View metadata, citation and similar papers at M

-
brought to you by .{ CORE

provided by Queensland University of Technology ePrints Archive

QUT@pPrints

en-access archiva of QUT research literature

COVER SHEET

This is the author version of article published as:

Li, Yuefeng and Zhang, Chengqi and Zhang, Shichao (2003) Cooperative

strategy for web data mining and cleaning. Applied Artificial Intelligence
17(5-6):pp. 443-460.

Copyright 2003 Taylor & Francis

Accessed from http://eprints.qut.edu.au

https://core.ac.uk/display/10877686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cooperative Strategy for Web Data Mining and
Cleaning

Yuefeng Li', Chengqi Zhang?, and Shichao Zhang?

!School of Software Engineering and Data Communications
Queensland University of Technology, Brisbane QLD 4001 Australia

?Faculty of Information Technology, University of Technology, Sydney
PO BOX 123, Broadway Sydney NSW 2007 Australia

y2.li@qut.edu.au; {chengqi, zhangsc}@it.uts.edu.au

Abstract. While the Internet and World Wide Web have put a huge
volume of low-quality information at the easy access of an information
gathering system, filtering out irrelevant information has become a big
challenge. In this paper, a Web data mining and cleaning strategy for
information gathering is proposed. A data mining model is firstly pre-
sented for the data that come from multiple agents. Using the model, a
data cleaning algorithm is then presented to eliminate irrelevant data.
To evaluate the data cleaning strategy, an interpretation is given for
the mining model according to evidence theory. An experiment is also
conducted to evaluate the strategy using Web data. The experimental
results have shown that the proposed strategy is efficient and promising.

Keywords: Web mining and cleaning, Knowledge discovery, Information
gathering

1 Introduction

Modern life depends heavily on certain essential networks, like investments, mar-
keting, commerce, stock jobbing, communication, information gathering, televi-
sion, and telephone. The Internet is well on its way to becoming the next network
staple of modern life, and for good reason. Accordingly, huge volumes of data
have being put on the Internet day by day. There also has been a dramatic
growth in the number of publicly accessible data sets (documents) on the In-
ternet, and all indications suggest that this growth will continue in the years
to come. Information search engines, such as “Google”, “Yahoo”, “Alta Vista”
and “Excite” offer efficient and low-cost ways of collecting relevant information.
This has opened the opportunity for users to benefit from the available informa-
tion. For example, a researcher can benefit from the Internet to gather, analyze,
distribute, and share lately publications relevant to his/her interesting areas.

Usually, users retrieve Web data by keyword searching, which is an intuitive
form of accessing data on the Web. However, these search strategies present an
important challenge: keyword searching return many thousands, even millions
of results in response to a user query. A great much information returned is
irrelevant to the user query.

To address this challenge, the notion of information gathering (IG) has been
proposed in [12] [13] [14] [16] [17]. One of the fundamental issues regarding
the efficiency of information gathering is “overload” that means a lot of retrieved
documents (or URLs) are not what users need. We hope to eliminate most of
“dirty data”, the irrelevant information, from the retrieved documents.

The main reason of arising much “dirty data” for IG systems is that much
irrelevant information is extracted when responding a user query. For example,
we may use a pattern (e.g., a set of keywords, or a weight vector) to represent a
document. When an IG systems use this sort of representation to retrieve doc-
uments, there are many irrelevant text documents that can match the pattern.
The IG systems cannot distinguish the relevant and irrelevant information in a
cluster (a class) generated by a single representation.

One solution for this problem is information filtering which uses a big training
set to divide documents into many rather smaller classes [24] [20]. In this paper,
we present another solution. We use multiple representations of documents to
find rather smaller clusters. The new solution is reasonable if the IG systems
work in multiple agent environments, where documents are distributed in many
collections (databases), and each agent uses several collections.

We will fuse the retrieved information from the different resources. This prob-
lem is described as the “query optimization”, or referred to “collection fusion”
in database systems community (see [10] [29]). To address this problem, we
will give a new perspective in this paper. We first decide what sort of knowl-
edge can be discovered from retrieved documents, then a cooperative approach
is presented to resort the retrieved documents.

