
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

QUT Digital Repository:  
http://eprints.qut.edu.au/ 

Brown, Andrew R. and Towsey, Michael W. and Wright, Susan K. and Deiderich, 
Joachim (2001) Statistical Analysis of the features of diatonic music using jMusic 
software. In Proceedings Computing ARTS 2001 – Digital resources for research 
in the Humanities, pages pp. 1-11, Sydney, Australia: The University of Sydney. 

 
          © Copyright 2001 (please consult author) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10878073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Melodic Analysis with jMusic – Brown et al. Page 1 

Statistical analysis of the features of diatonic music 

using jMusic software. 
 

Andrew R. Brown, Michael Towsey, Susan Wright, and Joachim Diederich 

 

A. Brown, M. Towsey and S. Wright 

Queensland University of Technology 

Victoria Park Rd. 

Kelvin Grove, 4059 

Brisbane, Australia 

 

J. Diederich 

Department of Computer Science and electrical Engineering 

University of Queensland 

St. Lucia, 4072 

Brisbane, Australia 

Introduction 

Much has been written about the rules of melody writing and this paper reports on research that 

uses computer-based statistical analysis based upon these rules. As a first stage in a processes of 

computer generation of melodies we have devised computer software that analyses melodic 

features highlighted in melody writing literature. The results of this analysis identifies that not all 

melody writing rules are evident in historical practice, and thus reveals the usefulness of 

computer-based analysis in identifying those features that can be usefully applied to computer-

generated composition. We also present details of the computer-based analysis software and the 

jMusic software environment in which it was built so that others might assess the application of 

these tools to their own music research. 
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Creative tasks, such as the composition of musical melodies, often defy the imposition of rules in 

the strict sense. In this paper we will outline our attempts to apply firm, at times brittle, digital 

implementations of compositional rules to Western diatonic music and show where these rules 

are indicative of coherent melodies and where they act more as guidelines or heuristics. In the 

process we will discuss some of the issues that arose in mapping linguistic rules to digital 

representations and how we were able to represent the results in multiple mediums. We found 

that the rules of melody writing were generally heuristic in nature but that despite wide standard 

deviations the features could usefully, if only loosely, differentiate coherent diatonic melodies 

from incoherent ones. They could alert us to “poor” melodies but not distinguish “good” from 

“average” melodies. 

 

To explore the rule-adherence of existing melodies we developed software to automate the 

process. This software is now publicly available and so its operation and features will be 

described. It is hoped that others who require analysis of melodies for research might be able to 

utilise this software. Our research was also concerned with the support of melodic writing in 

school education and computer generation of algorithmic melodies and therefore these and other 

possible research extensions of our melodic analysis procedures will be briefly discussed. 

Rules of melody writing 

There are numerous books and courses on melody writing. Our first task was to survey this 

literature and distil the “wisdom” in them to develop a list of regularly occurring features. We 

limited our search to literature focused upon Western diatonic music and to rules aimed at 

beginner composers (Dunsby & Whittall 1988, Sturman 1995, 1995a, Stowasser 1989). We 

arrived at a list of 24 melodic features identified in the literature on composition. These are 

described briefly in figure 1 (for a more complete description see Towsey, Brown, Wright & 

Diederich 2000). The features are deliberately simplistic and do not include harmonic variation 

over time such as chord progression or modulation of key. 

 

Melodic Features: 
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Pitch Features Rhythmic Features 
Pitch Variety 

The variety of pitches used. 

Note Density 

The average number of notes per beat. 

Pitch Range 

The distance between the lowest and highest pitch. 

Rest Density 

The average number of rests per beat. 

Key Centeredness 

The use of tonic and dominant pitches. 

Rhythmic Variety 

The number of different rhythmic values used. 

Tonal Deviation 

The use of non-scale pitches. 

Rhythmic Range 

The difference between the shortest and longest rhythm 

value used. 

Dissonance 

The use of dissonant intervals. 

Syncopation 

The number of notes that sustain across the beat. 

Overall Pitch Direction 

The upward or downward trend of the melody. 
Structural Features 

Melodic Direction Stability 

The number of times the melody changes pitch direction. 

Repeated Pitch Density 

The use of two of the same pitches in a row. 

Pitch Movement by Tonal Step 

The use of tonal steps, indicating pitch contour 

smoothness. 

Repeated Rhythmic Value Density 

The use of two of the same rhythm values in a row. 

