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Optimizing a neural network to 
improve classification performance 

rainstem Auditory Evoked Potentials B (BAEPs) are considered the most ob- 
jective measure currently available with 
which to determine the functional integ- 
rity of the peripheral auditory nervous sys- 
tem. BAEPs are the early portion of the 
electrical activity of the brain in response 
to a brief auditory stimulus, typically re- 
corded using electrodes attached to the 

I 

scalp. A response signal usu- 
ally consists of seven vertex 
positive waves within 10 ms of 
stimulus presentation. 

Estimating hearing thresh- 
old from BAEP signals is a 
time consuming and labor in- 
tensive procedure, and there- 
fore one which recommends 
itself to computerized auto- 
mation. The important step is 
the classification of the signals 
into Response (R)  and No Re- 
sponse (NR) classes (Fig. l), 
the main difficulties being a 
poor signal-to-noise ratio and 
the differentiation of response 
peaks from artifacts. Artificial 
neural network (ANN) classi- 
fiers are an appropriate choice 
for this type of task because 
they are tolerant of noise and 
do not require a prior analytical 
description of the signal. Nev- 
ertheless, BAEP classification 
is a difficult task, having cer- 
tain characteristics such as the 
requirement for good general- 
isation, unequal numbers in the 
two class populations, and a 
significant proportion of sig- 
nals that even experts have dif- 
ficulty in classifying. The 
difficult to classify signals are 
typically those at the threshold 
of hearing. In a clinical setting, 

the physician has the advantage of having 
a sequence of signals arranged in order of 
stimulus strength. Thus, it is compara- 
tively easy to classify the difficult thresh- 
old signals. 

We have already demonstrated the fea- 
sibility of using neural networks to class- 
ify BAEPs [ I], and also that signal 
preprocessing and careful selection of the 
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training set can increase the accuracy rate 
of classification [ 2 ] .  When experts were 
presented with solitary signals in the ab- 
sence of any contextual or clinical clues, 
they performed only slightly better than a 
trained neural net classifier. Preprocessing 
the signals brought the net performance to 
levels comparable to those of experts. 
However, in these studies, no attempt was 
made to optimise the neural net learning 
parameters; in particular, the learning rate 
constant (LRC), the momentum constant 
(MOM) and the batch size. 

The aim of this study was to optimize 
four learning parameters in order to im- 
prove the classification performance of 
the net on unprocessed signals as seen by 
experts, perhaps to a level equal to the 
experts with contextual clues. Our results 
show that proper tuning of learning pa- 
rameters not only increases the speed of 
learning, but can also increase generalisa- 
tion and reduce the occurence of false 
negative classifications. This last effect is 
of considerable importance in a clinical 
environment. 

ANNs are computational systems 
whose internal structure and processing 
methods attempt to “imitate” some of the 
known features of biological nervous sys- 
tems. As such, they have properties and 
capabilities quite different from those of 
traditional serial algorithms processed by 
serial computers. Indeed, the recent surge 
of interest in ANNs has come about be- 
cause they can solve problems that are 
intractable with traditional serial methods 
[ 3 ] .  They are rapidly finding many appli- 
cations within medical science, not only 
as signal and image processors but also for 
computer-aided diagnosis [4]. 

An ANN is a network of simple com- 
putational elements known as neurons or 
units. Any ANN is defined by three fea- 
tures, its network architecture (the number 
of units and their pattern of interconnec- 
tion), the input-output function of the 
units, and a learning rule by which the 
connection strengths or weights between 
units are changed. In particular, a three- 
layer (input, hidden, and output layers) 
feed-foward architecture in conjunction 
with the back-propagation learning algo- 
rithm has proved successful in many clas- 
sification tasks, including biomedical 
signal classification. The network is re- 
quired to learn a set of input patterns or 
signals (that is, produce correct target out- 
puts when presented with each input pat- 
tern) by changing the weights between 
units. The net compares its actual outputs 
with target outputs and minimises the dif- 
ference by adjusting its weights appropri- 
ately. Learning is terminated when the net 
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1. Sample BAEP signals and network architecture. The signal labeled “No Re- 
sponse” does not contain sound evoked activity, whereas the amplitude fluctuations 
of the signal labeled “Response” are the result of a sound stimulus. 

can correctly classify all input patterns 
within a predetermined error tolerance. 

