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Abstract

We constructed σ70-promoter models of varying com-
plexity to predict promoter locations and to evaluate
the importance of specific promoter elements. For
this purpose, a novel software, named Beagle, was de-
veloped that utilizes an easy description language to
conveniently specify promoter models. Model speci-
fications are translated into position weight matrices
and gap distributions which are refined using data
from known promoters.

The method is transparent, fast and allows the
rapid exploration of different promoter models. Ap-
plied to promoter prediction in E. coli and B. subtilis,
we show that inclusion of UP-elements and extended
-10 motifs into the model yields a significant increase
in prediction accuracy.

The software, data sets and extended results can
be downloaded at http://eresearch.fit.qut.edu.
au/Beagle/.
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1 Introduction

Promoters are regions of DNA responsible for the ini-
tiation of gene transcription. Their identification is
crucial for understanding gene regulation but they
are difficult to identify in silico because their impor-
tant functional sites are poorly conserved. Identifying
promoters using wet-lab techniques is time consum-
ing and given the exponentially growing number of
sequenced genomes, there is a definite need for com-
putational methods to detect and study promoters.

Many methods have been devised to identify pro-
moter sites using for example, Regular Expressions
(REs), Position Weight Matrices (PWMs), Hidden
Markov Models (HMMs), Neural Networks (NNs) and
Support Vector Machines (SVMs) (Vanet, Marsan
& Sagot 1999). The different model types have
strengths and weaknesses which typically involve
trade-offs between accuracy, transparency, speed and
ease of use. Despite (or perhaps because of) their
simplicity, PWMs continue to be a frequently used
approach to search for promoters. In addition their
use finds theoretical justification in Information The-
ory (Schneider, Stormo, Gold & Ehrenfeucht 1986).

PWMs have been used in two ways to search
for promoters. The direct approach is to search for
DNA motifs that bind the RNA Polymerase (RNAP)
holoenzyme. In the case of the σ70 family of bacterial
promoters, with which we are solely concerned in this
paper, this means having PWM definitions for two
binding sites located at -35 and -10 base pairs (bp)
with respect to the Transcription Start Site (TSS).
The difficulty with this direct approach is that the
known binding sites are highly variable, leading to a

high rate of false positive predictions for a satisfactory
rate of recall.

The indirect approach to promoter prediction de-
pends on the observation that promoters are accom-
panied by other binding sites for transcription factors
which modulate transcription. Given access to a suffi-
ciently large number of definitions of known transcrip-
tion factor binding sites (TFBSs), clusters of high
scoring hits indicate the presence of a promoter. For
example, the well known MatInspector (Cartharius,
Frech, Grote, Klocke, Haltmeier, Klingenhoff, Frisch,
Bayerlein & Werner 2005) and Cluster-Buster (Frith,
Li & Weng 2003) programs both use this strategy
which is particularly useful with eukaryotic organ-
isms.

As more becomes known about the structure and
function of bacterial RNAP, it is clear that the en-
zyme interacts with the DNA double helix in more
complex ways than just the canonical -10 and -35 in-
teractions (Mitchell, Zheng, Busby & Minchin 2003,
Miroslavova & Busby 2006). The purpose of this pa-
per is to revisit the direct approach to identifying
bacterial promoters but to build models that incor-
porate more of what we have recently learned about
the DNA-RNAP interaction. To this end, we have
developed a software tool, Beagle, that utilizes a sim-
ple description language to specify bacterial promoter
models. Internally, the models are realized as a se-
quence of PWMs and gap length distributions. The
model parameters are refined using experimentally
confirmed TSSs. Beagle achieves good accuracy com-
pared to more complex machine learning methods but
is faster to train and easier to use. In addition, the
generated models are transparent and permit direct
biological interpretation.

This paper is organized as follows: In Section 2
we discuss related supervised learning algorithms for
promoter prediction. The biological background that
drives our promoter models is provided in Section 3
and the data utilized to evaluate various models are
described in Section 4. Section 5 explains some of the
algorithmic detail behind Beagle. Prediction results
are presented in Section 6 followed by the conclusion
in Section 7.

2 Related work

Many methods have been developed for promoter pre-
diction. Vanet et al. (Vanet et al. 1999) provides a
good overview of the various approaches. We focus
our attention on three more recent contributions to
the literature that offer interesting comparisons with
our work.

