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Abstract. Identifying bacterial promoters is the key to understanding gene ex-
pression. Promoters lie in tightly constrained positions relative to the transcrip-
tion start site (TSS). Knowing the TSS position, one can predict promoter posi-
tions to within a few base pairs, and vice versa. As a route to promoter identifi-
cation, we formally address the problem of TSS prediction, drawing on the 
RegulonDB database of known (mapped) Escherichia coli TSS locations.  

The accepted method of finding promoters (and therefore TSSs) is to use po-
sition weight matrices (PWMs). We use an alternative approach based on sup-
port vector machines (SVMs). In particular, we quantify performance of several 
SVM models versus a PWM approach, using area under the detection-error 
tradeoff (DET) curve as a performance metric. SVM models are shown to out-
perform the PWM at TSS prediction, and to substantially reduce numbers of 
false positives, which are the bane of this problem. 

1   Introduction 

Bacterial promoters are sections of DNA lying upstream of a gene transcription start 
site (TSS), which regulate transcription via selective binding by an RNA Polymerase 
(RNAP) / sigma factor complex [1]. They are difficult to find because they lie at an 
unknown distance upstream of the gene start codon, and their associated DNA is 
weakly conserved. Importantly, they consist of two binding sites (hexamers) which lie 
in a well-defined window upstream of the TSS. Knowing the TSS location, one can 
predict promoter locations to within a few base pairs (bp), and vice versa.  

As a route to identifying promoters, this paper uses support vector machines 
(SVMs) [2] to predict TSS locations. We consider TSSs for the class of Escherichia 
coli sigma-70 promoters. Sigma-70 promoters are bound by the E. coli sigma-70 tran-
scription factor, and are located around the –10 and –35 positions with respect to the 
TSS. The RegulonDB database contains ~ 700 mapped sigma-70 TSS locations [3].  

The accepted method of finding promoters is to use a position weight matrix 
(PWM) to search for matches to known promoter hexamers [4]. This approach utilizes 
only information contained in the two hexamers and the intervening gap length. Based 
on information theoretic reasoning, it is known that the mapped hexamers are insuffi-
ciently conserved to identify all expected promoters in the background genome [5]. 



In addition to the promoter hexamers, a TSS is surrounded by a number of other 
regulatory binding sites. These include binding sites for proteins such as activators 
and repressors, that enhance or repress the level of transcription initiation. Through 
the use of machine learning techniques — in our case, SVMs — one might hope to 
exploit this expanded set of patterns in order to achieve better TSS and promoter pre-
diction.  We use the term ‘TSS prediction’ to refer to this more general approach to 
TSS and promoter identification.  

TSS prediction has an analogue in the problem of translation initiation site (TIS) 
prediction, the goal of which is to find gene start codons. Recent improvements at TIS 
prediction have been achieved with a multi-stage approach [6,7]. The problem of 
sigma-70 TSS / promoter prediction is acknowledged to be a difficult one. It is possi-
ble that multi-stage approaches to this problem will likewise improve on results 
achieved to date. We view the SVM models described in this paper as possible first-
stage algorithms, that could be used for identifying likely promoter regions. Future 
research could involve pairing these models with appropriate second-stage algorithms 
to achieve higher levels of accuracy.  

2   Data 

This paper utilized TSS locations derived from the RegulonDB database [3], and 
sequences extracted from the E. coli K12 genome (www.genome.wisc.edu). Two 
parallel data sets were constructed. The first data set, used to train and test different 
SVM models, consisted of 450 positive sequences (each containing a single mapped 
TSS) and 450 negative sequences (not containing known TSSs). The positive se-
quences extended from –150 to +50 bases relative to each TSS.1  

Negative sequences were derived from parts of the genome that did not contain a 
known TSS and were all 200 bases long. They contained a reference position at the 
151 position corresponding to the TSS in positive sequences. We derived three sets of 
negative sequences for the first data set: sequences from (a) coding regions (CDRs), 
(b) non-coding regions between divergent genes (DNCRs), and (c) non-coding regions 
between convergent genes (CNCRs). In each case, candidate negative regions were 
generated from the whole genome and randomly shuffled before selecting 450 exam-
ples. Because there were relatively few candidate CNCRs, some CNCR regions were 
permitted to overlap by 100 bp. Due to the positional nature of the SVM models em-
ployed here, this was not expected to influence our results.  

Note that because of their location between divergently transcribed genes, DNCRs 
are inherently likely to contain (unmapped) promoters and TSSs. Like coding regions, 
CNCRs are inherently less likely to contain promoters and TSSs. 