This paper is organized as follows. We first illustrate our motivation for
Web-based information gathering systems in Section 2. In Section 3, we discuss
the representation of retrieved documents. In Section 4, a model for knowledge
discovery is presented. Using the model, we also give a cooperative algorithm
to eliminate irrelevant data from multiple resources. In Section 5, to judge the
results, we also present an interpretation for our approach according to evidence
theory. The performance is also made by using the traditional methods precision
and recall. Lastly in Section 6 we discuss our contributions and the further work.

2 Web-Based Information Gathering

Information-gathering systems might help humans to gather the right infor-
mation for their needs from the Web. The idea that we trust an information
gathering system is probably the first to occur to us when we use it to gather
information from the Web. We may ask some questions of the designer; such
as does the system understand our requests? Can we trust the results it pro-
vides? In other words, does the information gathering system use the correct
knowledge?

Due to historical reasons, documents in a collection are frequently represented
through a set of index terms or keywords. Such keywords might be extracted
directly from the text of the document or might be specified by a human subject

(as frequently done in IR arena) [1]. These “representative” keywords (or term
sets) provide a logical view or representation of the document, whether they are
derived automatically or generated by a specialist [16].

The classic models in IR or information filtering (IF) consider that each
document is described by a vector of terms, where terms are called representative
keywords. The semantics of a vector helps to remember the document’s main
themes. If we consider that not all terms are equally useful for describing the
document contents, we can assign numerical weights to each term to distinct
terms. For this consideration, each document could be described by a vector of
numerical weights of terms.

Let t; be a term, d; be a document, and w;; > 0 be a weight associated
with the pair (d;,t;). This weight quantifies the importance of the terms for
describing the document semantic contents. Term weights can be calculated
in many different ways. One of the most effective term-weight techniques is
called tf +idf (term frequency times inverse document frequency) technique (see
Section 2.1.2). To apply this technique, a table is generated off-line containing
total frequencies of all terms in a thesaurus, using a sufficiently representative
collection of documents as a training set. In the on-line document stream, another
table is generated containing the frequencies of all unique terms found in newly
arrived documents. Based on the values in the two tables, the following equation
is used to derive appropriate weights for terms in each document:

Wi = tik X log(N/nk)

where t;; is the number of occurrences of term t; in document d;; log(N/ny)
is the inverse document frequency of term tj in the training set; IV is the total
number of documents in the training set; and ny, is the number of documents in
the training set that contain the given term ¢.

To easy see our motivation, we assume log(N/ny) = 1 for the following ex-
ample, where the key words are “Java”, “program”, and “comput”, and the 6
retrieved documents are:

dy : “Java beans for real programmer.”

dy : “Java for C C++ programmer.”

ds : “Java networking.”

dy @ “Java and computing programming.”

ds : “Computing programming for computer science.”
dg : “Java architecture Indonesia pictorial works.”

In this example, D = {dy,...,dgs}. If wi = tii, then these documents could
be represented as vectors in Table 3.1.

With closer inspection of the table, we can see that the vector representations
dy = ds, and thus we have the set Ey = {d;,d>} which is called an elementary
set (or a class). Similar elementary sets can be derived from the table, and exist
as follows:

E, = {d?ndﬁ}) E; = {d4}) Ey = {d5}

Table 1. Example: Document Space

D|wi,1ava Wi, program |wi,comput

d1 1 1 0
d> 1 1 0
ds 1 0 0
da 1 1 1
ds 0 1 2
de 1 0 0
E1l E2
laz de
di | as
E3 | ga das _E4

Fig. 1. Large elementary sets

It is easier to answer which of the above documents are relevant by the user.
In this example, we assume the relevant documents are d;, ds, and dy.

Figure 1 gives us a graphical view of the document space. The shaded 4
squares are the above elementary sets. The other squares are the potential el-
ementary sets if we consider more documents. From this example, we can un-
derstand that the documents are divided into some equivalence classes using
one representation of documents. The problem is that some classes include both
relevant documents and irrelevant documents (e.g., Ey and E»), and the system
has not further knowledge to distinguish the relevant and irrelevant documents
in an elementary set.

We argue there are two ways to solve this problem. The first one is using
a large training set, and the second one is using multiple representations of
documents. The former methods can be used in the case there are a lot of
feedback from users, and the latter method can be used when the IG system
works in a multiple agent environment.

Figure 2 shows the rather smaller elementary sets if we use multiple repre-
sentations of documents to classify the document space (e.g., E; is divided into
2 classes and E» is also divided into 2 classes). It is possible to distinguish the
relevant documents and irrelevant documents in a big elementary set if we use
multiple representations of documents because even using the same IR model
(e.g., the tf xidf technique) the representations of documents may be different

if using different training sets.