Huerta et al. (2003) derived PWMs for the -35 and
-10 elements of σ70 promoters in E. coli from multiple
alignments of known promoters. The PWMs were op-
timized using information content and similarity to a
known consensus. Typically their derived PWMs ex-



tended two or more bases upstream of the canonical
-10 and -35 hexamers and their models also incorpo-
rated scores derived from frequency of spacer lengths
and distance to the gene start site (GSS). They ob-
served that true promoters tend to occur in regions
where there is a cluster of high scoring putative pro-
moters. And in about 50% of cases, the true promoter
was not the highest scoring location.

Gordon et al. (2006) trained an ensemble of Sup-
port Vector Machines (SVMs) for bacterial promoter
prediction using a variant of the mismatch string ker-
nel. The SVM approach was more accurate than the
PWM approach but highest accuracy was obtained
with a model that combined scores from the ensemble-
SVM, PWMs and GSS to TSS distance. An obvious
drawback with an ensemble of 40 SVMs is the time
required to train them – typically several orders of
magnitude more than the estimation of parameters
for PWM models.

Burden et al. (2005) trained a series of Time De-
lay Neural Networks (TDNNs) to model multiple pro-
moter elements. They demonstrate greatly improved
accuracy when distance to GSS is incorporated into
the models. However the number and type of model
elements was fixed and TDNNs are typically time con-
suming to train.

The primary motivation for Beagle is the explicit
incorporation of additional DNA motifs into promoter
models based on our emerging understanding of the
action of RNAP. Beagle gives the experimenter con-
trol over all elements of the promoter model, enabling
a variety of hypotheses to be tested. While the PWM
models of Huerta et al. (2003) included extended -10
and extended -35 elements, they were not user defined
and it was not demonstrated how these contributed
to prediction accuracy. In the case of the ensemble-
SVM approach, Gordon et al. (2006) identified DNA
locations important for classification accuracy. Not
surprisingly the -10 and -35 locations were most im-
portant but also the ribosomal binding site motif fig-
ured strongly around the +20 location, indicative of
the fact that most promoters lie close to their GSS.
Locations upstream of the -35 box and an extended
-10 were not identified as important for classification
but the method had limited resolution.

3 Biological Background

Bacterial RNAP is a protein complex composed of five
subunits, α2ββ′ω (Murakami & Darst 2003). To ini-
tiate transcription, the core enzyme must first acquire
an additional σ subunit whose function is to recognize
a promoter (Gross, Chan, Dombroski, Gruber, Sharp,
Tupy & Young 1998). DNA binding initiates a series
of structural changes that result in DNA strand sepa-
ration at the -10 site. After several cycles of formation
and release of short transcripts, the σ-factor dissoci-
ates and gene transcription commences (Murakami &
Darst 2003).

It has long been known that domains 2 and 4 of the
σ factor bind to the strongly conserved -10 and -35
boxes. More recently, it has been demonstrated that
a third domain interacts with a so-called extended -
10 element (see Fig. 1) (Miroslavova & Busby 2006).
First identified in B. subtilis, the extended -10 ele-
ment is also present in about 20% of E. coli promot-
ers. It is located three base pairs upstream of the
-10 element with consensus TG (Mitchell et al. 2003).
Mitchell et al. (2003) also identified the importance
of a longer extended -16 region (consensus TRTG1),
which is important for some E. coli promoters. In
vitro experiments have demonstrated that domain 3

1N = any nucleotide, R = A or G and W = A or T, according to the
IUPAC DNA alphabet.

Figure 1: Schematic diagram of the RNA polymerase
holoenzyme and its binding elements within the pro-
moter region.

interaction with an extended -10 or -16 consensus site
can compensate for weaker -10 or -35 interactions but
that a combination of consensus -10, extended -10
and -35 motifs reduces gene expression (Miroslavova
& Busby 2006).

The α subunits also play a key role in the initia-
tion of transcription. Each consists of two domains
connected by a flexible linker. The amino-terminal
domains (αNTD) form part of the main body of
the holoenzyme, while the carboxy-terminal domains
(αCTD) are free to interact with UP-elements and
activators (Estrem, Ross, Gaal, Chen, Niu, Ebright
& Gourse 1999).