From a mathematical point of view, the 
backpropagation algorithm is a non-linear 
least squares optimisation problem, whose 
solution is approached iteratively. The 
non-linearity in this case is a sigmoid func- 
tion (either the logistic or tanh) chosen 
because it is thought to mimic the output 
function of a typical biological neuron. 
The error function to be minimised is 
known as the quadratic: 

where p is the number of patterns in the 
training set, k is the number of output layer 
neurons, d is the desired or target value for 
any given output neuron presented with 
pattern p, and o is the actual output of that 
neuron. When the net is presented with an 
input signal, unit outputs are fed foward 
through successive hidden layers until 
output values are obtained for the units of 
the output layer. The output errors are 
calculated as in equation (1) and back- 
propagated through the network, so that an 
output error is assigned to each hidden 
unit. The network weights are adjusted 
according to the learning rule: 

Awn = -qVE(wi,) (2) 

where Awn is the change in value of the 
weight vector at the nth iteration, and q is 
the LRC. DEL E is the gradient of the error 
surface in weight space, each element of 
which is given by: 

where wj, is the weight of the connection 
from unit i to unit j,  6 is the output error of 
unit j, and oi is the output of unit i. Once 
training is complete, the ability of the net 
to generalise is tested by presenting a set 
of novel signals, that is, signals not seen 
by the net during training but drawn from 
the same pattern space. 

Despite its popularity, one difficulty 
with the original backpropagation algo- 
rithm has been its slow rate of training 
convergence. Increasing the LRC will 
speed learning, because larger steps mean 
fewer need be taken to reach a solution. 
However, too large a value of LRC makes 
learning unstable In practice, learning can 
be slow even with the largest possible 
values of LRC. Many modifications have 
been proposed to speed up back-propaga- 
tion. One, which produces faster learning, 
is to change the weights immediately after 
each training pattern is presented (pattern- 
mode weight updating) rather than after 
the entire training set has been presented 
(batch-mode weight updating). The addi- 
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tion of a momentum term to the calcula- 
tion of weight changes is the most fre- 
quently used method to increase speed of 
convergence. It is usually incorporated 
into the learning rule as follows: 

Awn = -qVE(wd + aA(wn-i) (3) 

where a is the momentum constant 
(MOM). Momentum is now so widely 
used that it can be considered a part of the 
standard back-propagation algorithm. The 
value of MOM (usually between 0.0 and 
0.9) determines the relative contribution 
of the previous gradient to the current 
weight change. Momentum smooths high 
frequency fluctuations of the error surface 
in the weight-space [5] .  It improves the 
speed of convergence by augmenting 
weight changes  when consecutive 
changes have the same sign, and by damp- 
ing when they have alternating signs. For 
many problems, increasing MOM not 
only speeds up learning but also reduces 
the variability of learning times [6,7]. 

While it is apparent from many studies 
that momentum can accelerate learning. 
there are few published reports on the 
interaction of momentum with other 
learning parameters or its effect on other 
performance indices, such as generalisa- 
tion- the ability of a net to classify cor- 
rectly novel inputs. In medical problems, 
it can be argued that generalisation is more 
significant than faster learning. 

Generalisation is affected by training 
set selection [ 2 ] ,  training set size [SI, noise 
added to the training signals [SI, and hid- 
den layer size [9]. As a preliminary to their 
study on the relationship between gener- 
alisation and training set size, Cohn and 
Tesauro [8] state that no other training 
parameters apart from batch size (number 
of signals presented to the net before 
weights are updated) had a significant ef- 
fect on generalisation. Sietsma and Dow 
[9] found that pruning a network down to 
the minimum number of hidden layer units 
that could correctly classify the training 
set produced networks which generalised 
poorly. The results presented here reveal 
a significant interaction between the four 
learning parameters (LRC, MOM, batch 
size, and hidden layer size) with respect to 
both learning speed and generalisation 
and that a network tuned for speed may 
yield poor generalisation. 

The Signal 
Raw BAEPs were amplified and band- 

pass filtered (100-3000Hz) to remove the 
EEG component and high frequency 
noise. A post stimulus signal of 12.8 ms 
was sampled at 40 kHz to give 5 12 data 

points. Since these raw signals are ex- 
tremely noisy, standard procedure was to 
coherently average 1024 of such signals to 
give a single BAEP signal. This signal can 
be used for classification but in this study, 
the signals were further reduced by sam- 
pling every eighth value between 1 ms and 
11 ms. The resulting signal of 50 data 
points was normalised between 0 and 1 
and used as input to the neural network. A 
data set of 321 such input signals was 
obtained, which included various combi- 
nations of hearing impaired and normal 
subjects and varying stimulus intensities. 