E1l E2
\ v
laz de
d1 | as
E3 | g4 ds _E4

Fig. 2. Small elementary sets on a document space

3 Representation of Web Data

A difficult problem arises when we use multiple representations of documents
for IG because collections (databases) may be used by more than one agent.
Figure 3 shows an example for this case. The initial example is designed in [10].
In the example shown in Figure 3, databases D;, D, and D3 are served by
agent B, databases D», D3, and D, are served by agent C'. We assume that
the return documents retrieved by agent B belong to Dy, D-, and Ds; and the
return documents retrieved by C belong to Ds, and D4. The problem for the
subject agent A is to evaluate all of the return documents (sometimes called

retrieved documents).

(e
’/4

S R
D1 D2 @ D4

Fig. 3. The Problem for Collection Fusion

C8> N,
q

A clue for solving this problem is given by Fuhr [10]. The subject agent
A can ask agent B to revise its retrieved documents in case Dy as well as Ds

are ignored. After that the problem will become the case where different agents
access disjoint sets of databases. To use this approach for Web-based IG systems,
we have to give a negotiation method to select observer agents which are willing
to revise their retrieved documents. The process of negotiation will take more
time. Another drawback is that this approach cannot use multiple opinions for
the same question (one kind of cooperation in multi-agent environments [7]).

We can use a list of facts to illustrate what the subject agent has obtained,
where each fact consists of attributes. Table 2 illustrates such facts for the prob-
lem shown in Figure 3. We use three levels (H, M, L) to describe our beliefs
about the relevance if we assume that the two agents have the same perfor-
mance. Here, the “H” means that two agents both admit the document relevant
(the second row); the “M” means that one agent admits the document relevant,
and the other has no idea because it does not use the database (the first row and
the last row); and the “L” means that one agent admits the document relevant,
but the other denies it.

Table 2. Web Data Example

Doc Agent B Agent C Relevant Level
Served|Retrieved Served|Retrieved
dy € Dy| Yes Vv No X M
dy € Da| Yes N Yes Vv H
ds € D>| Yes Vv Yes X L
ds € D3| Yes X Yes Vv L
ds € D3| Yes Vv Yes X L
ds € Dy| No X Yes v M

Considering many agents (rather than 3) which may have different perfor-
mance in a Web-based IG system, the problem looks so complex, and the eval-
uation for this problem is not easy. The following section, however, will provide
a cooperative approach for this problem.

4 The Cooperative Approach

It is difficult to compare the similarity values (the weights generated by IR
models), because agents may use different term index vocabularies. For this
consideration, the subject agent asks each agent not only returns the similarity
values (weights) for the return documents, but also makes a binary decision
as to whether the documents should be relevant. This requirement is similar
with the requirement for the task of filtering within TREC (the Text REtrieval
Conference, see http://trec.nist.gov/cfp.html). In this section we first show what
kind of knowledge can be discovered, then give an algorithm for the data cleaning.

4.1 Web Data Mining

In the following, we assume a basic setting as follows. A subject agent submits
a query to each agent of @. In response, some agents of @ may produce results
for the query. We assume the results include collection names that they have
served, and pairs of retrieved documents and collection names, where the first
component in a pair is a document, and the second component in the pair is a
collection name that the document belongs to. We use @, to denote the set of
agents which have returned a result at time ¢t. Let Dy = {d;,,ds,,...,d:, } be the
set of all retrieved documents at time ¢, and C* = {C},C%,...,CL,} be the set of
all collections mentioned by agents at time ¢.

Based on the above assumption, we can get a partition, a family Dy, (i =
1,...,m), of D; such that

— Dy is the union of the sets Dy, (i =1,...,m),
— each pair Dy,, Dy; (i # j) is disjoint.
— documents in the same part Dy, are all come from the same collection C!.

For example, in Figure 3 and Table 2, if agent B and C both return the
results at time ¢, then we have:

Qt = {B,C}
Dy = {dy,dy,...,ds}
Ct = {D17D27D37D4}

So we can get a partition of Dy, and the parts in the family are {d; }, {d2, ds,d4},
{ds}, and {dg}.