An UP-element is an A/T rich region about 20 bp
long located immediately upstream of the -35 ele-
ment. Each of the two αCTD domains can bind au-
tonomously to the proximal or distal part of an UP-
element (Typas & Hengge 2005). It has been shown
for some promoters that interactions between one or
both α subunits and the UP-elements can increase
promoter activity by a factor of 10 or more (Estrem
et al. 1999).

The focus of this paper is to determine whether
incorporation of these more recently discovered func-
tional sites into promoter models improves the pre-
diction of σ70 dependent promoters.

4 Data set

For our experiments we utilized the bacterial genomes
of Escherichia Coli K-12 MG1655 (ACCN:U00096.2)2

and Bacillus subtilis (ACCN: NC 000964.2)3.
Experimentally confirmed TSS locations for E. coli

were obtained from the RegulonDB database4. The
data set was filtered for unique σ70-promoters with
known TSS locations, resulting in 542 records. We
then determined the genes in E. coli closest to the
given TSS locations and extracted the corresponding
upstream regions. Following Huerta et al (2003), we
eliminated all upstream regions (USRs) with a TSS
location further than 250 bp from the gene start. The
final data set for E. coli consisted of 492 sequences,
each containing a single annotated TSS location.

A list of TSS locations for B. subtilis was was ob-
tained from DBTBS (Release 4)5, a database of tran-
scriptional regulation in Bacillus subtilis. This list
contains 275 TSS predictions from which we selected
205 that were within 250 bp upstream of the nearest
gene start site.

2ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/
Escherichia_coli_K12/U00096.gbk

3http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi??db=
nucleotide&val=NC_000964

4http://regulondb.ccg.unam.mx/data/PromoterSet.txt
5http://dbtbs.hgc.jp/COG/tfac/SigA.html



5 Beagle

Beagle builds promoter models in two steps. The first
step involves initialization of the model using a simple
promoter description language and the second step re-
fines the model iteratively. The final model consists
of a series of optimized PWMs and gap length distri-
butions.

The initialization phase takes as input a promoter
description string which defines a set of consensus mo-
tifs and the gaps between them. For instance, the
canonical model of a σ70-promoter has a -35 TTGACA
element, a 15-21 bp spacer, a -10 TATAAT element and
a 4-13 bp discriminator culminating in the TSS. This
canonical promoter can be specified in Beagle by the
description string:

<TTGACA (15,21) TATAAT (4,13) TSS>

A promoter description can contain an arbitrary num-
ber of binding motifs and gap definitions. In partic-
ular, models can include the gap between TSS and
GSS and incorporate UP elements and extended -10
motifs.

Beagle parses the description string and translates
it into a model composed of PWMs and weighted
gaps. In the initialization step, the PWM elements
are set to represent the required consensus sequences
and the gap length frequencies are initialized to a uni-
form distribution.

The model parameters are optimized during a
training phase using an iterative bootstrap approach.
At each iteration, the model’s TSS position is an-
chored to the known TSS position of a training se-
quence and, by exhaustively scoring all valid arrange-
ments of PWM matches taking the current gap dis-
tribution into account, the highest scoring combined
match is found. Gap weights also contribute to the
score6. To generate an improved model, maximum
likelihood estimates for new PWM and gap weights
are calculated from the best match in each of the
training sequences. This bootstrapping process con-
tinues iteratively until the information content of the
PWMs ceases to increase.

For prediction, the model TSS is anchored at each
position of the query sequence and the score of the
best match is given to that position. The position
with the highest overall match score becomes the pre-
dicted, putative TSS for that sequence. For more de-
tails see the manual which accompanies the software
download.

The initial promoter description string may also
incorporate a marker for the gene start site (GSS).
This permits the definition of models that take the
distance to the downstream GSS into account. The
GSS marker is always anchored to the nearest gene
start site and the weights for the distribution of TSS-
GSS gaps are evaluated in exactly the same way as
for other gap/spacers in the model. Gaps have a so
called impact factor, which weights the relative con-
tribution of the gap score to the overall model score.
In the following model of a canonical promoter with
extended -10 and TSS-GSS gap, gap scores contribute
20% to the overall score:

TTGACA (12,18,0.2) TGNTATAAT (4,13,0.2) TSS (0,249,0.2) GSS

The overall match score sall of a sequence to a
model consisting of N elements (PWMs or gaps) with
element scores si and impact factors fi, is calculated
as follows:

sall =

∑
N

i
fi · si

∑
N

i
fi

, with si, fi ∈ {0, 1}. (1)

6Beagle utilizes the BioPatML pattern matching engine for this
purpose. See http://eresearch.fit.qut.edu.au/BioPatML/ for de-
tails.