The Training and Test Sets 
The training set consisted of 60 signals 

(45 response signals (R) and 15 no re- 
sponse signals (NR) selected by experts as 
being typical of their class. Previous stud- 
ies had shown that an expert selected train- 
ing set was superior to a randomly selected 
training set [ I ] .  The ratio of class sizes (the 
R:NR ratio) in the training set was chosen 
as 3: 1, reflecting the approximate ratio in 
a clinical setting. 

The test set consisted of 261 signals 
with the same ratio of three R signals to 
one NR signal. No signals from any of the 
same subjects used in the training set were 
included, which added considerably to the 
difficulty of the learning task. The test set 
was presented to the net usually every 100 
iterations and finally at convergence in 
order to monitor generalisation. 

Standard Net Configuration 
When optimising a net’s performance, 

the number of possible parameter combi- 
nations is enormous. Not all can be tested, 
yet much care must be taken in drawing 
general conclusions from a few combina- 
tions because the interactions between pa- 
rameters are complex. We therefore 
defined a standard net configuration and 
changed parameters one at a time from the 
standard configuration to test the effect of 
changing that parameter. The standard 
configuration was a three layer net with 50 
input units, 6 hidden layer units, and 2 
output units (a 50-6-2 net). Each unit had 
a bias weight and used the binary logistic 
output function. The net was initialised 
with random weights in the range [-OS, 
+0.5]. The quadratic error function was 
used to measure learning error. The targets 
for the two output units were 1,O and 0, 1 
for the R and NR signals, respectively 
(Fig. 1). The standard training batch size 
was 60, that is weights were updated after 
each complete presentation of the training 
set, which was counted as one learning 
iteration. Training was terminated either 
when all signals had been learned within 

a tolerance of 0.2 (for each output unit) or 
when the number of iterations equaled 
10,000. 

Performance Indices 
In this study, we were primarily con- 

cerned with three indicators of net per- 
formance, time to learn the training set, 
generalisation, and learning stability. 
Learning time was measured as the num- 
ber of iterations required for the net to 
converge on a solution at the given level 
of error tolerance. Speed of learning is 
inversely proportional to the number of 
iterations. 

Generalisation is the ability of a net to 
classify correctly inputs it has not seen 
during training. In this study, generalisa- 
tion was measured as the percentage of 
correctly classified signals in a test set of 
261 signals. 

The stability of learning for a given set 
of learning parameters is the ability of the 
net to converge, starting from different 
points in the weight space; that is, starting 
with different sets of initial random 
weights. Another measure of stability is 
the standard deviation of the iterations 
required for convergence. A net configu- 
ration that results in large SD of iterations 
is less stable. 

Learning was repeated 10 times for 
each combination of parameters ( I O  re- 
peats = 1 trial), the net being initialised 
with a different set of random weights for 
each repeat. To enable more accurate 
comparisons, the same 10 sets of random 
weights were used for every trial. Where 
a run did not converge within 10,000 itera- 
tions, training was automatically termi- 
nated and the next repeat started.  
Averages and standard deviations of per- 
formance measures were calculated only 
for those repeats which converged within 
the 10,000 limit. 

Plotting performance indices against 
LRC yields graphs that are difficult to 
interpret. Consequently, performance in- 
dices were plotted against gain, where 
gain = LRC/( 1 - MOM). By so doing, the 
smoothing effect of the momentum term 
can be clearly disentangled from its con- 
tribution to gain. 

Interaction of Learning Rate Constant 
and Momentum 

We trained a 50-6-2 network using dif- 
ferent combinations of the parameters, 
LRC and MOM. Learning time and gen- 
eralisation are shown in Figs. 2a and 2b, 
respectively. For any given value of 
MOM, learning time first decreased and 
then increased as LRC was progressively 
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2. Learning time, generalisation and convergence stability. The graphs in A, B and 
C are plotted against the LRC for different values of MOM. The graphs in D and E 
are plotted against gain for different values of MOM. For figures A, B, D and E, 
only those parameter combinations are plotted where 8 or more of the 10 repeats 
converged within 10,000 iterations. Error bars indicate f one SD. For clarity, error 
bars are included only for selected traces. 

increased. Variability of learning time 
(standard deviation of I O  repeats) also de- 
clined at first, and then increased. The 
optimum value of LRC (for which learn- 
ing time was a minimum), became smaller 
as MOM was increased. Increasing MOM 
also reduced the range of LRC values over 
which learning remained stable. This is 
also apparent in Fig. 2c, which shows how 
the stability of learning (number of repeats 
out of 10 which converged within 10,000 
iterations) varies for various combinations 
of LRC and MOM. 