The knowledge we believe for each document is based on the possible degree
of support from other agents. At time ¢, we can get a mapping

Ftl @t—)QDt

such that I;(6) is the set of retrieved documents provided by agent 6 for each
§ € ©;, where 27t is the power set of D;. For example, considering Table 2, we

have
Ft(B) = {d17d27d37d5}

I;(C) = {da,ds,ds}

A rule from agent B perspective is that “ it believes that every document in
the set I':(B) is relevant”. The subject agent, however, knows only some doc-
uments in the set are the real relevant documents because of the problem of
overload. At this situation, the subject agent might guess (analyze) the possible
degree of relevance to each retrieved document based on its trustworthiness to
other agents. The trustworthiness to an agent is based on its previous achieve-
ment. We use a precision function to represent an agent’s previous achievement.
For each B € Oy, its precision function Precisionp is the fraction of the retrieved
documents which is relevant. For example, if the set of retrieved documents pro-
vided by B is I}(B), and Rp is the subset of relevant documents appeared in
I;(B), then we have
| Rp |

Precisiong = m
t

For example, if we assume that Precisiong(4) = 0.55, and Precisionc(3) =
0.60, the subject agent A could believe that each document in I';(B) can get
support degree 0.55 from B, and each document in I;(C) can get support degree
0.60 from C.

Obviously the documents in database D3 cannot get any degree of support
from C, because agent C' believes they are all irrelevant. For the documents in
database D;, however, the subject agent cannot simply assure “they cannot get
any degree of support from C”, because D; is not served by C'. At this case, the
subject agent should consider the potential support from C'.

According to the above analysis, we can use a random set (Pr, £) to represent
what we have found from these facts, where Pr is a probability on ©;, and ¢ is
a mapping such that

£: @y — 202
For example, from Table 2 we have

§(B) = {(D1,{d1}), (D2, {d2,d3}), (D3, {d5})}

and

§(C) ={(D2,{d2,ds}),(Ds,), (Ds,{ds})}

The subject agent can obtains the following decision rules:

— if agent B obtains a set [}(B) at time ¢ then d; in D; and dy and d3 in Dy
and ds in D3 get Pr(B) support degree from B;

— if agent C obtains a set [:(C) at time ¢ then ds and dy in D; and dg in Dy
get Pr(C) support degree from C, and documents in D3 get zero support
degree from C.

In Section 5, we will interpret the random sets and show how it is used in the
data cleaning algorithm.

4.2 Data Cleaning Algorithm

The algorithm in Table 3 describes the details for data cleaning. It evaluates
the support degree and the potential support degree, and resort the retrieved
documents.

In this algorithm, the inputs are the set of cooperating agents at time ¢ (O;),
the set of retrieved documents at time t (Di= U,_; _,, D, | Dt |= n), and
the associated collections Ct,CE, ..., Ct . We expect the outputs are the relevant
degree function R, and the sequence of the retrieved documents.

In this algorithm, a multi-key in step 4 for a document d consists of two keys.
The first key is R(d), the second key is) ,o, weighty(d), where weighty(d) is
the normalization of d’s weight that agent 6 provides, it can be computed as
follows 1

2 =1, 1 (0)| Wi

weighty(d;) = wy,

Table 3. The Cleaning Algorithm

1. for i =1 to n //initial
R(d;) = 0;
2. for each 6§ € O, //support evaluation
for each d € I'(0)
R(d) = R(d) + Precisiong (| I:(6) |);
3. for j =1 to m //potential support
for each 6 € O
if (C} is not served by 6)
for each d € Dy,
R(d) = R(d) + Precisiong(| D; |);
4. Resort D; based on multi-keys;

if agent 6 provides a set of retrieved documents {dy,...,d|r, (s} with the cor-
responding weights {w,...,w|r,(9)}- The documents will be divided into some
classes firstly based on the first key, in which every document has the same R.
In each class the documents are then ordered by the second key.

For example, by using the example showed in Figure 3, we have the input data
O = {B,C}, Dy = {d17d2; s >d6}7 Dt1 = {dl}) th = {d2)d37d4}> Dt3 = {d5}7
Dy, = {ds}, Ct = Dy, C} = Do, C{ = D3, and C§ = Dy. In step 1, the algorithm
initializes the relevant degree function R as 0. In step 2, the algorithm gives the
support degree to each document based on the Precision functions. In step 3
the algorithm considers the potential support degrees for some documents that
some agents do not serve.

