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Abstract: 

The molybdate-bearing mineral szenicsite, Cu3(MoO4)(OH)4, has been studied by Raman 

and infrared spectroscopy. A comparison of the Raman spectra is made with those of the 

closely related molybdate-bearing minerals, wulfenite, powellite, lindgrenite and iriginite, 

which show common paragenesis. The Raman spectrum of szenicsite displays an intense, 

sharp band at 898 cm-1, attributed to the ν1 symmetric stretching vibration of the MoO4 

units. The position of this particular band may be compared with the values of 871 cm-1 

for wulfenite and scheelite, and 879 cm-1 for powellite. Two Raman bands are observed 

at 827 and 801 cm-1 for szenicsite, which are assigned to the ν3(Eg) vibrational mode of 

the molybdate anion. The two MO4 ν2 modes are observed at 349 (Bg) and 308 cm-1 (Ag).  

The Raman band at 408 cm-1 for szenicsite is assigned to the ν4(Eg) band. The Raman 

spectra are assigned according to a factor group analysis and are related to the structure of 
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the minerals. The various minerals mentioned have characteristically different Raman 

spectra.  

 

 

Key Words: szenicsite, lindgrenite, iriginite, powellite, wulfenite, molybdate, Raman 

spectroscopy 

 
Introduction 
 

The mineral szenicsite is a copper hydroxy molybdate of formula 

Cu3(MoO4)(OH)4 (1). The mineral is orthorhombic and is characterised by triple 

chains of copper octahedra (2,3). These triple chains are linked by MoO4
2- and SO4

2—

tetrahedra. The different size of these tetrahedra governs their different linkage to the 

triple chains and the orientation of the Jahn-Teller distortion of the Cu2+ octahedra 

(4,5).  Burns states (2) that ‘The structure contains three unique Cu2+  positions that 

are each coordinated by six anions in distorted octahedral arrangements; the 

distortions of the octahedra are due to the Jahn-Teller effect associated with a d9 metal 

in an octahedral ligand-field. The single unique Mo6+ position is tetrahedrally 

coordinated by four O2 anions. The Cu2+(phi)6 (phi : unspecified ligand) octahedra 

share trans edges to form rutile-like chains, three of which join by the sharing of 

octahedral edges to form triple chains that are parallel to [001]. The MoO 4 tetrahedra 

are linked to either side of the triple chain of Cu2+(phi)6 octahedra by the sharing of 

two vertices per tetrahedron, and the resulting chains are cross-linked through 

tetrahedral-octahedral vertex sharing to form a framework structure.’ The structure of 

szenicsite is closely related to that of antlerite, Cu3SO4(OH)4 , which contains similar 

triple chains of edge-sharing Cu2+(phi)6 octahedra (2). 
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Szenicsite is one of a number of molybdate minerals including ferrimolybdite, 

lindgrenite, powellite, and wulfenite. Interest in minerals containing molybdate anions 

has been ongoing for some considerable time (6-13) - no doubt because these minerals 

are of commercial value.  Interest in the structure and formation of some of these 

minerals has been published (14-16). Significant advances in the technology of 

Raman spectroscopy have been made over time (17-20).  These advances have meant 

that minerals whose Raman spectra may have been difficult to measure may now be 

determined. This interest has been heightened by the use of the molybdate minerals as 

catalysts (21-24).  Many of these minerals have layered structures which can lead to 

high surface active materials (17-20).  

 
 This may be due to the lack of technology at that time or the availability of 

appropriate specimens.  Recently, Frost et al. have used vibrational spectroscopic 

techniques to study groups of related minerals (25-31).  Raman spectroscopy has 

proven to be a powerful technique for studying closely related minerals, particularly 

where the minerals can be found associated with each other through paragenesis. A 

previous study by the authors showed the usefulness of Raman spectroscopy to the 

study of molybdate minerals  (32). In this present paper, we report the vibrational 

spectra of the molybdate mineral szenicsite and compare the spectra with those of 

lindgrenite (Cu3(MO4)2(OH)2), iriginite (UO2Mo2O7.3H2O), koechlinite (Bi2MoO6), 

wufenite (PbMoO4) and powellite (CaMoO4) and relate the Raman spectra to the 

mineral structure. A comparison of the Raman spectra to those of more common 

molybdate-bearing minerals: wulfenite and powellite is also made. 