There was a significant increase in gen- 
eralisation to a maximum of 8 1.5 percent as 
LRC was increased from 0.01 to 0.3, but it 
remained unchanged for higher values of 
LRC. Note that high values of MOM pre- 
vented the use of higher LRC values, which 
resulted in higher generalisation. 

When network performance was plot- 

ted against gain (Figs. 2d and 2e), it was 
clear that gain has the dominant influence 
on learning time (Fig. 2d), although use of 
momentum still significantly reduced 
learning time. Instability problems arose 
with gains higher than 0.6. 

Generalisation (Fig. 2e) at low gain 
was 78 percent for all values of MOM. 
With low MOM (0.0,O. l), generalisation 
increased to about 8 1 percent as gain was 
increased to 0.3, but did not change sig- 
nificantly as gain was increased further. 
For intermediate values of MOM (0.3,0.5, 
0.7), generalisation increased with gain, 
but more slowly than with low MOM. 
With maximum MOM (0.9), generalisa- 
tion remained low for all values of gain. 

Batch Size 
A 50-6-2 net was trained with batch 

sizes of 1, 4, 20, 30, and 60 (Fig. 3). A 
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batch size of 1 is equivalent to training in 
pattern mode (weight updates after each 
pattern is presented), while a batch size of 
60 was equivalent to weight updates after 
presentation of the entire training set. 
Once again, the dominant trend was for 
learning time to decline with increasing 
gain. Decreasing the batch size also de- 
creased the learning time, but the effect 
was significant only with low momentum 
(0.1). The major effect of batch sizes 
smaller than 60 was to enable stable leart- 
ing at gains higher than 0.5. 

Batch size had a significant effect on 
generalisation. Once again, generalisation 
was low (78 percent) at low gain regard- 
less of batch size. Generalisation in- 
creased with gain, most rapidly for batch 
size of 60, at a slower rate for batch sizes 
of 30 and 20, and not at all for batch sizes 
of 1 and 4. The net result is that for inter- 
mediate levels of gain, generalisation 
tended to increase as batch size increased. 
Using high momentum (0.9), generalisa- 
tion did not change significantly with in- 
crease in gain or increase in batch size. 

Hidden Layer Size 
The combined effects of hidden layer 

size, gain, and momentum on learning 
time and generalisation are shown in Fig. 
4. With MOM = 0.1, learning time de- 
creased and generalisation increased as 
the hidden layer size was increased. In- 
creasing the gain for any given hidden 
layer size increased learning speed and 
generalisation. There was an interesting 
interaction between hidden layer size and 
gain with respect to generalisation. With 
higher gain, the net required fewer hidden 
units to achieve optimum generalisation. 
For example, the optimum performance 
with gains of 0.1,0.3, and 0.5 (and MOM 
= 0.1) was reached with hidden layer sizes 
of 8 ,6 ,  and 3, respectively. 

When high momentum was used 
(MOM=0.9), learning time and generali- 
sation did not significantly differ over the 
whole range of hidden layer sizes. In par- 
ticular, generalisation remained at the 
same low level (around 77 percent). Trials 
were also run with MOM values of 0.0 and 
0.5 (not shown in the graphs to preserve 
clarity). Generalisation scores for MOM = 
0.5 were intermediate between those of 
low and high momentum. 

Discussion 

Interaction of Learning Rate Constant 
and Momentum 

The learning time curves shown in Fig. 
2a are similar to those obtained by Tolle- 
naere [6] and Higashino, et al. [ 101. The 
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similarity is of interest because both these 
former studies used artificial bench mark 
tests, whose validity with respect to real 
world data (such as our BAEP data) is 
sometimes questioned. 