Leap Compensation 

The use of rebounding direction after a large pitch leap. 

Repeated Pitch Patterns of Three 

The occurrence of three of the same pitches in a row. 

Climax Strength 

How often the highest note is used. 

Repeated Pitch Patterns of Four 

The occurrence of four of the same pitches in a row. 

Climax Position 

The location through the melody of the highest note. 

Repeated Rhythm Patterns of Three 

The occurrence of three of the same rhythm values in a 

row. 

Climax Tonality 

The use of a tonic or dominant pitch as the highest note. 

Repeated Rhythm Patterns of Four 

The occurrence of four of the same rhythm values in a 

row. 

Figure 1 – Melodic features identified in educational texts on composition. 

Adapting features for computer analysis 

The distilling of features from the literature was a step toward articulating the rules of melody 

writing for the computer which was a longer term goal of our research to support melody 

composition. At this stage we were keen to identify features without implying value judgements 

about their desirability. For example, pitch range may be narrow or wide as a feature but is 
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usually recommended to be about an octave wide as a “rule”. Our process of statistical feature 

identification served well our purpose of checking adherence to established compositional rules. 

Other techniques of computational melodic analysis, often more sophisticated, have been 

developed but were either overly-complex or not easily adaptable to rule derivation. The 

interested reader is referred to methods by Huron, Thompson and Stainton in Computing in 

Musicology (1996) and by Maidín, Crawford et al., Lloyd et al., Howard, and Cope in the volume 

Melodic Similarity (1998) both edited by Hewlett and Selfridge-Field. 

 

The next challenge was to represent features in a way where maximum and minimum values 

could be constrained (e.g. infinite values would never occur) and that the values from different 

melodies might be reasonably comparable. We chose to normalise all values as ratios of 

occurrence against potential occurrence. In many cases this was quite straight forward, for 

example in the case of tonal deviation the analysis returns the number of non-scale notes 

compared to the number of notes in the melody. However, in some cases it meant providing 

arbitrary limits on potentiality, as in the case of pitch range where “range” is theoretically 

limitless. In this case the maximum potential range was assumed to be three octaves from C3 to 

C6. Rhythm limitations of our implementation include the smallest rhythmic value being a semi-

quaver and other rhythms being multiples of a semi-quaver. This, most significantly, does not 

allow for triplets or other duplets in melodies. 

 

As a result of this normalisation all values produced by our analysis of a melody are in the range 

between 0.0 to 1.0. Normalisation enables reasonable comparisons to be drawn between melodies 

of different length, metre, and style. The key of a piece is the only additional attribute that is 

taken into account by the computer analysis procedures. This is done on a case-by-case basis. 

Rule coherence with established repertoire 

In order to test the validity of the features for indicating a well-formed melody we tested them 

against existing repertoire, assuming that that repertoire was “good”. Those features that showed 

a clustering of results were deemed to be informative—those whose data showed little or no 

coherence were considered unreliable. 
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The repertoire list of about 300 melodies included music by the following composers; 

Bach, Bartok, Beethoven, Du Fay, Gesualdo, Gibbons, Hadyn, Holst, Montiverdi, Mozart, 

Palestrina, Strauss and Tchaikovsky. 

 

Features were calculated on each melody and the average result and standard deviation of each 

feature was calculated for the whole group, as described below. In order to determine which 

features might be most important in identifying well-formed melodies, T tests were run and 

significance assessed. A brief outline of the results is presented in figure 2. The features are 

grouped into three categories: 1) Highly reliable features, where all melodies generate similar 

results indicating that the factor is quite reliable as a predictor of melodic coherence; 2) mildly 

reliable features, those for which melodies vary considerably but tend toward the mean indicating 

that these features are partially indicative; and 3) Unreliable features, where melodies cluster into 

several regions indicating that these features are not consistent predictors of melodic coherence 

when analysed in this way. Details of the statistical results have been presented elsewhere 

(Towsey et al. 2000) and are not critical to the focus of this paper on the use of the computer in 

the process. 

