-chemo-electrical signals that direct cellular level remodeling activity, as 

reviewed recently in Knothe Tate (2003)6 and Knothe Tate and Knothe (2000).7 

Recent studies implicate bone’s extracellular matrix as a “living electrophoresis 

and ion exchange column” with low pass filter function at the matrix level.5,11,26 Based 

on in vivo permeability studies, it has been shown that the hierarchical degrees of 

porosity in the bone matrix act as a molecular sieve for different sized solutes being 

transported through bone. Hence, molecules such as glucose and smaller amino acids 

(300-400 Daltons, Da) are expected to penetrate the matrix microporosity as well as the 
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pericellular network of the lacunocanalicular system.26 Larger molecules such as 

cytokines, androgens and estrogens as well as serum derived proteins would not be 

expected to penetrate the matrix but may penetrate the pericellular space, in particular 

when driven by load-induced fluid flow or other convective effects. In addition to tracer 

transport studies demonstrating these effects,9,10,26 recent proton nuclear magnetic 

resonance spectroscopy (NMR) experiments show that fluid is transported within the 

matrix microporosity, albeit at very low diffusion rates.2 As a consequence of these 

characteristics it is expected that a baseline supply of low molecular weight nutrients to 

the osteocytes is guaranteed under most circumstances, whereas the transport of 

hormones and other signaling molecules to- and from the osteocytes is more sensitive to 

the state of the pericellular network. In addition, the supply of these larger molecules to 

the osteocytes is also expected to be more susceptible to the enhancement of the 

transport capacity, e.g. by means of convective transport mechanisms.8 

Studying molecular transport through the different levels of porosity is 

challenging due to the practical difficulties of viewing transport through the dense tissue 

of bone. Furthermore, the cellular network, referred to as osteocyte syncytium, changes 

depending on the physiological state of the tissue; e.g. measures including osteocyte 

density, connectivity and the canalicular tortuosity, change as a result of aging20,27 as 

well as disease or pathology.11 These cellular level changes are expected to influence 

greatly both the paths as well as the rates of molecular transport through bone tissue. 

Characterization of the relationship between cellular organization and molecular 

transport in healthy and diseased bone would provide a basis to optimize design of 

delivery vehicles for exogenous and endogenous bioactive molecules and drugs across 

the tissue. The optimal delivery of pharmaceutical and bioactive agents is dependent on 

the location and time course of their application; this, in turn, depends on the diffusion 
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constant of the agent in the tissue, which is a function of the agent’s molecular size. By 

using transport characteristics through healthy and diseased tissue as a design criteria for 

optimization of delivery vehicle design, many parallels may be drawn to the analogous 

process of in vitro molecular sieving for protein purification using chromatography 

columns .  

Mathematical models have been developed to improve the throughput and 

selectivity of column chromatography. Some of the most commonly used models are the 

stochastic network models,13 which are based on the percolation theory. In these models, 

the different hierarchical levels of pores in a chromatography column are simulated by 

different classes of pores that penetrate the matrix and connect a system of nodes. Based 

on the solution for nodal parameters, such as fluid pressure or molecular concentration, 

global modal parameters, such as tissue permeability or diffusivity of a given molecule, 

can be determined. Stochastic network models have been applied to study transport 

through biological tissues,24,28 but to our knowledge these methods have not been 

applied previously to study the time and location dependent molecular sieving 

characteristics of bone.  

The purpose of this study was to model bone as a hierarchical network of 

interconnected pores and to use network modeling methods to study transport of 

molecules through this highly controlled, idealized model. The ultimate goal of the 

model is to examine the development of chemical gradients in bone and to relate 

gradients of specifically sized molecules to those that are known to play a role in 

modulating cell activity in bone remodeling. As a first step in this process, we applied 

stochastic network modeling principles to build in silico, nano- to microscale models 

that emulate the molecular sieving characteristics of bone. For the purposes of this 

model, emphasis was placed on molecular sieving characteristics of the pericellular 
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transport pathways comprising the lacunocanalicular system and matrix microporosity, 

which constitute the “low pass” filter function of the bone matrix.26 

METHODS 

A model was built to replicate pore size, number, and distribution of the porous network 

in bone (Fig. 1). The stochastic network simulations involved three steps. In the first 

step, the network was constructed using random and semi-random algorithms. In the 

second step, the network was reduced, according to the molecular size of the different 

tracers, to account for size exclusion effects in the simulation of molecular transport 

through the network. Finally, through the calculation of nodal parameters, the global 

tissue parameters for the network could be determined. Due to the stochastic nature of 

the network generation, the calculations were repeated for 20 different networks and 

average values were calculated. The simulations were programmed in Mathematica® (v. 

