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Abstract

We derive an explicit expression for the probability density of the first passage time to
state 0 for the Ehrenfest diffusion model in continuous time.
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1. Introduction

The Ehrenfest model was introduced by Paul and Tatyana Ehrenfest [7] as a model for gas
diffusion, to help explain why the entropy of a closed system must increase. Mathematical
treatments were later given by Kac [12] and Feller [8], and since then the model has
appeared in variety of contexts: where a closed system comprises units of two types and
transmutation occurs from one to the other. The particular application that motivated
the present work comes from the study of thermal fragmentation of aerosols [9, 10, 11].
Particles are suspended in a gas and weakly interacting (dispersion forces) molecules bond
pairs of particles. For any given pair, there are K bonding sites. It is assumed, as part of
the model, that fragmentation/evaporation of existing bonds occurs at rate μ for each bond
and rebonding/condensation occurs at rate λ for each vacant site. We assume that μ and
λ are both strictly positive. If X(t) is the number of bonds at time t, then (X(t), t ≥ 0)
is assumed to be a continuous-time Markov chain taking values in S = {0, 1, . . . , K} with
transition rates qn,n+1 = λ(K − n) and qn,n−1 = μn for n = 1, 2, . . . , K. However, in our
model q0n = δ0n, because once there are no bonds present, the two particles dissociate and
rebonding does not occur. Thus, our model differs from the usual Ehrenfest model in that 0
is an absorbing state. We are interested in the time T it takes for the particles to dissociate
starting with X(0) = N bonds. T is therefore the first passage time to state 0 in the
standard Ehrenfest model. We derive an explicit analytical expression for the probability
density function of T .

If K were large, as it would be in the classical context, T would have an approximate
exponential distribution (see for example [14]), but in the aerosols application K is usually
small (K � 10), and thus it is useful to have an explicit expression. This would also be true
in other modelling contexts, for example in animal population networks (metapopulations),
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where the state is the number of occupied habitat patches and the “per-capita” upward and
downward rates are the rates of colonisation and local extinction; here the total number of
patches would be moderate.

The theory of hitting times is well developed (see the books of Syski [17] and Kemper-
man [15]), but there are few explicit formulae available for specific models. Exceptions to
this are in the recent work of Di Crescenzo and colleagues [3, 4, 5, 16, 6], where special
structure in a wide range of continuous-time models has been exploited. The property of
“central symmetry” exploited in [5, 6] would, in the present context, require λ = μ, and thus
is far too restrictive for our purposes. Di Crescenzo studied the Ehrenfest model with λ = μ
and K even in Section 4.1 of [5], and obtained an explicit expression for the probability
density of the first passage time to the “symmetry state” K/2 starting from any state N .

Comprehensive early treatments of the Ehrenfest model in continuous-time were given by
Karlin and McGregor [13] and Bellman and Harris [2]. In Section 4 of [13] an expression
is given for the transition probabilities Pij(t) = Pr(X(t) = j|X(0) = i), both in terms
of generating functions and explicitly in terms Krawtchouk (orthogonal) polynomials. It
is therefore not surprising that the first passage time density can be evaluated explicitly,
because its Laplace transform is the ratio of the Laplace transforms of Pi0(t) and P00(t).
However, we will find it convenient to work directly from the Kolmogorov forward equations.

2. First passage time denisty

For the Ehrenfest model with absorption at 0 the forward equations are

dP0

dt
= μP1

dP1

dt
= −(λ(K − 1) + μ)P1 + 2μP2

dPi

dt
= λ(K − (i − 1))Pi−1 − (λ(K − i) + μi)Pi + μ(i + 1)Pi+1 (i = 2, . . . , K − 1)

dPK

dt
= λPK−1 − μKPK .

with P0(0) = δN0, where Pi(t) = PNi(t). In terms of the probability generating function
H(z, t) =

∑K
i=0 Pi(t)z

i, they are summarised by the partial differential equation

∂H

∂t
+ (λz + μ) (z − 1)

∂H

∂z
− λK(z − 1)H = −λK(z − 1)P0(t),

with the boundary conditions H(0, t) = P0(t), H(1, t) = 1 and H(z, 0) = zN . In order
to make the boundary conditions homogeneous, it will be convenient to work in terms of
G = H + 1:

∂G

∂t
+ (λz + μ) (z − 1)

