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Abstract

As new genome sequencing initiatives are completed,
one of the next great challenges of cell biology is the atomic
resolution structure determination of the enormous num-
ber of proteins they encode. Single particle analysis is a
technique which produces 3D structures by computationally
aligning high resolution electron microscope images of in-
dividual, randomly oriented molecules. One of the limiting
factors in producing a high resolution 3D reconstruction is
obtaining a large enough representative dataset ( 100,000
particles). Traditionally particles have been picked manu-
ally but this is a slow and labour intensive process.

This paper describes two automatic particle picking al-
gorithms, based on correlation and edge detection, which
have been shown to be capable of quickly selecting a large
number of particles in micrographs. Currently circular and
rectangular particles are able to be picked.

1. Introduction

One of the next great challenges of cell biology is the
atomic resolution structure determination of the enormous
number of proteins encoded in genomes. To date, the Pro-
tein Information Resource contains 1.9 million protein
sequences[10]. This number is increasing rapidly as new
genome sequencing initiatives are completed. The human
genome project alone identified 30,000 genes encoding
both soluble and membrane proteins. In vivo these organ-
ise into macromolecular assemblies, further increasing the
level of structural complexity.

Membrane proteins, which are predicted to comprise 25–
40% of all encoded proteins[5], form the responsive in-
terface between the cellular and sub-cellular compartments
and the outside environment. Their structures are not only
of fundamental importance in developing our understand-
ing of molecular cell biology, but are also of immense value
in the development of new and highly specific medicines

with reduced side effects. In addition, the huge number of
macromolecular assemblies are only beginning to be char-
acterised structurally. Consequently, fast-tracking structure
determination of membrane proteins, soluble proteins and
macromolecular assemblies will underpin future develop-
ments in cell biology, structural biology, and proteomics.

Traditionally, protein structures have been solved using
crystallography techniques. However, particularly in the
case of membrane proteins, the production of well-ordered
crystals is a major bottleneck. Therefore, despite their im-
portance, only a small number (80–90) of complete mem-
brane protein structures have been resolved to atomic reso-
lution.

Recent advances in cryo-electron microscopy and sin-
gle particle analysis have developed to the point where
they could potentially provide an alternative methodology
for high resolution 3D structure determination[9]. Cryo-
electron microscopy involves suspending the purified pro-
tein molecules in a thin layer of vitreous ice. The suspended
particles are imaged in the electron microscope at tempera-
tures of C with a low electron dose. Low dose imag-
ing results in very low contrast micrographs, but is nec-
essary to reduce beam damage. The technique of single
particle analysis produces 3D structures by computation-
ally aligning high resolution electron microscope images
of individual, randomly oriented molecules. Modern cryo-
electron microscopes are capable of recording structural in-
formation to a resolution higher than 2Å(1Å=10 m). To
sample the 3D volume fully at the required resolution, and
overcome the low signal-to-noise ratio (SNR) of the images,
a large dataset ( 100,000 particles) is required. Particles
have been picked manually but this is slow and labour in-
tensive ( 1 week for 20,000 particles) and difficult due to
the low SNR of the images.

This paper describes two automatic particle picking al-
gorithms, based on correlation and edge detection. The
algorithms have been tested with both negatively stained
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Figure 1. Image pyramids for the (a) template
and (b) mask images, constructed from the
ferritin data set.

(high contrast) and cryo (low contrast) micrographs.

2. A Correlation-Based Particle Picking Algo-
rithm

A real-space correlation-based particle picking algo-
rithm has been developed. This method was chosen since
it can use a normalised correlation function and local
masking[6].

A rotationally averaged particle sum and a binary mask
were constructed, using the IMAGIC software[4]. The
template was constructed by manually selecting a number
of particles, performing translational alignment, averaging,
and then rotationally averaging to obtain a circular, sym-
metric template. The constructed mask is the same size as
the template, and has the value 255 where the template data
is valid, and 0 otherwise.

2.1. Construction of Image Pyramids

The micrographs are sampled finely ( 0.9Å per pixel),
consequently the digitised images are generally quite large,
for example, the test dataset images of the protein ferritin
are of size pixels, with a template of size

pixels. The amount of computation can be dra-
matically reduced by performing particle picking using a
lower resolution image, template and mask. Therefore,
image pyramids are constructed, where each level is con-
structed by smoothing the previous level with a Gaussian
filter (to prevent aliasing), and then sub-sampling by a factor
of two. In this manner, the micrograph image dimensions
are progressively halved until one of the image dimensions
is less than 1000 pixels.

(a)
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Figure 2. example of pixel data and shape of
the correlation surface: (a) in the vicinity of a
particle (b) around a spurious maxima, from
the ferritin data set.

Image pyramids are also constructed for the template and
mask images, with the same number of levels as the micro-
graph pyramid. Figure 1 shows the image pyramids for the
template and mask for the ferritin data.

The original full-sized mask is a binary image consisting
only of the values 0 and 255. However, the construction
of the pyramid smooths the pixel values, resulting in pixel
values between 0 and 255, particularly around the edges of
the mask. Therefore, the mask images can be thought of as
weight values, which scale the contribution of each pixel to
the correlation computations.