 
Experimental 
 
The mineral 
 



 4

The mineral szenicsite was collected from the Jardinera No. 1 mine (26 

Deg4.44'S,69 Deg51.4'W), which exploits secondary copper ores (1). The mine is 

located in Chile's Atacama province 5 km east of Inca de Oro, which is 80 km north 

of Copiapo (1).   

 

In this work natural minerals were used.  The origin of other molybdate minerals used 

in this work is as follows:   

Lindgrenite sample G16506 originated from Pinal Co., Arizona, USA 

Lindgrenite sample M21019 originated from Broken Hill, NSW, Australia 

Lindgrenite - Chuquicamata, Antofagasta Province, Chile.       

Lindgrenite - Superior Mine, Globe-Miami District, Gila County, Arizona 

Iriginite - Hervey's Range Deposit, 55 Km W. of Townsville, Queensland, Australia. 

Koechlinite G17196 originated from Horni, Czechoslovakia    

Koechlinite M47373 originated from Pittong, Victoria, Australia 

Molybdofornacite M42867 originated from Eagle Eye Mine, New Water, Arizona.    

Wulfenite and powellite originated from Dundas, Tasmania, Australia. 

 

 Some lindgrenite and iriginite samples were obtained from The Mineral 

Research Company. The selection of minerals from these related phases for Raman 

spectroscopic analysis must be undertaken with care. Often the crystals are found 

together in the same specimen.  

 

Electron Probe microanalysis 
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` The scanning electron microscope (SEM) used to study the mineral szenicsite 

was the FEI Quanta 200 SEM. The SEM was fitted with an EDAX thin-window X-

ray detector.  Samples examined under SEM consisted of small selected mineral chips 

mounted with double-sided carbon tape on aluminium stubs. The surface of samples 

was coated with a thin layer of carbon in a high vacuum coater to provide a good 

conductive surface.  Elemental analyses were carried out with a qualitative energy 

dispersive X-ray microanalysis instrument operating at 25kV with a 10-mm working 

distance. 

 
Infrared spectroscopy 
 

Infrared spectra were obtained using a Nicolet Nexus 870 FTIR spectrometer 

with a smart endurance single bounce diamond ATR cell. Spectra over the 4000−525 

cm-1 range were obtained by the co-addition of 64 scans with a resolution of 4 cm-1 

and a mirror velocity of 0.6329 cm/s. Spectra were co-added to improve the signal to 

noise ratio. 

Raman microprobe spectroscopy 

 

The crystals of the molybdate minerals were placed and oriented on a polished 

metal surface on the stage of an Olympus BHSM microscope, which is equipped with 

10x and 50x objectives. The microscope is part of a Renishaw 1000 Raman 

microscope system, which also includes a monochromator, a notch filter system and a 

thermo-electrically cooled Charge Coupled Device (CCD) detector. Raman spectra 

were excited by a Spectra-Physics model 127 Nd-Yag laser (785 nm) and acquired at a 

nominal resolution of 2 cm-1 in the range between 100 and 4000 cm-1. The crystals 

were oriented to provide maximum intensity. All crystal orientations were used to 
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obtain the spectra. Power at the sample was measured as 1 mW. The incident radiation 

was scrambled to avoid polarisation effects. 

 
The Spectracalc software package GRAMS was used to display the spectra. 

Band component analysis was undertaken using the Jandel ‘Peakfit’ software 

package, which enabled the type of fitting function to be selected and allows specific 

parameters to be fixed or varied accordingly. Band fitting was done using a Gauss-

Lorentz cross-product function with the minimum number of component bands used 

for the fitting process. The Gauss-Lorentz ratio was maintained at values greater than 

0.7 and fitting was undertaken until reproducible results were obtained with squared 

regression coefficient of R2 greater than 0.995. 