Table 4 shows an example for the outputs of the first three steps according to
the above inputs, where we assume Precisiong(4) = 0.55, and Precisionc(3) =
0.60, In this table, the second column is the support degree for individual doc-
ument, and the third column is the total relevant degree (including both the
support degree and the potential support degree) for individual document.

Table 4. Example for the Evaluation Algorithm

|Step|R(1)|R(2)[R(3)|R(4)|R(5)|R(6)]
1 Jo Jo Jo Jo Jo o
2]0.55 [1.15 [0.55 [0.60 [0.55 0.60
3]0.95[1.15 [0.55 [0.60 [0.55 [1.00

If the precision functions are decrease functions (typically a precision curve is

a decrease function [11]), the above algorithm would reveal the following general
rules for the classification of a retrieved document:

— The possible degree of relevance is high if more than one agent retrieves it.

— The possible degree of relevance is low if some agents do not retrieve it

— The possible degree of relevance is medium if some agents retrieve it but
some agents do not use the collection which contains it.

5 Algorithm Analysis

It is obvious that the cleaning algorithm has a polynomial time complexity. In the
following we will interpret the meaning of the random sets presented in Section
4.1. We also give a real example to show the performance of this cooperative
cleaning algorithm.

5.1 Interpretations of Random Sets
From Table 2, we might classify the documents into three classes:

— Class {d»}, two agents both admit document d» relevant.

— Class {d1,dg}, one agent admits documents relevant, and the other has no
idea because it does not use the databases that the documents belong to.

— Class {d3,d4, ds5}, one agent admits documents relevant, but the other denies
them.

Based on the random set (Pr, £), agent B will provide a set of retrieved
documents (e.g., {dy,d>,ds,ds}), and the names of databases that it does not
serve (e.g., D). The set of retrieved documents (represented by map I};) means
that we know there are some relevant documents in the set, but we cannot be
sure which documents are the relevant documents. These information can be
represented as a pair < Pr,o >, such that Pr is the probability function on O,
and o from 2Pt to 29 is a basic set assignment [30] [18].

We can use the function of Precision to describe Pr. For example, we may
have the following probability function

_ 0.55%| I (B)|
PT({B}) = 0.55><4‘F1(B>;\+0-6><|Ft(c)\
0.55x4 —

0.55x440.6x3 ~

0.6x|I:(C
Pr({C}) = 0.55)(|Fi%§)|‘+é-6)x||ri(c)‘
0.6 X _

0.55x440.6x3

We also get a basic set assignment, which satisfies
o(S) ={0 €0 | I;(0) =S} (1)

for all S C Dy.

For example, considering the example in Figure 1 and Table 2, we have

U({dl)d2yd37d5}) = {B}
o({dz,ds,dg}) = {C}
o(S) = 0, for any other subset S.

By fusing Pr and o, we can obtain a mass function [27] [11] m; : 2P —
[0, 1], which satisfies

m¢(S) = Pr'({8] 6 € Oy, I}:(6) =S}) (2)
for every S C D;. For example, from the above we have

mt({dly d27 d?); dS}) =0.55
me({dz,ds,ds}) =0.45
mq(S) = 0, for any other subset S.

At the decision level, we could use the pignistic probability decision approach
[28]. This approach will generate a probability function pignistic; : Dy — [0, 1],
which satisfies

pignisticy({d}) = Z

SCD,, deS

For example, by using the above mass function m;, we have

pignistice({d, }) = 0.1375
pignisticy({d>}) = 0.2875
pignisticy({ds}) = 0.1375
pignisticy({ds}) = 0.15
pignisticy({ds}) = 0.1375
pignisticy({ds}) = 0.15

To compare this result with the second row of Table 4, we find that pignistic
probability function is just the normalization of the second row - the value while
the relevant degree function R just gets support degree in step 2. In fact, from
equation (2) and (3), we have

my (S)

pignistic,({d}) = X scp,, aes T3]
Pr({0|6€6,, I (0)=S})
5

= ngbi, des
Pr(9)

= 20e6,, deri(9) TRD)]

From this equation we can easily understand that the support evaluation in the
evaluation algorithm (see Table 3) is just the fusion result while the subject
agent only considers the contributions of other agents to retrieved documents.
The above interpretation does not consider the potential support. In or-
der to interpret the random set (Pr, £) completely, we view each agent as two
sides of one coin: one side is for the support degree and another is for the po-
tential support degree. For example, the set of cooperated agents at time ¢ is

{B',C'",B",C"} not {B,C?}, and a mapping I'4 from {B’,C',B",C"} to 2P¢ is
defined as follows:

I'y(B" ={dy,ds,ds,ds}

I'y(C") ={da,dy4,ds}

I'y(B") = {ds}
LA(C") = {dy}

where I'4(B’) and I'4(C") are the sets of retrieved documents from B and C
respectively (the support information). I'4(B") is a subset of I'4(C"), in which
the retrieved documents’ databases (e.g., D4, the potential support information)
do not served by B. I'4(C") is a subset of I'4(B’), in which the retrieved docu-
ments’ databases (e.g., D1, the potential support information) do not served by
C.