While it is true that the optimum com- 
bination of LRC and MOM is very much 
problem specific and depends further on 
training set size, hidden layer size, etc., 
there has been unnecessary confusion in 
the literature over the interaction of these 
two learning parameters. The confusion 
arises because both LRC and MOM in the 
standard learning rule contribute to the 
magnitude of the weight changes. Mo- 
mentum is usually incorporated into the 
back-propagation algorithm, as in Eq. 3. 
The problem with this formulation is that 
the momentum term has the additional 
effect of increasing the overall value of the 
weight changes and, therefore, the gain of 
the system. Momentum can also be incor- 
porated into the weight update formula as 
follows: 

A w ~  = -( 1 - a)qoVE(w,) + CXAW, - l(4) 

In this formulation, adding momentum 
does not increase the system gain, and qo  
can be viewed as the total gain of a cascade 
of an integrator and a low pass filter. The 
integrator, which sums individual gradi- 
ents over time, has a gain of q. and the low 
pass filter has a gain of 1/(1 - a)  [7]. 
Equations 3 and 4 are equivalent with gain 
= qo = q/( 1 -  a). Rather than considering 
combinations of LRC and MOM, it is 
more useful to consider combinations of 
gain and MOM because we would expect 
learning speed to be proportional to gain. 
Indeed, Higashino, er a/.  found empiri- 
cally that N is proportional to (1  - a)/q,  
where N is the number of iterations re- 
quired to converge on a solution, which is 
the inverse of learning speed. While high 
gains provide faster learning, training 
tends to become unstable. 

If learning speed were the only consid- 
eration, then high gain and high momen- 
tum (within the limits of stable learning) 
would be the most desirable combination. 
However, high momentum tends to inhibit 
generalisation, as shown in Fig. 2e, a result 
that is not immediately obvious when gen- 
eralisation is plotted as a function of LRC 
(Fig. 2b). Taking both speed and general- 
isation into account, the optimum parame- 
ter values for our problem were: gain = 0.3 
and MOM = 0.0, which gave both fast 
learning and good generalisation. The im- 
portant point to emerge from these results 
is that parameter combinations that lead to 
fast learning do not necessarily lead to the 
best achievable generalisation. 
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3. Learning time and generalisation as a function of gain for different batch sizes. A 
and B: MOM = 0.1; C and D: MOM = 0.9. 

In our original studies [ 1,2], no inves- 
tigation was made of the optimum LRC or 
MOM for the classification task. It turns 
out that the values used (LRC = 0.01, 
MOM = 0.9) are the worst combination for 
both speed and generalisation. By opti- 
mising LRC and MOM, average general- 

isation was significantly increased from 
77 percent to 82 percent. The best individ- 
ual generalisation value achieved was 84 
percent. 

While this may be considered a rather 
modest increase in generalisation, these 
total figures disguise another important 
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MOM = 0.1; C and D: MOM = 0.9. 
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consequence of optimising for LRC and 
MOM. In the classification of BAEP sig- 
nals, one is concerned to minimise the 
occurence of false negatives, that is the 
misclassification of “no response” signals 
as “response” signals. This concern is un- 
desirable because it increases the prob- 
ability of a hearing impaired person not 
being admitted for further testing. Analy- 
sis of the generalisation test scores re- 
vealed that increases in generalisation 
with gain were achieved by an improved 
recognition of NR signals. As gain in- 
creased from 0.01 to 0.6 (with MOM = 
0.0), correct recognition of NR signals 
increased from 40 to 70 percent, a value 
which is slightly better than experts in the 
absence of clinical and contextual clues 
[I]. 

The use of momentum is obviously 
detrimental to good generalisation in this 
particular classification task. Pedone and 
Parisi [ 1 I ]  state that too high a value for 
momentum “can block learning,” but this 
statement must be interpreted carefully. 
Our results confirm that the use of mo- 
mentum significantly increases the speed 
of learning a training set, provided that 
gain is kept low enough to avoid unstable 
learning. Furthermore, a momentum value 
of 0.9 helped to stabilise learning with 
high gains. In other words, momentum 
enhanced the learning of our training set. 
Rather, it was generalisation to unseen 
inputs that declined with the use of mo- 
mentum, a phenomenon that Pedone and 
Parisi did not investigate. 

The interactions between LRC and 
MOM in our study illustrate the difficulty 
in drawing general conclusions from a 
limited sample of parameter combina- 
tions. It would have been possible in our 
case, using a wide range of MOM with a 
single low value of LRC and a wide range 
of LRCs with a single high value of MOM, 
to conclude incorrectly that neither vari- 
able had an effect on generalisation. The 
optimum combination of LRC and MOM 
may of course depend on other factors 
such as network size and training set size. 
Nevertheless, our results suggest that for 
optimum generalisation, momentum 
should be kept low or not used at all. 