 

Highly Reliable Mildly Reliable Unreliable 
Pitch Variety 

Tonal Deviation 

Dissonance 

Overall Pitch Direction 

Note Density 

Rest Density 

Rhythmic Variety 

Syncopation 

Repeated Pitch Density 

Repeated Pitch Patterns of Three 

Repeated Pitch Patterns of Four 

Pitch Range 

Key Centeredness 

Melodic Direction Stability 

Pitch Movement by Tonal Step 

Climax Position 

Repeated Rhythmic Value Density 

Repeated Rhythm Patterns of Three 

Repeated Rhythm Patterns of Four 

Leap Compensation 

Climax Strength 

Climax Tonality 

Rhythmic Range 

 

Figure 2 - Features as predictors of melodic coherence. 

 



Melodic Analysis with jMusic – Brown et al. Page 6 

The results over all the repertoire melodies provide a useful indication of adherence to each 

feature which can be used as a basis for comparison with individual melodies.  The overall results 

also reflect on the validity of features and the extent to which they are adhered to in practice.  

 

In deference to space and time constraints two of the twenty-three features will be focused upon 

as examples, Key Centeredness and Climax Position. 

 

The benchmark results from the repertoire melodies for these features are as shown in figures 3 

and 4. The scale of these graphs are from 0 to 1 in 0.1 increments on the x axis and normalised 

heights indicating the numbers of melodies with scores in each range. 

 

1. Key Centeredness: Mean: 0.31, Mode: 0.25 

 
  0             0.1              0.2             0.3              0.4             0.5              0.6               0.7              0.8             0.9           1.0 

Figure 3 – The benchmark key centeredness results from the repertoire melodies. 

 

2. Climax Position: Mean: 0.53, Mode: 0.75 

 
0               0.1              0.2             0.3              0.4             0.5              0.6               0.7              0.8             0.9           1.0 

Figure 4 – The benchmark climax position results from the repertoire melodies. 
 

To show how these results shed light on individual melodies we will compare the results from the 

repertoire melodies with two melodies, one by Claude Debussy and another computer-generated. 

The computer-generated melody results from a related research project. These examples will 

show how melodies (computer- or human-created) can be compared to traditional norms and how 

departure from those norms can be a prompt for further analysis.  
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The melody below is from Nuages, Nocturnes No. 1 by Claude Debussy.  

 
Figure 5 – A melody from Debussy’s Nuages. 

Its results of this melody for the chosen features are: 

- Key Centeredness: 0.3 

- Climax Position: 0.26 

The melody by Debussy scores close to average with regard to Key centeredness because the 

notes used are all within the scale and there is prominent use of the tonic and other triadic pitches. 

The lower than average score for climax position simply reflects the reaching of the highest pitch 

by note three. This is earlier in the melody than average but not exceptional. Given the wide 

spread of climax positions in the repertoire melodies almost any position is acceptable despite the 

tendency toward climaxing about three quarters of the way through the melody. 

 

The second example melody, below, was generated by a rule-based computer algorithm. 

 
Figure 6 – A computer generated melody. 

Its results for the chosen features are: 

- Key Centeredness: 0.3 

- Climax Position: 0.75 

This melody and its results indicate that the statistics can be used to create reasonable melodies 

but also that statistics can be brittle at times. The score on key centeredness is consistent with the 

benchmark results which is to be expected given that the generative algorithm for note choice is 

highly biased toward conventional tonality and follows the same heuristics with regard to tonality 

used for the analysis software. The result for climax position is more interesting. The melody 

achieved a statistical result exactly in line with the benchmark results, however, when looking at 

the melody it is clear that the climax is at the end rather than three quarters of the way through. 

This is explained by understanding that the climax position is calculated by rhythmic value, 
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rather than note count. The statistical result is influenced by the long length of the last note and 

the presence of a rest to complete the bar. Taking into account the rest the climax of this melody 

begins two thirds of the way through the melody’s duration, and disregarding the rest four fifths 

of the way through. This degree of interpretation of the statistics regarding climax position does 

highlight the inherent brittleness of such endeavours and reinforces the need to use them as a 

guide and filter rather than absolute measure of musical features. In the case of our generative 

melody composition software we value the fact that such interpretations are possible and that the 

algorithm can surprise us with such novel suggestions. 

 

We would make a final point about rule-based analysis of music, or other creative products. 

Rules like those found in the music theory books used in this study are best treated as norms 

rather than exemplars of excellence.  It is for this reason that we refer to the melodic attributes as 

features. A melody that adheres to all the “rules” will be an unexciting melody indeed. Highly 

valued compositions are meaningful largely because of their deliberate avoidance of the 

expectations that arise from the history of experience from which the rules are derived (Manns 

1994). 