∂G

∂z
− λK(z − 1)G = −λK(z − 1)Q(t), (1)

where Q(t) = P0(t) − 1, with G(0, t) = Q(t), G(1, t) = 0 and G(z, 0) = zN − 1. Our
immediate aim is to evaluate Q(t) and thus determine P0(t) = Pr(T ≤ t|X(0) = N).
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By considering the homogeneous form of (1), a separation of variables argument suggests
that we should look for a solution of the form

G(z, t) =
K∑

i=1

Ai(t) (λz + μ)K−i (z − 1)i, (2)

for suitable functions (Ai(t)) that do not depend on z. Notice that G given by (2) satisfies
the boundary condition G(1, t) = 0. On substituting (2) into (1) we obtain

K∑
i=1

(A ′
i(t) + (λ + μ)iAi(t)) (λz + μ)K−i (z − 1)i = −λK (z − 1) Q(t).

Thus, if we can find constants (Ci) such that
∑K

i=1 Ci (λz + μ)K−i (z − 1)i = −λK (z − 1),
then it is clear that (Ai) will satisfy

A ′
i(t) + i (λ + μ) Ai(t) = CiQ(t) (i = 1, 2, . . . , K). (3)

The following lemma shows that this is possible, and at the same time establishes the
existence of functions (Ai(t)) satisfying (2).

Lemma 1. Let K ≥ 1, and let f be a polynomial with real coefficients that satisfies f(1) = 0
and has degree no greater than K. Then, ∀ a, b > 0, ∃ uniquely, constants (Bi) such that

f(z) =
K∑

i=1

Bi (az + b)K−i (z − 1)i . (4)

They are given by Bi = gi(1), where

gi(z) =
1

i!

di−1

dzi−1
(az + b)i−K

(
d

dz
− aK

az + b

)
f(z). (5)

Proof. First observe that

(az + b)i−K

(
d

dz
− aK

az + b

)
f(z) =

K∑
j=1

Bj(a + b)j(az + b)i−j−1(z − 1)j−1.

Then, by Leibniz Theorem,

gi(z) =
1

i!

di−1

dzi−1
(az + b)i−K

(
d

dz
− aK

az + b

)
f(z)

=
i−1∑
k=0

K∑
j=1

Bj
j

i!
(a + b)

(
i − 1

k

)
di−k−1

dzi−k−1
(az + b)i−j−1 dk

dzk
(z − 1)j−1.

Now, since for j ≥ 1, (dk/dzk)(z − 1)j−1
∣∣
z=1

= (j − 1)!δk,j−1, we get

gi(1) =
i∑

j=1

Bj
j!

i!
(a + b)

(
i − 1

j − 1

)
di−j

dzi−j
(az + b)i−j−1

∣∣∣∣∣
z=1

= Bi,

because (di−j/dzi−j) (az + b)i−j−1
∣∣
z=1

= (a + b)−1δij. �
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Indeed we can evaluate (Ci) explicitly. Putting a = λ and b = μ, setting f(z) =
−λK (z − 1), and evaluating the derivatives in (5), we find that

Ci = −λK

(
K − 1

i − 1

)
(−λ)i−1

(λ + μ)K−1
(i = 1, . . . , K). (6)

(This can be established more simply by direct substitution in the right-hand side of (4).)

Next, we take Laplace transforms in (3), writing F̃ (s) for the Laplace transform of F (t).

We find that sÃi(s) − Ai(0) + i (λ + μ) Ãi(s) = CiQ̃(s), and hence that

Ãi(s) =
CiQ̃(s) + Ai(0)

s + i (λ + μ)
.

Since we require G(0, t) = Q(t), (2) yields Q̃(s) =
∑K

i=1 Ãi(s)μ
K−i(−1)i. Therefore,

Q̃(s) =

(
1 −

K∑
i=1

Ci(−1)iμK−i

s + i (λ + μ)

)−1 K∑
i=1

Ai(0)(−1)iμK−i

s + i (λ + μ)
. (7)

The condition G(z, 0) = zN − 1 entails zN − 1 =
∑K

i=1 Ai(0) (λz + μ)K−i (z− 1)i, and so the
constants (Aj(0)) can be determined from Lemma 1. Putting a = λ and b = μ and setting
f(z) = zN − 1, we find that

Ai(0) =

min{i,N}∑
j=1

(
N

j

)(
K − j

i − j

)
(−λ)i−j

(λ + μ)K−j
(i = 1, . . . , K). (8)

We therefore have an explicit expression for Q̃(s), and it remains for us to invert the Laplace
transform. The change of variable s → s/(λ + μ) makes the calculations more manageable.