2.2. Correlation

Computation begins with the lowest resolution (ie,
smallest) image, template and mask. The Normalised Cross
Correlation (NCC) score is computed at each image loca-
tion using Equation (1), resulting in a 2-D array of
scores called a correlation image.

2.3. Selection of Maxima

Locations where the NCC is locally maximal are flagged
as potential particles. At this stage there are often a large
number of maxima which do not correspond to particles.

2.4. Filtering of Maxima

This step determines which of the local maxima corre-
spond to particles, by examining the shape of the correla-
tion surface in the vicinity of each maxima. It was observed
that for particles, the correlation surface consists of a peak
surrounded by a trough, while for spurious maxima, the cor-
relation values are more or less flat, as shown in Figure 2.

A recursive region-growing algorithm is used to iden-
tify valid particles. This algorithm starts with local max-



NCC (1)

where NCC Normalised Cross Correlation score, image location, image, template, and mask, and
are indicies into the pixel window, .

ima at locations as seed points and then grows out-
wards in an 8-connected manner[3]. For a particle to be
valid, the correlation values must drop a certain value be-
low the seed point, , within a given radius
range, to . If the correlation func-
tion drops more than before
is reached, still hasn’t dropped by when

is reached, for every point around the centre,
then the location is removed from the set of possible parti-
cles.

Once a set of valid particles has been identified, distance
between particle centres are computed, and clusters of over-
lapping particles removed.

2.5. Propagating Particles to the Highest Resolution

The previous steps identify a set of particles using the
lowest resolution level of the pyramid. These locations may
be propagated up through the image pyramid to the full res-
olution image. This is a two step process. First, the particle
coordinates are multiplied by two to scale them up to the
next higher resolution level of the pyramid.

Next, the accuracy of the scaled up particle locations is
improved by computing the NCC in a small neighbourhood
around each point, using the image, template and mask at
the current pyramid level. The coordinates of each parti-
cle are then adjusted to the coordinates of the nearest NCC
maxima. If no maxima is present within a close neighbour-
hood, the point is removed from the set of valid particles.

The process is repeated until the particle coordinates are
propagated up to the highest resolution image.

3. An Edge-Based Particle Picking Algorithm

Edge detection based particle picking algorithms first
perform edge detection on the micrographs, then locate par-
ticle shapes in the edge image.

3.1. Pyramid Generation

To reduce the amount of computation required, an im-
age pyramid is constructed for the micrograph image, in a
similar manner as for the correlation algorithm.

3.2. Edge Detection

Edge detection algorithms are applied to the lowest level
of the image pyramid. Both the Laplacian of Gaussian
(LOG) and Canny edge detectors have been implemented.
[2, 3]. The output of the edge detection stage consists of a

2D binary edge image, where “1” denotes the presence of
an edge. The Canny edge detector additionally outputs an
an edge direction image.

3.3. Particle Selection in Edge Images

Next, the edge image needs to be interpreted to find edge
arrangements that correspond to particles.

3.3.1 Contour Following. The first technique implemented
involved following edge contours to determine if they are
roughly circular in shape. This is most suited to the unbro-
ken contours produced by the LOG algorithm.

A recursive region growing algorithm is used to follow
connected edge pixels. When an edge pixel is encountered,
the edge is followed by growing outwards in an 8-connected
manner. Once a pixel has been visited, it is flagged as al-
ready belonging to a contour, so that it is not processed
again. The edge following process determines the extent of
the contour, and estimates the centre of a particle it may rep-
resent by averaging the coordinates of all edge pixels
it comprises. If a contour’s extent is greater than a valid
particle size, or if it touches an image border, it is removed
from further consideration.

Next, it is determined whether the contour is roughly cir-
cular. A simple test used is to estimate the minimum and
maximum radii, and , and to compute the ec-
centricity, . A value of close to 1.0
indicates a close to circular shape, while a small indicates
a highly elliptical shape. If , and all fall
within given limits, then the contour is accepted as repre-
senting a circular particle.

3.3.2 The Hough Transform. Hough transform based
techniques[3] are better suited to situations where edges de-
noting a particle shape may be fragmented into several con-
tours. A parameter space called the accumulator array is
used, where the number of dimensions equals the number
of parameters defining the particles. Every location in the
accumulator array is initialised to zero. Each edge pixel in-
crements locations in the accumulator array, corresponding
to sets of particle parameters, for all particles which this
edge pixel could possibly belong to. After all edge pixels
have been processed, local maxima in the accumulator array
indicate likely sets of parameters corresponding to particles.

Circle detection using the Hough transform requires a
three dimensional accumulator array, in which the dimen-
sions correspond to the radius, and the centre of
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Figure 3. Solid lines indicate possible rectan-
gle centre locations, for an edge pixel located
at the origin. Dashed lines indicate particle
extents.

circles. Given an edge pixel at location , all possible
configurations are computed from the equation for

a circle, , and these locations
in the accumulator array incremented. The size of the ac-
cumulator array and amount of computation required can
be reduced by considering only radii in the possible range
for particles. At the completion of the Hough transform
process, local maxima in the accumulator array indicate the
parameters of detected circles, where are the
particle coordinates.