A second data set was used to test the SVM models on a biologically realistic task 
and to compare their performance with that of a standard PWM. It consisted of 450 
sequences extending 750 bp upstream of gene start codons. Hereafter we refer to these 
as gene upstream regions (USRs). Each USR contained a single known TSS (the same 

                                                          
1  According to biological convention, the TSS position is denoted by +1. The position imme-

diately upstream is -1. There is no 0 position.   



TSS as in the corresponding positive SVM training sequence). Of the 450 USRs, only 
nine consisted entirely of non-coding DNA. The remainder overlapped coding regions 
to varying degrees. We used only 450 of the 676 known sigma-70 TSSs available in 
the RegulonDB database [3] to ensure that all USRs were non-overlapping.   

3   SVM Approach 

In an SVM approach, DNA sequences are represented as vectors in a feature space. 
The SVM is presented with positive and negative examples. From these it determines 
an optimal decision plane through the feature space separating positive and negative 
examples. In real problems one is unlikely to achieve complete separation. SVM per-
formance is therefore measured by ‘generalization error’  —  the percentage of unseen 
test examples that fall on the wrong side of the decision plane.  

The data representation employed for this study was a variant of the string kernel 
proposed by Leslie et al [8]. Each sequence was represented by a vector of scaled 
counts of 5-mers occurring within the sequence. A single mismatch was allowed in 
each 5-mer. After collapsing each mismatch neighbourhood onto a single 5-mer, the 
number of possible 5-mers used to represent a sequence was {A,C,G,T}4 = 256.  

Our enhancement of the approach in [8] was to ‘tag’ each motif with its offset from 
the sequence’s reference (151) position. For example, an occurrence of 5-mer ACCGT 
in positions [–5,+5] (relative to the reference position) was registered as an occurrence 
of the position-tagged motif ACCGT(0). The same 5-mer in positions [–15, –6] was 
registered as ACCGT(–10), and in [+6,+15] as ACCGT(+10). Employing a window 
of size 10 was intended to allow ‘fuzziness’ of up to 10 bp in identifying TSSs.  

Position-tagging increased the SVM feature space dimension. In sequences extend-
ing from –150 to +50, the number of possible position tags is 21 (–150, –140, …, –10, 
0, +10, …, +50). The total number of possible position-tagged motifs was therefore 21 
x 256 = 5,376. These position-tagged motifs (i.e., features) were ranked according to 
their symmetric uncertainty as in [6], and the top 200 were retained in SVM vectors. 
Note that position-tagged motif counts were scaled by their symmetric uncertainty 
before insertion into SVM vectors. This was intended to increase the margin associ-
ated with significant motifs. All SVM vectors were then normalized to unit length. 
SVMs were generated using either SVM-Light [9] or the GPDT [10].  

4   PWM Approach 

PWMs were derived from USRs. The first step in PWM construction was to look for 
the best match to the E. coli sigma-70 promoter consensus hexamers TTGACA and 
TATAAT upstream of each TSS. The 5′ end of the best fit TATAAT-like motif was 
constrained to occur in the range [–19,–9] relative to the TSS. The gap between the 
TTGACA and TATAAT-like motifs was constrained to be in the range [14,20].  

Each candidate motif pair within these parameter ranges was assigned a score, 
equal to the number of bases matching the consensus hexamers, plus some gap weight-



ings to give preference to gaps in the centre of the [14,20] range. For each TSS, the 
motif pair with the highest score was selected as the best fit. Having identified best fit 
hexamers for every TSS, based on closeness to the consensus, a PWM was then con-
structed using the background nucleotide frequencies sampled from all USRs [4,5].  

5   Method 

A unique index from 1 to 450 was assigned to each USR, positive sequence, and nega-
tive sequence within each set (CDR, DNCR and CNCR). Note that USRs and positive 
sequences having the same index were neighbourhoods of the same TSS. Based on 
index, each of the datasets was then divided into 10 equal parts. Each of these 10 parts 
was successively held in reserve as a test set, while the remaining 90% of the data was 
used to train SVM models and generate a PWM. The resulting SVMs and PWM were 
then evaluated on the 10% of USRs held in reserve (i.e., 10-fold cross-validation). 
Results reported below represent average performance over the 10 test sets.  