We also use the function of Precision to describe Pr. For the potential
supports, at moment we consider the minimum precisions, that means we will
use the size of the set of all retrieved documents (e.g., 6) to get the corresponding
precisions. Similar to equations (1), (2) and (3), the subject agent can obtain a
mass function m; and a pignistic probability function. We can also verify that
the new pignistic probability function is the normalization of the third row of
Table 4 — the final value of the relevant degree function R in the fusion algorithm
of Table 3.

5.2 Performance of the Algorithm

The resource for this trial is “http://employment.news.com.au/”. From this re-
source we down-loaded 653 jobs as a collection, which are classified as “Program-
mer” (by using the inner search engine) at time Tuesday December 14 11:25:01
EST 1999 (see [20]). The query is described as the follows:

< top >

< title > Java, C++ Programmer

< [title >

< desc > Description:

What job information is available for programmers, in which programming
with Java, C++, and Oracle under Unix is preferred?

< [desc >

< [top >

The purpose of this trial is to show the efficiency of the cooperative data
cleaning algorithm.

The subject agent (BROKER) sends this query to three agents: PIRM-based
agent, RSBM-based agent, and SDSM-based agent. At fusion time, each agent
provides a set of retrieved documents, in which each document has a collection
name, document name and weight (similar value).

The PIRM-based agent uses the probabilistic IR model (see [20]). According
to the user information need, it uses a query) = {programmer, Java, Unix,

C++, Oracle} to get the set of possible relevant documents. PIRM-based agent
provides 130 documents to reply the broker’s request. The RSBM-based agent
uses the rough set based IF model (see [20]). It first classifies the new documents
into some categories, then selects the relevant documents from the categories
based on the user information need. It provides 38 documents to reply this
request.

The last set of retrieved documents comes from SDSM-based agent. This
agent uses Dempster-Shafer index model to describe the user information need.
We let the keyword-list K be {programmer, Java, Unix, C++, Oracle}, and the
set U include the 36 relevant documents (feedback documents). SDSM-based
agent first decides a mass function mg on K, which satisfies:

mp({programmer}) = 0.385174
mpr({Java}) = 0.304158
mpr({Uniz}) = 0.135181
mgr({C + +} = 0.100460
mp({Oracle} = 0.074998

It then selects the threshold
threshold = mingcy{bel,,,(Cq)} = 0.595354,

where Cy is the corresponding class of relevant document d. For every down-
loaded job dj, it uses the following formula to rank the jobs:

belmy, (Ca;) = > mg({term}).

termeK,termed;

By using this threshold (0.595354), it returns 122 documents to reply the broker’s
request.

The broker, however, does not have any idea about which agents are better.
So it assumes that every agent has the same trustworthiness (that means a same
precision curve!). By using the cooperative fusion algorithm the subject agent
divides the retrieved documents into 3 classes, the first class has 38 documents
with the support from every agent (3 agents); the second class has 84 documents
with the support from 2 agents, the third class has 8 documents with the support
from one agent.

By resorting the 130=38+4-84+8 documents based on the cooperative fusion
algorithm, the subject agent can select the top part documents to answer its
users based on how many documents users want. The result of the experiment
on precision and recall are displayed in Figure 2, where the document cutoff is
15.

To compare with PIRM-based agent and SDSM-based agent, BROKER can
get a very high precision. To compare with RSBM-based agent, BROKER can re-
pick up the 3 relevant documents that were filtered out by RSBM-based agent.

! The experiment result is not effected by any precision curve if it is decrement
function.

In summary, this experiment shows that the fusion result is better than any
single agent.

We also can conclude that our fusion result is better than most collection
fusion methods’ because our fusion result is enhanced rather than only approx-
imated to the effectiveness of searching the entire set of documents as a single
collection by any agent (the goal of collection fusion in distributed IR [29]).