 

RESULTS AND DISCUSSION 
 
Theory 
 
 The mineral szenicsite is a copper hydroxy molybdate of formula 

Cu3(MoO4)(OH)4 (1) and is characterised by triple chains of copper octahedra (2,3).  

These chains are also found in the scheelite minerals and are probably characteristic 

of molybdate-bearing minerals. Minerals with a scheelite structure, like wulfenite, 

have site group S4 and space group C6
4h.  The crystal structure resembles that of 

zircon and therefore the WO4 and MoO4 groups should show only four bands in the 

Raman spectra, two components each of ν3 and ν4. The scheelite structure has been 

shown to be one of the few for which \correlation splitting of the internal modes has 

been observed. This splitting results in ν1: Ag(R) + Bu(inactive), ν2: Ag + Bg(R) +Au(ir) 

+Bu, ν3, ν4: Bg + Eg(R) + Au(ir) + Eu(ir) (33).  The szenicsite structure is expected to 

show similarities.  
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Calculations for the wulfenite structure indicate the following Raman bands 

ν1: Ag + Bu(inactive, but activated due to strain), ν2: Ag + Bg +Bu, ν3, ν4: Bg + Eg, most 

of which are easily observed for wulfenite (and scheelite). The ν1(Ag) band is detected 

at 871 cm-1 and, although the corresponding ν1(Bu) vibration should be inactive, a 

minor band is observed around 858 cm-1. It may be possible that this band becomes 

visible as a weak band due to strain in the crystal This band for synthetic powellite is 

observed in the infrared spectrum at 849 cm-1 (34). For powellite, the bands are 

observed at 879 and 847cm-1. Interestingly, Farmer has reported the ν1(Ag) band in the 

Raman spectrum for synthetic powellite at 880 cm-1 and for wulfenite at 872 cm-1 

(35).  A summary of the results of the Raman spectra of ferrimolybdite, lindgrenite, 

powellite, and wulfenite is given in Table 1 (32).  

 
 The Raman and infrared spectra of szenicsite in the 500-1200 cm-1 region are 

shown in Figure 1.  The results of the spectral analysis of szenicsite are presented in 

Table 2.  The Raman spectrum is characterised by an intense sharp band at 898 cm-1 

with a band width of 4.9 cm-1.  This Raman band is assigned to the ν1 MoO4 

symmetric stretching vibration. The position of the band may be compared with the 

value of 871 cm-1 for wulfenite and scheelite, and 879 cm-1 for powellite. The band is 

observed at 883 cm-1 for lindgrenite and 888 cm-1 for iriginite.  No infrared band for 

szenicsite is found at this position.  An infrared band is observed at 941 cm-1 with the 

corresponding Raman band at 928 cm-1. These bands are attributed to the ν1 (SO4)2- 

symmetric stretching vibration.  The observation of these bands is not unexpected as 

szenicsite can show isomorphic replacement of the molybdate by sulphate. The 

mineral is closely related in structure to the sulphate mineral antlerite. The bands 

between 1008 and 1116 cm-1 may be ascribed to the ν3 (SO4)2- antisymmetric 

stretching vibrations.   
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 For the ν3(Eg) mode of the molybdate anion, Ross (36) has reported two bands 

for wulfenite at around 748 and 772 cm-1, which matches well with the values 

observed in the Raman spectrum of wulfenite at approximately 745 and 768 cm-1 

(34,37).  Two bands are observed at 827 and 801 cm-1 for szenicsite and are assigned 

to this vibrational mode. For synthetic CdMoO4, however, only one Raman band has 

been reported at around 759 cm-1. The corresponding ν3(Bg) is found at 815 cm-1.  The 

ν3(Eg) bands are observed at 795 and 772 cm-1 for lindgrenite, 693 and 668 cm-1 for 

iriginite and 797 and 773 cm-1 for koechlinite.  The spectrum of iriginite is 

complicated by the presence of Raman bands due to the uranyl units. This accounts 

for the additional bands observed for iriginite, as shown in Table 1.  It is probable that 

the two bands at 826 and 818 cm-1 are due to the ν1 (UO2)2+ symmetric stretching 

vibrations and the two bands at 965 and 950 cm-1 to the ν3 antisymmetric stretching 

vibrations of the (UO2)2+ units.   