4.0, Wolfram Research Inc., Champaign, IL) on a PC workstation. In the following, the 

individual steps are explained in more detail:  

 

Network construction 

First, we constructed a regular cubic lattice network with the dimension 15x15x15 

nodes to represent a small volume (approx. 803 µm3) of cortical bone tissue (Fig. 2). 

Thereby each of the nodes was connected to its immediately neighboring six nodes via a 

pore. In order to model the bone matrix microporosity, two classes of pore sizes were 

assigned to these connecting pores, representing the spaces between collagen fibers, and 

the gaps between the apatite crystals and the collagen fibers, respectively. The two pore 

diameters were assigned randomly with a binomial distribution function. In addition, the 

two pore diameters per se were distributed normally around mean pore diameters (5.0 
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and 10.0 nm diameter, with a standard deviation of 1.0 nm for both pore sizes) to reflect 

the variability of the micropore size. In our models, the lengths of all micropores were 

equivalent to the distance between two nodes of the network, which is defined by the 

length of a side of the network cube divided by the number of nodes (in our case 15).  

Next, the overlying (i.e. one hierarchical order above the matrix microporosity) 

lacunocanalicular network was constructed. The primary transport direction, the 

direction of the pressure or concentration gradient, was from the top to the bottom of the 

model cube, which is equivalent to the radial direction in an osteon. To ensure 

connectivity between the top and bottom plane, and to reflect the anisotropic nature of 

the lacunocanalicular network in Haversian bone with a preferred radial orientation of 

the canaliculi, this system was constructed through the formation of so-called 

percolation clusters. These connected the top with the bottom plane through number of 

nodes that were semi-randomly assigned as lacunae and were loosely aligned parallel to 

the general flow direction. The total number of lacunae was thereby consistent with the 

average osteocyte density in human cortical bone27. These nodes were interconnected by 

large-diameter  canaliculi (160 nm), primarily in the flow direction, but also amongst 

different percolation clusters, provided that the distance between two given lacunae was 

smaller than a certain threshold value (Fig. 2). It should be noted that the entire pore 

volume of the network was made up of the connecting pores, and the nodes were 

assumed to have no volume.  

Flow and transport through the model was calculated between the top and 

bottom plane of the network, in the –z direction. To ensure continuity in x and y 

direction, periodic boundary conditions were implemented and the nodes at x=L and 

y=L were connected to the nodes at x=0 and y=0.  
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Network reduction 

Flow and diffusive transport of dextrans with molecular weights (MW) between 1,000 

and 100,000 Daltons (Da) was calculated through the network. The effective molecule 

size was compared to the pore diameters of the model. For dextrans, two different 

methods are reported in the literature for calculating the effective molecule size from the 

molecular weight. The Stokes’ radius rs (in nm) for a dextran molecule of known 

molecular weight has been determined to be 18  

437.00488.0 MWrs ⋅=  (1) 

Alternatively, for long flexible chains, such as dextran molecules, the radius of gyration 

rg can be used 19.  

MWrg ⋅= 0323.0  (2) 

We then compared the radii calculated with these two methods (Fig. 3). They are similar 

only for very small MW (ca. 1,000 Da). For increasing MW the radius of gyration is 

always bigger, by more than 25% at 20,000 Da and by more than 35% at 100,000 Da. 

Both values were calculated for the simulated molecules and compared with the pore 

diameters. Pores that are not accessible, because they are too narrow to allow passage of 

a given sized molecule, were excluded from the network. A side effect of removing 

these pores was the formation of so-called “dead end” pores, as well as of isolated nodes 

that did not contribute to the flow or diffusion through the model; hence, they were also 

excluded from the network.  