1.2

1 —%— BROKER

e ~ 7

[:] I I I T T
(0.2 04 0.6 (0.3 1 12

Relative Recall

Precision

Fig. 4. Fusion Precision/Recall

6 Related Works

With respect to collection fusion, the problem was first identified in the paper
[29]. This approach is to approximate the relevant document distribution over the
collections by learning them from the results of past queries. Another approach
[3] uses an inference network to rank not only documents at the provider sites.
The collection fusion problem can also be solved by either using globally valid
document frequencies (if the same cosine-based ranking method is used at each
site) or by re-ranking selected (retrieved) documents at the broker site [23].
The highly heterogeneous collection (especially on the WWW) is an impor-
tant feature for the modern IR. In this context “the possibility of using different
IR models and index vocabularies at the different sites” is an important prop-

erty. According to the probability ranking principle, [2] presents a fusion model
to handle heterogeneity among collections.

Metacrawler [8] is an agent that operates at a higher abstraction level by uti-
lizing eight existing WWW index and search engines. Metacrawler is an example
of an agent that does not index the documents itself, but provides a common
interface to a number of search engines. This research is similar to the research
in distributed IR, but the difference is that Metacrawler only knows the eight
search engines very well, it dose not have any knowledge about the collections.

In contrast to other agent-based systems, BIG [13] performs information
fusion. It retrieves documents, extracts attributes from the documents, converts
unstructured text to structured data, and integrates the data. The last step is
similar to solution synthesis in distributed expert systems [31]. Different from
this kind of fusion, in this thesis we talk about the information fusion in case of
unstructured text rather than structured information (data).

Data mining, which is referred to as knowledge discovery in database is a
process of nontrivial extraction of implicit, previously unknown and potentially
useful information (patterns) from data in databases [4] [6] [32]. To discover
the potential useful knowledge, several typical approached have been presented.
They are mining association rules, data classification and clustering, and data
generalization and summarization. Data clustering has been studied in informa-
tion retrieval for many years [1] [11]. The similar technique has already been
used in machine leaning, data mining, and Web mining [26]. Different from the
above methods, Our approach finds random sets not a set of weight vectors or
rules.

7 Summary

As mentioned previously, one of the difficult problems for information gathering
from the Web is overload. In this paper, a cooperative strategy and methodology
for solving the problem is presented. To assess the results, the analysis for this
cooperative cleaning algorithm is also presented based on evidence theory and a
real example. We have shown that the cooperative approach can efficiently elim-
inate dirt data by re-sorting the retrieved documents. The main contributions
are as follows:

(1) A Web mining model is presented to discover random sets from multiple
representations of retrieved documents. The random set can be interpreted as
Dempster-Shafer mass functions. Different to other mining methods, this model
finds random sets rather than sets of weight vectors or rules.

(2) A data cleaning algorithm is presented to eliminate irrelevant data from
multiple resources, which uses the random sets to resort the retrieved documents.

In addition, the research result can be used for collection fusion in distributed
IR systems. It can extend the capability of the traditional collection fusion in
distributed IR.

One of further work for this research is to create a model to obtain “potential
support”. Another is to discuss the relationship between a random set and a set

of weight vectors.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, Addison Wes-
ley, 1999.

[2] C. Baumgarten, A probabilistic solution to the selection and fusion problem in
distributed information retrieval, in: Proceedings of SIGIR’99, 1999, 246-253.

[3] J.P. Callan, Z. Lu and W. B. Croft, Searching distributed collections with inference
networks, in Proceedings of SIGIR’95, 1995, 21-29.

[4] M.-S. Chen, J. Han, and P. S. Yu, Data mining: an overview from a database per-
spective, IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6):866-
883.

[5] J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu, Learning Bayesian networks
from data: an information-theory based approach, Artificial Intelligence, 2002, 137:
43-90.

[6] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthrusamy, eds., Advances in
knowledge discovery and data mining, Menlo Park, California : AAAT Press/ The
MIT Press, 1996.

[7] E. H. Durfee, Distributed problem solving and planning, in: Multiagent systems: a
modern approach to distributed artificial intelligence, edited by G. Weiss, The MIT
Press, Cambridge, Massachusetts, London, England, 1999, 121-164.