 

The Raman spectrum of the low wavenumber region of szenicsite is shown in 

Figure 2. The two ν2 modes are observed at 349 cm-1 (Bg) and 308 cm-1 (Ag). A 

comparison of the data for the natural minerals is given in Table 1. Farmer reports 

these bands for the  Raman spectra of wulfenite at 354 and 321 cm-1 (35).  Three 

bands were given for synthetic powellite at 404, 394 and 326 cm-1 (35). The expected 

ν4(Eg) around 384 cm-1 is absent in the spectrum of natural wulfenite.  The band at 

308 cm-1 for szenicsite is assigned to this vibrational mode. Two bands were listed at 

820 and 770 cm-1 for wulfenite and two bands at 847 and 796 cm-1 for synthetic 

powellite (34,35).  The bands of wulfenite at 351 and 319 cm-1 are assigned as either 

deformation modes or as r(Bg) and δ(Ag) modes of terminal MO2 units. These bands 
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are observed at 355 and 320 cm-1 for powellite.  The band at 462 cm-1 has an 

equivalent band in the infrared at 455 cm-1, assigned as δas(Au) of the (M2O4)n chain. 

The band at 476 cm-1 for szenicsite is also attributed to this vibration. The equivalent 

band for powellite is observed at 456 cm-1. The band at 513 cm-1 for powellite is 

assigned as νsym(Bg) of the (M2O4)n chain. The band for powellite at 794 cm-1 is 

interpreted as an antisymmetric bridging mode associated with the molybdate chain. 

The bands for wulfenite at 768 and 745 cm-1 are associated with the antisymmetric 

and symmetric Ag modes of terminal MO2. Additional bands for wulfenite were 

observed at 195 and 166 cm-1, assigned as translational modes of Pb-O and MO4.  

Three bands observed at 196, 159 and 152 cm-1 for powellite are assigned to 

translational modes of Ca-O and MO4.   

 

 The Raman spectrum of szenicsite in the 3400 to 3600 cm-1 region is shown in 

Figure 3.  The Raman spectrum shows a single band at 3559 cm-1 with additional 

bands at 3518 and 3503 cm-1.   The 3559 cm-1  band in the infrared spectrum shows 

complexity with multiple bands at 3567, 3559, 3555, and 3539 cm-1.  The observation 

of multiple bands for the OH units suggests that not all the OH units are identical. A 

band at 3518 cm-1 is common in both the Raman and infrared spectra.  A low intensity 

band at 3503 cm-1 is observed in the Raman spectrum. Significantly greater intensity 

is observed in the infrared spectrum with a band maximum at 3496 cm-1.  One 

possible assignment is that these bands are due to adsorbed or bonded water. The phi 

ligands (see introduction above) may be OH units, but could also be water molecules.   

  
  
 
Conclusions 
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The molybdenum-bearing minerals szenicsite, lindgrenite, iriginite and 

koechlinite have been studied by Raman spectroscopy.  A comparison is made with 

the Raman spectrum of the more common minerals wulfenite and powellite.  The 

Raman spectra are assigned according to a factor group analysis and related to the 

structure of the minerals. These minerals have characteristically different Raman 

spectra. 