Beagle has some similarity to Meta-
MEME (Grundy, Bailey, Elkan & Baker 1997)
in that the required patterns are modeled as a set
of conserved motifs separated by gaps. But where
Meta-MEME uses MEME to obtain an initial PWM
description of the conserved motifs, Beagle derives
its PWM description from a user supplied consensus.
And whereas Meta-MEME then embeds the PWMs
into a Hidden Markov Model along with a proba-
bilistic description of the gaps, Beagle preserves the
PWMs and gaps as discrete entities.

In the next section, we demonstrate the perfor-
mance of various promoter models for TSS prediction.

6 Results

We used Beagle to explore extensions to the canoni-
cal promoter model by incorporating various combi-
nations of (1) the extended -10 element (consensus
TG), (2) the -16 element (consensus TRTG), (3) UP-
elements and (4) distance between TSS and GSS (see
Fig. 1). We experimented with three different UP-
element sequences that appear to be prominent in sev-
eral E. coli and B. subtilis promoters: (1) The most
general UP-element is an A/T-rich region described in
our description language as NNWWWWWWWWWWWWWWWNN.
(2) For the promoter rrnB-P1 in E. coli, Estrem
et al. (Estrem, Gaal, Ross & Gourse 1998) re-
ported an UP-element with the consensus sequence
NNAAAWWTWTTNNAAANNN. (3) According to Gourse et

al. (2000), UP-elements can be divided into a more
important proximal motif (AAAAAARNR) and a distal
motif (NNAAAWWTWTTN). We incorporated the proximal
half of the motif only.

Table 1 shows the prediction accuracies for a va-
riety of promoter models when applied to two sets of
known promoters in E. coli and B. subtilis. The result
for the canonical promoter (TTGACA (15,21,0.2)
TATAAT (4,13,0.2) is shown in the top left of each
table. Prediction accuracy is calculated as the per-
centage of predicted TSS locations that are at most
±5 bp from the true TSS7. Interpretation of results
can be helped by reference to Fig. 2 which illustrates
the sequence logos obtained from training data for the
most successful model in each genome.

It is immediately apparent that prediction accu-
racies are up to 50% higher for B. subtilis promoters
than for E. coli promoters. The sequence logos in
Fig. 2 illustrate that the B. subtilis promoters have
higher information content and are more highly con-
served. It must also be the case that a larger fraction
of B. subtilis TSSs are located at the highest scor-
ing location upstream of their genes than is case for
E. coli promoters. B. subtilis has 18 identified sigma
factors compared with seven known for E. coli. It is
thought that this is due to the greater regulatory de-
mands placed on B. subtilis given its more variable
soil environment. We might expect that having more
σ-factors requires B. subtilis to conserve the differ-
ences between them by keeping binding sites closer
to the consensus.

Another interesting difference between the two
species is that inclusion of the TSS-GSS distance in
the initial promoter definition improves prediction ac-
curacy significantly in E. coli but not in B. subtilis.
Again this can be explained if a larger fraction of
B. subtilis TSSs are located at the highest scoring
location upstream of their genes no matter how far
upstream.

The effect of including an UP-element in the pro-
moter definition (in the absence of an extended -10

7There is no consistent definition of a true positive TSS pre-
diction in the literature. We follow the definition of Huerta et

al (Huerta & Collado-Vides 2003).



Figure 2: Logos of the vicinity of the -35 and -10 elements of the best performing promoter model in E. coli and
B. subtilis. Note that the y-axis scale has been truncated to 1 bit in order to highlight detail in the upstream
region. Logos created with WebLogo at weblogo.berkeley.edu.

motif) was variable. The fully defined UP-element
NNAAAWWTWTTNNAAANNN had a deleterious
effect on prediction performance while the A/T-rich
UP-element NNWWWWWWWWWWWWWWWNN and the proximal
UP-element (AAAAAARNR) both improved prediction
accuracy.