[8] O. Etzioni, Results from using the metacrawler, in Proceedings of 4th WWW Con-
ference, F. Varela and P. Bourgine (Eds.), MIT Press, Cambridge, MA, 1995.

[9] O. Etzioni and D. Weld, A softbotbased interface to the Internet, Communications
of the ACM, 1994, 37(7): 72-76.

[10] N. Fuhr, A decision-theoretic approach to database selection in networked IR,
ACM Transactions on Information Systems, 1999, 17(3): 229-249.

[11] D. A. Grossman and O. Frieder, Information retrieval algorithms and heuristics,
Kluwer Academic Publishers, Boston, 1998.

[11] J. W. Guan and D. A. Bell, Evidence theory and its applications, Volume 1, Studies
in Computer Science and Artificial Intelligence 7, Elsevier, North-Holland, 1991.

[12] N. R. Jennings, K. Sycara and M. Wooldridge, A Roadmap of agent research and
development, Autonomous Agents and Multi-Agent Systems, 1998, 1(1): 7-38.

[13] V. Lesser et al., BIG: an agent for resource-bounded information gathering and
decision making, Artificial Intelligence, 2000, 118: 197-244.

[14] V. Lesser and S. Zilberstein, Intelligent information gathering for decision mod-
els, Computer Science Technical Report TR-96-35, University of Massachusetts at
Amberst, 1996.

[15] A. Y. Levy and D. S. Weld, Intelligent Internet systems, Artificial Intelligence,
2000, 118: 1-14.

[16] Y. Li, Modelling intelligent agents for Web-based information gathering, PhD The-
sis, Deakin University, 2000.

[17] Y. Li, Information fusion for intelligent agent-based information gathering, in:
Web Intelligence: Research and Development (First Asia-Pacific Conference, WI
2001, Japan), LNAI 2198, Springer, 433-437.

[18] Y. Li and C. Zhang, A method for combining interval structures, in: Proceedings
of Tth International Conference on Intelligence Systems, Paris France, 1998, 9-13.

[19] Y. Liand C. Zhang, Perceiving environments for Intelligent Agents, in: Proceedings
of 6th Pacific Rim International Conference on Artificial Intelligence, Melbourne,
Lecture Notes in Artificial Intelligence 1886, Springer-Verlag, 2000, 297-307.

[20] Y. Li, C. Zhang, and J. R. Swan, An information filtering model on the Web and
its application in JobAgent, Knowledge-based Systems, 2000, 13(5): 285-296.

[21] P. Maes, Agents that reduce work and information overload, Communications of
the ACM, 1994, 37(T).

[22] T Mitchell el at., Experience with a learning personal assistant, Communications
of the ACM, 1994, 37(7).

[23] W. Meng, K.Liu, C. Yu, X. Wang, Y. Chang, and N. Rishe, Determining text
databases to search in the Internet, in Proceedings of 24th VLDB Conference,
1998. Extended version.

[24] J. Mostafa, W. Lam and M. Palakal, A multilevel approach to intelligent informa-
tion filtering: model, system, and evaluation, ACM Transactions on Information
Systemns, 1997, 15(4): 368-399.

[25] A. Moukas and P. Maes, Amalthaea: an evolving multi-agent information filter-
ing and discovery system for the WWW, Autonomous Agents and Multi-Agent
Systerns, 1998, 1(1): 59-88.

[26] T. A. Runkler and J. C. Bezdek, Web mining with relational clustering, to appear
in International Journal of Approximate Reasoning.

[27] G. Shafer, A mathematical theory of evidence, Princeton University Press, Prince-
ton, NJ, 1976.

[28] P. Smets and R. Kennes, The transferable belief model, Artificial Intelligence,
1994, 66: 191-234.

[29] E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird, The collection fusion prob-
lem, in Proceedings of TREC-3, 1995, 95-104.

[30] S. K. M. Wong, L.S. Wang and Y.Y. Yao, Interval structure: a framework for
representing uncertain information, in: Proceedings of the Eighth Conference on
Uncertainty in Artificial Intelligence, California, 1992, 336-343.

[31] C. Zhang, Cooperation under uncertainty in distributed expert systems, Artificial
Intelligence, 1992, 56(1): 21-69.

[32] C. Zhang and S. Zhang, Association Rules Mining: Models and Algorithms,
Springer-Verlag Publishers in Lecture Notes on Computer Science, Volume 2307,
2002.

This article was processed using the BTEX macro package with LLNCS style