Phrase analysis software 

The analysis of features used MIDI files as a readily available source of melodic data. Code was 

written in the Java language, using the jMusic libraries to handle the translation and analysis 

process. 

 

The phrase analysis software provides an interface to the analysis procedures. It manages the 

reading of MIDI files, checks the key of the music (because all pitch functions are relative to 

key), selects phrase or phrases for analysis, displays analysis results as both numerical data and 

pictorial graphs, enables the mapping of statistical results back to particular phrases in a group, 

and can save the data in tabulated form to a file for use with other software. 

 

Using the software is relatively straight forward given appropriate preparation. Specifically, the 

program requires type 1 MIDI files and reads only from one track (the first by default) and 

expects monophonic material (i.e., no chords or overlapping polyphonic parts). MIDI files of 
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many well-known musical works are available on the Internet and these can be edited in 

sequencing software to extract and save just the melodies of interest. Alternately, sequencing or 

music publishing programs can be used to enter music for saving as standard MIDI files. Both of 

these methods were used to create the pool of melodies used in our research. 

 

Once prepared, the MIDI files can be read into the phrase analysis software either individually or 

as a group within a particular folder/directory. Imported files can be analysed one at a time or as a 

group. All files in one group should be in the same key. Analysed files appear in a list that can be 

clicked to display the file as common practice notation and its statistics as a list of feature-value 

pairs. 

 

A second screen displays graphs of the statistical results of all analysed files. A list of each 

analysis feature is shown. Selecting a feature brings up a column graph display and numerical 

data for mean and standard deviation. The resolution of the graph can be changed, from the 0.1 

sized increments show in figures 3 and 4, to allow for more or less detailed distribution trends to 

be observed. 

 

Pointing the cursor at any of the columns in the graph displays a list of the files that fit the values 

covered by the column. This can be quite useful in identifying outlying or exceptional files which 

may require closer manual analysis. 

 

The results of the analysis can be saved as a tab-delimited text file. The file has the data tabulated 

with features as columns and files as rows. The overall statistics are listed after the individual 

files. This file can be easily read in other programs including Microsoft Excel or SSPS for further 

analysis. We utilised this feature to enable T tests, checks for correlations, and cluster analysis in 

our research. 

The jMusic programming library 

The music data format used for the analysis was that of the jMusic library. jMusic provides a 

musical data structure and methods for manipulating that structure, and was designed for music 

composition as well as analysis, though it is more often used for composition. All of the analysis 
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functions used in this research are now part of the jMusic libraries and therefore available for use 

in other applications, some of which are described below. jMusic is a freely available open source 

project and its installation is required to run the phrase analysis software. 

Online Music Tools 

Many of the melodic feature analysis processes used here, and some additional ones, are 

available as online music tools accessible using a web browser. The visual display of the data is 

less compressive with the online analysis tools, but they do have the ability to analyse entire 

multi-part MIDI files. The online music tools were designed and programmed by Andrew Brown 

and Adam Kirby building on the research outlined in this paper. 

 

Conclusion 

The use of computer for analysis of diatonic melodies can be useful in the identification of 

interesting features often unobservable with manual analysis and provides a vehicle for the 

comparative analysis of individual melodies or classes of melodies. This paper has presented our 

work in melodic feature analysis based on simple rules of diatonic melody writing. Through the 

testing of these features against a data set of melodies from Western music history we were able 

to show which features are closely or loosely adhered to by composers in practice. We also 

showed how individual melodies can be compared against the norms to highlight interesting 

characteristics for further manual analysis. 

 

Our music analysis software described in this paper makes the task of feature analysis relatively 

effortless, and its graphical presentation of results enables efficient and multi-modal 

communication of the data. We have outlined the basic operation of this software and provided 

details enabling others to access and perhaps modify the software for their needs. For example, 

one area of extension would be the provision of correlation between features. 

 

The computer has prooved to be useful tool in focussing our thinking about diatonic music (in 

particular melodic construction), assisting with the analysis of large data sets, and in clarifying 

heuristics for algorithmic computational music creation. 
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Our research efforts are continuing in the direction of providing these and other analysis 

processes via a series of online music tools. These tools will go some way to addressing the 

limitations of our research to date. In particular, to consider larger musical structures, including 

multi-phrase parts and multi-part scores, and to provide greater acknowledgment of harmonic and 

structural features. 
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