 

Parameter calculation 
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All calculations were based on the methods described in Meyers and Liapis, 1998.13 The 

goal of the calculations was to determine nodal parameters by solving a system of linear 

algebraic equations, in order to calculate global model parameters.  

Flow calculations 

The flow rate Qij through a cylindrical pore between the two nodes i and j with a 

pressure gradient ∆pij can be approximated using the equation (3), under the assumption 

of creeping flow conditions (low Reynolds number).  
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where lp and d are the pore length and diameter, and µ is the dynamic fluid viscosity. 

This equation was set up for every pore of the network. In addition, there was 

conservation of mass at the nodes, so the sum of the flow rates in all the pores 

connecting the node with its neighbors had to be zero. This equilibrium equation could 

be set up for every node. In combination, this led to a system of linear equations that 

could be solved numerically for the fluid pressures at all nodes. A static pressure 

gradient of 100 kPa/mm, which is comparable to the fluid pressure gradient in 

mechanically loaded bone, calculated using poroelastic finite element models, was 

applied across the network and served as boundary condition for these simulations.  

The total flow rate across the network could now be calculated by adding up the 

flow rates through all the pores that cross any x-y plane of the network. This led to the 

average fluid velocity, which is calculated by dividing the total flow rate by the sum of 

the cross sectional area of all pores in this plane.  
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Diffusive transport 

Diffusive transport, driven by a concentration gradient across the network, was 

calculated for different size dextran molecules. If a linear concentration gradient ∆CA 

can be assumed, and adsorption can be excluded, the diffusion rate JDA of the molecules 

of a species A through pores of the length lp and radius rp can be calculated as follows 
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Dmf is the free molecular diffusion coefficient for molecules of the species A and α1 is 

its effective molecular radius. In equation (5), the restricting effects of stearic hindrance 

(second term) and frictional resistance (third term) on the diffusion are taken into 

account. Using the above equations, the mass flux NDA,ij of the molecules of a species A 

through pores of the length lp can be determined with the following formula 
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Similarly to the flow calculations, the net volume flux at each node must be zero. This 

leads to a system of algebraic equations that can be solved for the molecular 

concentration at each of the nodes of the network.  

Based on the known nodal concentrations, the total permeability P of the 

network for molecules of the species A can be calculated from equation (7): 
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where NA is the total number of nodes in the network and νij represents the ratio of the 

pore length lp,ij to the distance between node i and its nearest neighbor. It is important to 

note that the permeability calculated with this formula is defined in Meyer and Liapis, 

1998 13 in a chemical engineering context, where P has the unit of a diffusion constant 

(m2s-1). The other terms in the equation are S0, which represent the cross sectional area 

of the model cube and ∆cij, the normalized concentration difference, where  

0;1;
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1

==
−
−

= N
N

Ni
i CC
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CC
c

e

e  (8) 

Since it is only the pores in the z direction that contribute to the net flux through the 

network, only these pores were taken into account in equation (8). Finally, this led to the 

equation for the pore diffusion coefficient for molecules of a species A through the 

network 

p
P

P
D

ε
=  (9) 

where εp is the network porosity. 

Fluid velocity vs. diffusion velocity 

To examine the effect of a pressure gradient on the transport capacity across a porous 

network, we calculated the ratio between the velocity of the permeating fluid vp versus 

the diffusion velocity vDA. The diffusion velocity vDA of the molecules of a species A can 

be calculated from Dp/Rp (Dp is the diffusion coefficient and Rp represents a 

characteristic distance of the network, in our case the width of the model cube L) 

RESULTS 

For both methods used to calculate the effective molecular size, the average pore 

connectivity decreased from 7.44±0.05 (average ± standard deviation) at a molecular 
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weight of 1,000 Da to 1.47±0.05 at 100,000 Da. This resulted in an increase in pressure 

driven transport velocity through the network for increasing molecular weight (Fig. 4), 

whereby a higher flow velocity (by approx. 5 %) and a more prominent increase in flow 

velocity, for molecular weights between 5,000 and 10,000 Da, was observed in the 

model where radius of gyration was used to define effective molecule size. In contrast, 

the effective pore diffusion coefficient, or diffusivity, decreased exponentially (Fig. 5) 

with increasing molecular weight. For molecules of 1,000 Da, the diffusivity was 40% 

less if one calculates the molecular size based on the radius of gyration compared to that 

based on the Stokes’ radius. For higher molecular weight molecules up to 100,000 Da, 

the difference in the calculated diffusion constant was only 10%. 