Evaluation of the PWM and SVMs involved applying the models to each of the 750 
positions within each test USR. The PWMs and SVMs generated a score for each 
position. In the case of the SVMs, this score was the perpendicular distance from the 
decision plane of the [–150,+50] neighbourhood of the candidate position. In the case 
of PWMs, it was the highest PWM score that could be obtained from two upstream 
hexamers, the first with its 5′ end at –14 bp upstream of the candidate position, and the 
second lying at a gap of 14 – 20 bp upstream of the first. (Note that these parameters 
are consistent with those used to generate the SVMs and PWMs.) 

Next a threshold T was defined. Within USRs, the TSS position itself and the five 
positions on either side of it were considered to be positives. These positions were 
scored as true positives (TP) if the SVM or PWM score exceeded T, and false nega-
tives (FN) if it fell below T. All other positions in the USRs were considered to be 
negatives and were scored as false positives (FP) if the SVM or PWM score exceeded 
T, and true negatives (TN) if it fell below T. 

By varying T over the range of scores, it is possible to construct detection-error 
tradeoff (DET) curves. These are plots of false negative rate (FNR) versus false posi-
tive rate (FPR), as shown in Figure 1. [FNR = FN / (FN + TP) and FPR = FP / (FP + 
TN).] Note that the area under a DET curve is a measure of the classifier’s ability to 
correctly identify TSS positions. The smaller the area, the better the performance. 
DET area constitutes a rigorous and objective measure of performance, similar to the 
receiver operating characteristic (ROC) curves used in other areas of statistics.  

6   Results and Conclusions 

Figure 1 compares performance of three SVM models and the PWM at predicting 
TSSs in the USR sequences of dataset 2. Table 1 gives areas under the DET curves in 
Figure 1, and corresponding generalization errors on data set 1 (i.e., SVM test se-
quences). The most notable result is that the CDR and CNCR SVM models perform 



substantially better than the PWM on the biologically realistic promoter prediction 
task. This is true regardless of whether false negatives are scored in a window around 
the TSS (Table 1), or only at the TSS position itself (results not shown).  

The relatively poor performance of the DNCR SVM model is unsurprising. The 
DNCRs we isolated are likely to contain (unmapped) TSSs and promoters and are 
therefore a poor source of negative sequences. By contrast, CNCRs are unlikely to 
contain promoters, but still have characteristics of non-coding regions, and thus are a 
useful source of negative sequences. 

An important conclusion from Table 1 is that SVM performance on the TSS classi-
fication task is not a reliable indicator of performance on a biologically realistic task. 
In particular, the CNCR SVM model performed poorly on the classification task but 
well on the more realistic TSS prediction task where false positives must be reduced. 
Papers often present promoter identification algorithms tested only on artificial classi-
fication tasks with equal numbers of positives and negatives. This is not a reliable 
indicator of performance in the less constrained biological setting.  

The use of coding region negatives is often criticized because they have quite dif-
ferent statistics from non-coding TSS regions resulting in an artificially simple pro-
moter classification task. However in our results, the CDR SVM model trained with 
CDR negatives performed well on both the classification task and the realistic TSS 
prediction task. In the compact bacterial genome, some promoters may extend into the 
upstream gene. In such cases the use of coding region negatives will be helpful. 

In the laboratory setting, the biggest problem in using PWMs and other classifiers 
is the high rate of false positives. When the expected FP/TP ratio is on the order of 
1000, in-silico detection of bacterial promoters does not offer the biologist meaningful 

Fig. 1. Detection-Error Tradeoff Curves for PWM and SVMs 
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guidance for laboratory testing. Therefore it is particularly important to identify what 
the expected optimum FP/TP ratio is for any method. Table 1 gives the FP/TP ratio 
for each of our four models in their optimum configuration (point on DET curve clos-
est to origin). Note that we have both increased the rate of true positives and reduced 
the FP/TP ratio from 517 to 187. These results suggest that SVM models can 
outperform PWMs for a realistically constructed promoter prediction task. The goal of 
our future work will be to further reduce the false positive rate to levels that allow 
efficient laboratory investigation of in-silico predicted promoters. 
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Table 1.  Generalization errors, DET areas and optimum FP/TP ratios for four methods 
(standard deviations are derived from 10-fold cross validation) 

Method Gen. Error DET Area Optimum FP/TP Ratio
PWM — 0.36 ± 0.01 155,000  /  300 
SVM (DNCR negs) 25.1 ± 2.4% 0.35 ± 0.03   75,000  /  215 
SVM (CNCR negs) 27.2 ± 4.3% 0.19 ± 0.03   71,000  /  320 
SVM (CDR negs) 15.0 ± 3.8% 0.18 ± 0.02   58,000  /  310 