 
The Raman spectrum of the mineral szenicsite shows an intense sharp band at 

898 cm-1 attributed to the ν1 symmetric stretching vibration of the MO4 units. The 

position of the band may be compared with the value of 871 cm-1 for wulfenite and 

scheelite, and 879 cm-1 for powellite. The band is observed at 883 cm-1 for lindgrenite 

and 888 cm-1 for iriginite.  Two Raman bands are observed at 827 and 801 cm-1 for 

szenicsite and are assigned to ν3(Eg) vibrational mode of the molybdate anion. The 

two MO4 ν2 modes are observed at 349 cm-1 (Bg) and 308 cm-1 (Ag).  The Raman band 

at 408 cm-1 for szenicsite is assigned to the ν4(Eg) band. 

 
 

 
The spectrum of iriginite is complicated by the presence of Raman bands due 

to the uranyl units. These units exhibit intense Raman bands at 965, 950 and 826 and 

818 cm-1, which are attributed to the antisymmetric and symmetric stretching modes 

of the UO2 units, respectively.  The Raman bands at 687 and 668 cm-1 for szenicsite 

are attributed to antisymmetric and symmetric Ag modes of terminal MO2 units.  

Similar bands are observed at 797 and 773 cm-1 for koechlinite and at 798 and 775 

cm-1 for lindgrenite.   It is probable that some of the bands in the low wavenumber 

region are attributable to the bending modes of these MO2 units.   
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Table 1 Raman spectroscopic analysis of wulfenite, powellite, lindgrenite, iriginite and 
koechlinite 

 
 
wulfenite powellite lindgrenite iriginite koechlinite 

  982   
871 
858 

879 
847 

929 
883 
837 

965 
950 
888 
826 
818 

843 
 

768 
745 

794 795 
772 

693 
668 

797 
773 
715 

 
462 
351 
319 

513 
456 
403 
392 

493 
398 
354 
335 

487 
457 
413 
373 
337 

 
401 
349 

 

 324 
267 

300 
284 

301 
246 

321 
293 
281 
268 

195 196 210 
198 
188 

198 228 
195 

166 159  
152 

167 
155 
139 
120 

164 154 
141 
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Table 2 Table of the results of the infrared and Raman spectra of szenicsite 
 

IR Raman 
Centre FWHM % Centre FWHM % 

3694 15.5 0.97    
3621 8.6 0.35    
3567 4.4 0.17    
3559 4.8 0.87 3559 5.3 3.73 
3555 9.3 2.24    
3546 9.8 0.40    
3539 5.9 0.32    
3518 9.2 5.26 3518 4.4 3.23 

   3506 5.0 0.41 
   3503 5.7 1.13 

3500 5.0 0.68 3500 10.0 0.62 
3497 7.2 0.69    
3496 27.3 11.25    
3471 19.7 1.47    
1116 14.9 0.39    
1090 21.7 2.42    
1073 16.2 1.15    
1049 46.1 2.83    
1030 21.4 2.29    
1008 22.7 1.09    
941 17.1 2.33 928 15.3 7.08 

   909 51.5 3.24 
   903 6.2 5.27 
   902 1.0 0.40 
   898 4.9 18.33 
   895 5.3 12.45 
   894 7.5 8.97 

878 10.6 0.65 873 65.8 1.29 
859 25.4 3.05 843 10.3 0.70 

   838 8.6 0.95 
   827 18.6 3.59 
   810 10.2 0.40 

797 60.1 12.88 801 13.5 1.07 
783 20.6 2.48    
746 73.4 20.54    
673 57.9 11.72 687 19.6 1.01 
611 59.2 9.04    
560 47.7 2.47    

   475 9.5 0.64 
   420 11.6 16.28 
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   349 18.2 5.10 
   308 12.9 1.25 
   280 16.4 3.45 
   211 7.5 1.30 
   147 9.0 1.00 
   105 6.2 0.39 
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List of Figures 
 
 
Figure 1  Raman and infrared spectrum of szenicsite in the 500 to 1200 cm-1 region. 
 
Figure 2  Raman spectrum of szenicsite in the 100 to 500 cm-1 region. 
 
Figure 3 Raman and infrared spectrum of szenicsite in the 3400 to 3600 cm-1 region. 
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