If R̃(s) = (λ+μ)Q̃((λ+μ)s), then R̃(s) will be the Laplace transform of R(t) = Q(t/(λ+μ)).
Set ρ = μ/(λ + μ) and α = λ/μ. Then, on substituting (6) and (8) into (7) we find that

R̃(s) =
∑K

i=1 aiUi(s), where

ai = ρKαi

min{i,N}∑
j=1

(
N

j

)(
K − j

i − j

)
(−1)j(1 − ρ)−j

and

Ui(s) =
1

(s + i)
(
1 − ρK

∑K
j=1

(
K
j

)
αj
(

j
s+j

)) .

Notice that there is no singularity in Ui(s) at s = −i. But, we shall prove that Ui(s)
has precisely K (first-order) singularities, r1, . . . , rK , which satisfy ri ∈ (−i,−i + 1) (i =
1, 2, . . . , K). Observe that

1 − ρK

K∑
j=1

(
K

j

)
αj

(
j

s + j

)
= ρK

K∑
j=0

(
K

j

)
αj

(
s

s + j

)
=

φ(s)∏K
k=1(s + k)

,
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where

φ(s) = ρK

K∑
j=0

(
K

j

)
αj

K∏
k=0
k �=j

(s + k)

is a degree K polynomial. Its K zeros, r1, . . . , rK , are distinct and satisfy ri ∈ (−i,−i + 1)
because φ(−j) = K!ρK(−α)j (j = 0, 1, . . . , K) are K + 1 distinct values of φ that alternate
in sign, and, since the leading term of φ(s) is sK , we may write φ(s) =

∏K
m=1(s − rm).

Therefore, Ui(s) = Vi(s)/
∏K

m=1(s − rm), where Vi(s) =
∏K

k=1, k �=i(s + k) is a degree K − 1
polynomial that does not vanish at any of r1, . . . , rK (and hence r1, . . . , rK are all the
singularities of Ui(s)). Using partial fractions we get

Ui(s) =
K∑

m=1

(
1

s − rm

)
Vi(rm)∏

k �=m(rm − rk)
,

and so the inversion of R̃(s) is straightforward:

R(t) =
K∑

m=1

ermt

K∑
i=1

ai
Vi(rm)∏

k �=m(rm − rk)
=

K∑
m=1

ermt 1∏
k �=m(rm − rk)

K∑
i=1

ai

∏
k �=i

(rm + k).

(Both products are over k = 1, 2, . . . , K.) Finally, since R(t) = Q((λ + μ)t), we obtain

P0(t) = 1 + Q(t) = 1 +
K∑

m=1

erm(λ+μ)t 1∏
k �=m(rm − rk)

K∑
i=1

ai

∏
k �=i

(rm + k).

On substituting for ai, putting si = −ri to have si > 0 ∀ i, and differentiating with respect
to t, we arrive at our main result.

Theorem 1. The probability density function f of the first passage time to 0 starting in N
is given by

f(t) =
K∑

m=1

sm(λ + μ)e−sm(λ+μ)t∏
k �=m(sk − sm)

K∑
i=1

ρK−i
∏
k �=i

(k − sm)

min{i,N}∑
j=1

(
N

j

)(
K − j

i − j

)
(−1)j−1(1 − ρ)i−j,

where ρ = μ/(λ + μ) and s1, . . . , sK are the roots of

K∑
j=0

(
K

j

)(
λ

μ

)j K∏
k=0
k �=j

(s − k) = 0,

arranged so that sm ∈ (m − 1, m) (m = 1, 2, . . . , K).

Remarks (1) Notice that in the limit as λ → 0, rm → m and P0(t) → (1 − e−μt)N . By
reworking our arguments, this can be obtained as an exact result, P0(t) = (1−e−μt)N , when
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λ = 0. It is obviously true because when λ = 0 the N bonds fragment independently at the
same rate μ, each bond lasting for an exponentially distributed amount of time, and thus
T is the maximum of these times.

(2) From more elementary considerations (see for example Section 8.1 of [1]), the expected
first-passage time from N to 0 is

E(T ) =
N∑

n=1

1

μnπn

K∑
m=n

πm,

where μn = μn and πn =
(

K
n

)
(1 − ρ)nρK−n (n = 0, 1, . . . , K), which leads to the explicit

expression

E(T ) =
1

μ

N∑
j=1

K∑
i=j

(
K − j

i − j

)(
i

j

)−1(
λ

μ

)i−j

.

This can be shown to be consistent with Theorem 1 by evaluating E(T ) either as
∫∞

0
Q(t)dt

or as −Q̃(0).
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