Rectangle detection was based on a modified version
of the Hough transform[11]. A 4 dimensional accumula-
tor array was used, where the dimensions are centre loca-
tion , and rectangle width and height . As the
number of dimensions of the accumulator array increases,
the amount of computation required increases considerably.
However this can be kept to a minimum if the variations in

and are small.
Given an edge pixel , all possible centre locations

for this pixel, as shown in Figure 3, are incremented in the
accumulator array. The shape also needs to be rotated by
the edge orientation, which is obtained as an output of the
Canny edge detection process.

Combined circle and rectangle detection has been im-
plemented for images containing both circles and rectan-
gles. The first stage of the process detects circles. The
edge pixels comprising the circles then need not be consid-
ered for rectangle detection, thus saving processing time.
Furthermore, centres of rectangular particles cannot occur
within a distance of from the circle edges,
therefore these regions can also be removed from consid-
eration as possible rectangle locations.

3.4. Propagating Particles to Highest Resolution

As with the correlation algorithm, the particle coordi-
nates may be propagated up to the highest resolution image

level of the pyramid. This is again a two step process. Par-
ticle coordinates are first of all multiplied by two to scale
them up to the next level of the pyramid. In the next higher
resolution image, edge detection and particle identification
only need be performed in a small neighbourhood around
each particle.

The process may be repeated until the particle coordi-
nates are propagated up to the highest image.

4. Particle Picking Results and Discussion

The algorithms were initially tested with a set of negative
stained ferritin images. Figure 4 shows a region from one
image, and particles picked using the correlation and edge
detection algorithms. Figure 5 shows results obtained with a
test cryo image of a virus. Cryo images tend to be more of a
challenge than negatively stained images due to the reduced
contrast.

Testing was also carried out using a test data set of
Keyhole Limpet Hemocyanin (KLH)[7]. The particles are
cylindrical in shape, resulting in circular and rectangular
views of the particle in the micrographs. Figure 6 shows
the results of particle picking using both correlation, and
edge detection followed by the combined Hough circle and
rectangle detection method.

The algorithms were shown to be capable of selecting
a large number of particles in micrographs, with few false
positives. For structural biologists to make use of these
algorithms, a suitable interface needs to be developed. A
Graphical User Interface (GUI) has been developed for the
correlation algorithm. The GUI has been implemented
in C++ using wxWindows, and assists with parameter se-
lection, display of results, and allows a small number of
missed/erroneous particles to be added/deleted. Using this
software with test data sets, it was possible to select a large
number of particles in a few hours, which would have for-
merly taken weeks of work.

The edge detection algorithm will also need to be incor-
porated into this user interface. Furthermore, particle detec-
tion algorithms will also need to be written to detect differ-
ently shaped and oriented particles. One method could be
to use the generic Hough transform which could potentially
detect a wide variety of particles based on a reference-table
for each particle shape silhouette[1], or it may be possible
to use techniques such as neural networks.

The particle coordinates are output in a form designed to
be input in to the IMAGIC package. The IMAGIC software
is then used to align particles, compute class sums, deter-
mine their orientation, and produce the final 3D model of
the protein molecule.

The presented algorithms locate particles in a low reso-
lution image and then propagate them to the highest resolu-
tion image. In many cases, the extra computation involved
in accurately propagating the particles to the high resolution
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Figure 4. Results obtained using negatively stained ferritin: (a) small section of micrograph (b)
correlation scores (c) correlation peaks (d) picked particles using the correlation algorithm (e) edge
detection using the LOG filter (f) contours corresponding to particles (g) picked particles using the
edge detection algorithm.

image may be unnecessary. This is because the IMAGIC
software, which is designed to work with particles picked
by a human, includes a particle alignment procedure.

5. Conclusions

Automatic particle detection in electron micrographs
will be an important component of a high-throughput
pipeline to fast track 3D structure determination of mem-
brane proteins and macromolecular assemblies.

Further work will include extending the user interface
to incorporate the edge detection algorithm, and extending
the particle picking algorithms to detect differently shaped
and oriented particles. Techniques for noise removal need
to be considered. One such technique is the bilateral fil-
ter. This non-linear filter can smooth noise while preserving
edge features[8].

At present, cryo electron micrographs of the test protein
ferritin are being imaged. Successful particle picking and
3D reconstruction from this data will prove the concept that
protein structures can be determined to atomic resolution
using cryo electron microscopy and single particle analysis.
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Figure 5. Results obtained using test cryo micrograph of a virus: (a) small region of virus image (b)
correlation scores (c) picked particles using the correlation algorithm (d) edge detection using the
Canny edge detector (e) contours corresponding to particles (f) picked particles using edge detection
followed by circle detection with the Hough transform.
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Figure 6. Results obtained using Keyhole Limpet Hemocyanin dataset: (a) micrograph (b) correlation
scores (c) maxima in correlation array (d) picked particles using the correlation algorithm (e) edge
detection using Canny edge detector (f) picked particles using edge detection followed by combined
circle and rectangle detection with the Hough transform.