In E. coli, use of the extended -10 (TRTG) had a
deleterious effect on promoter prediction in all cases.
Interestingly, use of the TG extended -10 also had a
deleterious effect on prediction accuracy except when
used in conjunction with the A/T-rich UP-element.
This interaction between the extended -10 and A/T-
rich UP-elements is one of the novel findings of Beagle
that has not, to our knowledge, been reported in the
literature previously.

In the case of B. subtilis, the TG extended -10 motif
increases prediction accuracy only when accompanied
by an UP-element. And in contrast to E. coli, use of
the TRTG extended -10 increases prediction accuracy
more than the TG extended -10. These differences
between the species become clearer when we compare
the sequence logos in Fig 2.

The best performing E. coli promoter model
achieved 48% recall at 48% precision. In order to
compare this result with other publications it is im-
portant to ensure that the experimental protocols are
similar. In particular the prediction error tolerance
and the length of upstream sequence being searched
must be the same. We set up our experimental design
to be similar to that of Huerta et al. (2003). Table 8e
of their paper indicates a precision of 33% at a recall
of 50%. For different experimental conditions, Bur-
den et al. (2005) report 25% precision at 32% recall.
When we modify our protocol to match theirs, we

achieve 32% precision at 32% recall. The advantage
of Beagle lies in the more complex promoter defini-
tion and in the iterative refinement of the PWMs.
Different experimental conditions do not allow us to
compare results with Gordon et al. (2006).

7 Conclusion

In this paper we introduced the software, Beagle,
that enables the convenient description and explo-
ration of PWM based promoter models. Beagle is a
technically simple and fast method but nevertheless
achieves state-of-the-art accuracy for TSS prediction.

Beagle has several additional attractive features.
More complex promoter models can be constructed
easily with an arbitrary number of PWMs and spac-
ers. Training and prediction are fast, which allows
an interactive study of promoter models and their el-
ements. No negative examples are required for the
training process, which can be a serious problem when
building discriminative models such as SVMs. The
generated models are completely transparent which
is helpful for the testing of hypotheses.

We utilized Beagle to investigate a variety of mod-
els for σ70 promoters prediction in E. coli and B. sub-

tilis. The results demonstrate an interesting interac-
tion between UP-elements and extended -10 elements
that has not been reported previously. The Beagle
software, training and test data sets and extended
results are publicly available at http://eresearch.
fit.qut.edu.au/Beagle/.

Further work will examine the properties of
wrongly predicted promoters. We also intend to apply
Beagle to other transcription factors and genomes.



E. coli B. subtilis

UP-element extended -10 - dist. GSS - dist. GSS

- 37.5 ±1.4 43.3 ±1.2 61.6 ±1.8 61.2 ±1.7

not used TG 36.1 ±1.4 41.6 ±1.3 59.4 ±1.8 62.5 ±1.8

TRTG 32.5 ±1.3 37.6 ±1.3 59.2 ±1.8 62.6 ±1.8

- 39.0 ±1.3 44.3 ±1.4 65.2 ±1.9 66.4 ±2.0

proximal TG 35.4 ±1.3 43.7 ±1.3 66.2 ±2.1 68.5 ±2.1

TRTG 31.5 ±1.2 38.6 ±1.3 67.3 ±1.9 70.3 ±1.9

- 34.8 ±1.3 41.4 ±1.2 58.8 ±1.7 62.0 ±1.7

full TG 31.4 ±1.3 39.0 ±1.4 64.8 ±1.6 66.7 ±1.8

TRTG 25.9 ±1.0 35.4 ±1.2 65.0 ±1.8 66.6 ±1.9

- 39.1 ±1.1 47.3 ±1.2 64.5 ±1.7 64.8 ±1.8

A/T-rich TG 40.8 ±1.2 48.3 ±1.5 66.7 ±1.8 68.8 ±1.6

TRTG 34.9 ±1.3 40.5 ±1.4 69.6 ±1.7 71.2 ±1.7

Table 1: Accuracies and 95% confidence intervals for TSS prediction on test data for different promoter models.
Acceptance tolerance was ±5 bp. Averages are over 10-fold cross-validation, repeated 10 times.
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