An increase in step size means fewer 
steps to convergence and thus faster 
leamng, but it is more difficult to explain 
why a larger step size should increase 
generalisation. During gradient descent, 
the value of the error function gradually 
decreases, but this value does not in itself 
determine when training stops. Rather 
training stops when all input patterns are 
correctly classified within a predeter- 
mined level of output unit error. We have 

found that final error, that is the value of 
the error function at convergence, is sig- 
nificantly reduced when higher values of 
gain are used. The translation of reduced 
final error into higher generalisation de- 
pends on other parameters such as mo- 
mentum and batch size.  With low 
momentum, low final error correlates with 
higher generalisation. With high momen- 
tum, generalisation remains poor, regard- 
less of the final error value. 

Batch S i x  
Decreasing the training batch size sig- 

nificantly decreased learning times but 
also reduced generalisation (at low mo- 
mentum). In this respect, small batch size 
had the same effect on network perform- 
ance as high momentum. Observe, for ex- 
ample, the similarity between Figs. 2e and 
3b. 

In Fig. 3, a batch size of 1 is equivalent 
to what is usually called pattern mode 
weight updating. There are two versions 
of pattern mode weight updating; either 
the patterns can be presented in random 
order or in sequential order. In Fig. 3, the 
patterns were presented sequentially. We 
had previously compared sequential pat- 
tern mode with random pattern mode and 
found no difference in learning times or 
generalisation. Pattern mode is usually 
adopted in preference to full batch mode 
because it gives a faster rate of learning 
[ 121. Our results suggest that in tasks 
where generalisation is important, both 
versions of pattern mode should be 
avoided. despite their faster training times. 

Our results confirm the statement of 
Cohn and Tesauro 181 that batch size has 
an effect on generalisation. But contrary 
to our results, they further state that LRC 
and momentum had no effect on general- 
isation. They were primarily interested in 
the influence of training set size on gener- 
alisation and investigated other parame- 
ters only as possible sources of systematic 
error. It is probable that, like many other 
aspects of neural network performance, 
interactions between parameter values are 
very much task specific. 

Hidleri I q c r  .size 
It is frequently stated that a training set 

learned with the minimum of hidden layer 
units leads to better generalisation [ 131. 
Intuitively, one might expect that excess 
hidden units will learn idiosyncratic fea- 
tures of the training set that are not repre- 
sentative of the pattern space as a whole. 
However, this intuition is not supported by 
several studies. Sietsma and Dow 191 re- 
port that best generalisation occured when 
more hidden units were used than the 

minimum required to leam the training set. 
Our results lead to the same conclusion, 
but we have additionally observed that the 
optimum number of hidden layer units 
depended on gain. In the absence of mo- 
mentum, fewer hidden layer units were 
required with higher gains, but increasing 
the number of hidden units could not com- 
pensate for the use of low gain. In other 
words, high gain is more important than 
large hidden layer size to achieve best 
generalisation. The better generalisation 
with large hidden layer size is due, once 
again, to improved recognition of the NR 
signals. 

The use of high momentum completely 
negates the advantage of larger hidden 
layer size. (Sietsma and Dow [9] used 
MOM = 0.5 and LRC = S/fan-in, which 
makes detailed comparisons more diffi- 
cult.) Our results lead to the conclusion 
that the optimal hidden layer size for gen- 
eralisation cannot be determined inde- 
pendently of the optimal gain and 
momentum. The interaction between gain 
and hidden layer size can be reduced, 
however, if the gain of each unit in the net 
is normalised for its connectivity [ 101. 

I t  was noticed during training with 
large hidden layer sizes that several of the 
hidden layer units did not appear to learn, 
that is, their weight changes were very 
small compared to the units which were 
obviously learning pattern features. These 
excess or redundant hidden units did not, 
however. impair generalisation. We found 
no diminished generalisation even with a 
hidden layer size of IO. 

Conclusions 
Feed-foward neural networks in con- 

junction with back-propagation are an ef- 
fective tool to automate the classification 
of biomedical signals. Most of the neural 
network research to date has been done 
with a view to accelerate learning speed. 
In the medical context, however, general- 
isation may be more important than learn- 
ing speed. With the BAEP classification 
task described in this study, we found that 
parameter values that gave fastest learning 
could result in poor generalisation. In or- 
der to achieve maximum generalisation, it 
was necessary to fine tune the neural net 
for gain, momentum, batch size, and hid- 
den layer size. Although this maximiza- 
tion could be time consuming, especially 
with larger training sets, our results sug- 
gest that fine tuning parameters can have 
important clinical consequences, which 
justifies the time involved. In our case, 
fine tuning parameters for high generali- 
sation had the additional effect of reducing 
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false negative classifications, with only a 
small sacrifice in learning speed. 
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