Finally, the ratio between the pressure-driven fluid velocity and the diffusion 

velocity through the network increased almost linearly with increasing molecular weight 

(Fig. 6). For the model using the radius of gyration, the ratio increases from almost 

4.3·104 for 1,000 Da to more than 2.5·106 for 100,000 Da, whereas the ratios for the 

model using the Stokes radius were consistently about 50% smaller, but showed the 

same tendency. 

DISCUSSION 

Stochastic network modeling principles were applied to build in silico, nano- to 

microscale models that emulate the molecular sieving characteristics of bone. Two 

contrasting effects determine the rate and direction of transport of large molecules 

through the hierarchical porous network of the in silico bone model. Whereas the 

molecular weight is the main determinant of diffusive transport rate through a 

homogenous network, size exclusion and flow velocity effects play an important role for 

transport through a network exhibiting some of the complexities inherent to bone 
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including the hierarchical porosity and convective effects of load-induced fluid flow. 

Based on calculations of the pressure driven flow velocities for different size molecules 

across the network, it was shown that flow velocity increased with increasing molecular 

weight of the transported molecules. This is due to the shorter effective transport 

pathways available for transport of the larger molecules, analogous to more rapid 

transport of larger proteins due to size exclusion in chromatography columns. Since the 

pressure gradient across the cube remains constant and the mean transport distance 

shortens, transport velocities increase with larger molecules. In contrast, the diffusivity 

for higher molecular weight substances decreases rapidly with increasing molecular 

weight, due to the combined effects of stearic hindrance at the entrance to each pore and 

frictional restriction within each pore. Taken as a whole, the relationship between 

contrasting effects of the increased flow velocity and reduced diffusivity with increasing 

molecular weight underscore the importance of convective transport mechanisms for the 

distribution of higher molecular weight substances in tissues such as bone. 

The average connectivity of a stochastic network, comprising the average 

number of pores connecting a node with its neighbors, is a key parameter for the 

determination of the transport properties of a porous medium.13 The maximal average 

connectivity is equal to the lattice coordination number, which is six in a regular cubic 

lattice. When pores are removed from the network, the connectivity decreases. If it falls 

below a certain percolation threshold, the connection between two sides of the network, 

referred to as a percolation cluster, is no longer guaranteed, and transport across the 

network ceases. For a regular cubic lattice, the percolation threshold is typically 2.488.25 

However, since our networks consist of an underlying regular cubic lattice with 

additional canalicular pores, the maximal connectivity for the network is 7.44±0.05 

(average ± standard deviation), i.e. higher than six. Furthermore, because these 
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additional pores have been created in a semi-random process, transport across the 

network is still guaranteed for values of the pore connectivity comprising 1.47±0.05.  

We employed two different methods to calculate the effective size of the dextran 

molecules of different molecular weights (equations 1 and 2). Both methods have been 

developed for simulations of the glomerular filtration of dextran molecules.18,19 The first 

method uses the Stokes radius as the effective molecule size. It has been reported that 

the Stokes radius is well suited to characterize globular molecules, but may be less 

suited to characterize long, flexible chain molecules such as dextrans and polymers. 

Therefore, models that were based on the radius of gyration, (the second method), have 

been more successful in predicting transport rates of dextran in other biological 

tissues.19 The radius of gyration for a dextran molecule is larger than its Stokes radius 

(Fig. 3), which implies that the long chain molecules exhibit a higher resistance for 

transport through narrow pores than globular molecules of the same molecular weight. 

In contrast, experimental tracer studies in bone have shown that dextran molecules do 

penetrate through narrow pores, e.g. when the molecule aligns along the pore 

orientation; this phenomenon has been described as microextrusion.26 Eventually, 

systematic and quantitative validation studies, in vivo or ex vivo, will have to be 

performed to determine which of the two methods is more appropriate for use in studies 

of transport of dextran molecules through bone tissue. For the current feasibility study, 

the molecular sieving characteristics of bone could be demonstrated successfully using 

both methods. 

This study represents a first application of stochastic network modeling 

techniques to bone with the primary objective to demonstrate the feasibility and power 

of this method. In this early stage of development, the model exhibits certain limitations, 

which will be addressed in future evolutions of the model. For instance, the flow 



  

  16 

through the pores was simulated as basic pipe flow, and the pore geometry was assumed 

to be cylindrical. In reality, the canaliculi in bone are partly filled with the osteocyte 

processes, so that there is actually annular flow between the osteocyte process and the 

canalicular wall. Furthermore, this space is not empty or simply fluid filled but 

constitutes a small territory around the cell that has not completely mineralized; hence, 

the space is likely to be filled with a network of matrix molecules such as 

glycosaminoglycans that may interact with plasma membrane proteins on the cell 

surface, which would alter the flow characteristics. Flow through this matrix would be 

comparable to that through an electrophoresis gel; therefore, this pericellular matrix is 

likely to exhibit molecular sieving properties as well.26 The bone matrix microporosity 

was simulated by two classes of pores with mean pore diameters of 5 and 10 nm. There 

is little information in the literature about the distribution and structure of the pores in 

the bone matrix. They have been described to be generally on the order of 10 nm 

diameter,1 and more specifically, the pores between the apatite crystals have been 

measured to be between 10 and 25 nm in diameter, with some pores up to 50 nm in 

diameter.3 More importantly, it is not known what portion of the fluid trapped in these 

pores is actually mobile. While some studies indicate that the interstitial fluid is 

chemically bound,16,17 other experiments have demonstrated that low molecular weight 

tracers (~300 Da) are able to penetrate the matrix,26 which would suggest that at least 

some of the fluid is exchanged between the matrix micropores and the macropores of 

the lacunocanalicular system; this has been corroborated recently using NMR.2 Hence, 

although the pores of the bone matrix have been measured to be greater than the 5 to 10 

nm used in this model, we have chosen these values as an effective pore size range 

based on our experience from the tracer experiments.  

Interstitial fluid flow through the lacunocanalicular system and the bone matrix 
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microporosity was calculated as a result of a pressure gradient, which is induced, in vivo 

or in vitro, by mechanical loading of the poroelastic bone. Although this pressure 

gradient is time dependent in vivo, we have used a static pressure gradient in this model 

with the justification that we are examining at a short time period during a load cycle, 

for which the pressure gradient can be assumed constant. Quantitatively, the calculated 

flow velocities in our model are highly dependent on the choice of this pressure 

gradient. Unfortunately, very few actual measurements of interstitial fluid pressure 

gradients have been reported in the literature. Qin et al.21 have measured the fluid 

pressure in the medullary canal of turkey ulnas subjected to near physiological 

compression and bending loads. Their results, averaged over the width of the entire 

cortex, lead to a pressure gradient of approximately 6 kPa mm-1. The same group has 

developed computational models in parallel to their experimental models, where they 

predicted local intracortical pressure gradient peaks of up to 360 kPa mm-1  at a 

physiological loading frequency of 1 Hz.22 We chose a pressure gradient of 100 kPa 

mm-1 in our model, which lies in between these measured average and predicted peak 

pressure gradients. In a sensitivity analysis of our network model we found that the 

calculated fluid velocities are directly proportional to the pressure gradient applied 

across the network. 

Neighboring osteocytes in bone are interconnected by canaliculi. The number of 

connecting canaliculi between two osteocytes depends on the proximity and the 

orientation of the osteocytes. Osteocytes that are close to each other and lie 

approximately in the same transverse plane (with respect to the longitudinal axis of the 

bone), are connected by several canaliculi, whereas osteocytes that are further apart and 

in different longitudinal positions are connected by a smaller number of canaliculi. Few 

studies have reported systematic and quantitative analyses of these relationships.4,12,14 
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Hence, given the lack of quantitative reference data, and for model idealizations, 

neighboring osteocytes are connected by single canaliculi in the current model, 

independent of distance and orientation. As part of an ongoing effort to determine the 

critical state of osteocyte connectivity to insure intercellular communication through 

mechanochemical and –electrical signaling, evaluations are currently underway to 

quantify the number of canaliculi connecting two osteocytes in bone. The results of 

these studies, will be implemented in further stages of model development by either 

increasing the number of connecting canaliculi in the model, or by adjusting the flow 

rate between two osteocytes to take the increased transport through a higher number of 

canaliculi into account. The implementation of a single connecting canaliculus between 

osteocytes can partly explain the relatively low values for the transport parameters of 

dextran in bone, such as the diffusivity, that were calculated with this model. In the 

current model, emphasis was placed on simulating realistic osteocyte density for cortical 

bone as well as approximating the effective pore size ranges in cortical bone. Thus, the 

ratio of the volume of all the pores of the resulting network to the volume of the 

network cube is, with 0.012 percent currently well below the generally assumed porosity 

of cortical bone, which is reported to be on the order of five percent for the 

lacunocanalicular system.15 Thus, although the calculated transport parameters for our 

models demonstrate relative trends, it would not be appropriate to compare them 

numerically with experimentally measured values.  

In conclusion, stochastic network modeling was applied for the first time to our 

knowledge to build an in silico, nano- to microscale model that emulates the molecular 

sieving characteristics of bone. This is a first step in modeling biophysical 

characteristics of bone that have been virtually ignored in the literature to date, including 

e.g. the incorporation of ion exchange, extra- and intracellular transport and of charge 
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interactions in the flow rate and transport equations. Based on this study, not only does 

convective transport augment transport of large molecular weight substances with 

relative low diffusivity, but size exclusion effects of the hierarchical bone pore network 

may also increase transport rates along specific transport paths in the immediate vicinity 

of the cells. Both of these biophysical phenomena are expected to have a profound effect 

on the formation of molecular gradients at a tissue level, providing cues for tissue 

generation and repair by cellular “micromachines”, e.g. osteoclasts and osteoblasts. In 

the future, these effects may be exploited to develop a new generation of 

pharmaceuticals, drug delivery vehicles or treatment strategies.  
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FIGURE CAPTIONS 

Figure 1: Top: Reconstruction from confocal microscopy image stacks of human 

cortical bone samples, showing the lacunocanalicular network volume. 

Center: The osteocytes and their interconnections are highlighted. Bottom: 

Virtual, two-dimensional representation of the lacunocanalicular network 

and the bone matrix microporosity. 

Figure 2: Example of an actual network within a 15x15x15 node cube, with a side 

length of 80 µm, as simulated in this study. The osteocyte lacunae, displayed 

as dots, are connected by canaliculi. In this rendering, only one plane of the 

three-dimensional microporosity network is shown.  

Figure 3: Two methods for calculating the effective molecular size of the simulated 

dextran molecules have been used in the model. The radius of gyration 

(dashed line) for a molecule with a given molecular weight is predicted to 

be larger than the Stokes radius (continuous line). For comparison, the 

average radii of the two classes of matrix micropores are plotted as 

horizontal lines. 

Figure 4: The interstitial fluid velocity increases for molecules above a molecular 

weight of 7,000 Da and reaches a plateau at about 70,000 Da. The standard 

deviation for the fluid velocities averaged from 20 calculations for each 

molecular weight was 18 - 20%. 
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Figure 5: The diffusivity initially decreases exponentially with increasing molecular 

weight of the dextran molecules, for molecular weights of up to 10,000 Da. 

Above 10,000 Da, this decrease is much less pronounced and is almost 

linear. The standard deviation for the averaged diffusivities after 20 

calculations was 75% 

Figure 6: The ratio between interstitial fluid velocity and diffusion velocity of dextran 

through the network increases linearly with increasing molecular weight. 

This indicates that convection enhanced transport processes are particularly 

effective for high molecular weight substances. 
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