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ABSTRACT

In this paper, further properties of the Riesz-Bessel distribution are provided. These

properties allow for the simulation of random variables from the Riesz-Bessel distribution.

Estimation is addressed by nonlinear generalized least squares regression on the empirical

characteristic function. The estimator is seen to approximate the maximum likelihood esti-

mator. The distribution is illustrated with financial data.

1. INTRODUCTION

Bochner (1949) and Feller (1952) demonstrated the connection between the stable dis-

tribution and fractional calculus by proposing a Cauchy problem whose solution is the class

of stable distributions. Specifically, the Cauchy problem studied by Bochner (1949) was

∂p

∂t
= − (−∆)α p (t, x) , p (0, x) = δ (x) ,

where α ∈ (0, 1] , δ (x) is the Dirac delta function and the operator (−∆)α is understood as

the inverse of the Riesz potential defined by the kernel

Jα (x) =
Γ (n/2− α)

πn/24αΓ (α)
|x|2α−n .

The solution is the symmetric 2α-stable distribution. The operator − (−∆)α and its general-

ization by Feller (1952) are part of general theory concerning infinitesimal generators of Lévy

semigroups, that is, the transition probability density functions of Lévy motions. Despite a
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large number of fractional operators (Samko, Kilbas and Marichev, 1993) and the connec-

tion established by Bochner (1949) their remains few specific examples of Cauchy problems

generating Lévy semigroups. Most of the work in this direction remains concentrated on the

stable distribution (Gorenflo and Mainardi, 1998, 1999). In Anh and McVinish (2004), the

Riesz-Bessel distribution is proposed as the solution to the Cauchy problem

∂p

∂t
= − (−∆)α (I −∆)γ p (t, x) , p (0, x) = δ (x) , (1.1)

where the operator (I −∆)γ is understood as the inverse of the Bessel potential defined by

the kernel

Iγ (x) =
(4π)γ

Γ (γ)

∫ ∞

0
e−π|x|2/s−s/4πsγ−n/2ds

s
.

The solution of (1.1) is given in terms of its spatial Fourier transform

p̂ (t, λ) = exp
[
−t |λ|2α (1 + |λ|2)γ

]
, λ ∈ Rd, (1.2)

and p̂ (t, λ) is a characteristic under certain conditions on α and γ.

As with the stable and Linnik distributions, despite the simple form of the characteristic

function, there is no closed form expression for the probability density function of the Riesz

Bessel distribution. When there is no closed form expression for the density, the problem of

simulating random variables is sometimes addressed via special representations. An example

of this is simulation algorithm proposed by Kozubowski (2000) which makes use of the

mixture representation of the Linnik distribution derived by Kotz and Ostrovskii (1996).

Also, the method of simulating stable random variables proposed by Chambers, Mallow and

Stuck (1976) (see also Weron (1996)) is based on an integral representation due to Zolotarev

(1966).

In the estimation problem, the lack of a closed form for the density means direct maxi-

mum likelihood estimation is usually abandoned. Numerous methods have been proposed for

the stable and Linnik distributions, though they can be applied more generally. An incom-

plete list of these methods include the fractional moment estimation (Kozubowski, 2001 and

Nikias and Shao, 1995), method of moment type (Anderson, 1992 and Press, 1972), minimal
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distance method (Anderson and Arnold, 1993 and Paulson, Holocomb and Leitch, 1975),

log-log regression of characteristic function (Koutrouvelis, 1980) and the k–L procedure of

Feuerverger and McDunnough (1981). The use of these methods is usually supported by

some asymptotic results together with a simulation study to suggest their accuracy on small

samples.

The paper is organized as follows: In section 2, properties of the Riesz-Bessel distribution

are reviewed and two new properties are presented. In Section 3, based on one of the new

properties, a method for simulating a random variable from the Riesz-Bessel distribution is

proposed. In Section 4, the estimation problem for the Riesz-Bessel distribution is studied

within the quasi-likelihood framework (see Heyde (1997) for details). This enables us to see

the k–L procedure as an approximate maximum likelihood approach. The paper concludes

with an illustration of the fitting method by application to Japanese Yen returns data.

2. THE RIESZ-BESSEL DISTRIBUTION

A Lévy motion such that the characteristic function of its distribution at time t is given

by (1.2) is called a Riesz-Bessel-Lévy motion (RBLm) and will be denoted by RB (t). As

stated in the Introduction, (1.2) is a characteristic function, but only for a specific range of

values of α and γ. The conditions for p (t, x) to be a probability distribution are given in

the following theorem.

Theorem 2.1 The function p̂ (t, z) is the characteristic function of a distribution for all t ≥ 0

if and only if α ∈ (0, 1] , α + γ ∈ [0, 1].

This class of distributions can be made strictly type equivalent by setting

p̂ (t, λ) = exp
[
−t |λ|2α (c2 + |λ|2)γ

]
, λ ∈ Rd, (2.1)

with c > 0. However, it will be assumed throughout that c = 1, unless stated otherwise.

Theorem 2.1 was proved in Anh and McVinish (2004) by first showing that

φ (λ) = exp [−tλα(1 + λ)γ] , λ > 0. (2.2)

is the Laplace-Stieltjes transformation of a probability distribution for all t > 0, α ∈
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(0, 1] , α + γ ∈ [0, 1]. The Lévy motion whose distribution at time t has Laplace-Stieltjes

transform (2.2) is called the Riesz-Bessel-Lévy subordinator (RBLs) and will be denoted by

RBS (t). Simple conditioning arguments then show that

RB (t)
d
= W (RBS (t)) (2.3)

where W (t) is a Brownian motion with variance 2t and equality is in the sense of finite

dimensional distributions. A distribution whose Lévy motion can be written in the form

(2.3) is said to be of Type-G. Type-G distributions were introduced in Marcus (1987) and

defined on R1 as being the distribution of a random variable that is equal in law to σZ,

where Z is a standard normal and σ2 is a non-negative infinitely divisible random variable.

An extension to Rd is given in Bandorff-Nielsen and Pérez-Abreu (2002). It should be noted

that representation (2.3) can also be interpreted in terms of a transformation of the heat

(Gaussian) semigroup to a new semigroup.

The role of the parameters α, γ in RBLm is clear from (1.2): The parameter α determines

which moments are finite and so, as t → ∞, the distribution can be re-scaled to converge

to a symmetric 2α-stable distribution. The parameter γ acts together with α to determine

the small time behaviour, that is, as t → 0 the distribution can be re-scaled to converge

to a symmetric 2 (α + γ)-stable distribution. A similar interpretation of the parameters

can be applied to RBLs. This type of behaviour is consistent with experience in applying

stable distributions to financial returns data. Taylor (1986) notes that the index of stability

estimated from returns data tend to increase with time horizon from ∼ 1.6 to near 2. By

taking α = 1 and γ < 0, the RBLm is able to incorporate this observation in a parsimonious

manner. Simulated sample paths demonstrating this property are given in Section 3.

The Laplace-Stieltjes transform of the RBLs has the Lévy representation

E
(
e−λRBS(t)

)
= exp

[
−atλ− t

∫ ∞

0

(
1− e−xλ

)
νS (dx)

]
,

where νS (dx) is called the Lévy measure. The Lévy measure can be expressed in terms of

Kummer’s confluent hypergeometric function,

1 F1 (a; b; x) =
∞∑

k=0

xk

k!

(a)k

(b)k
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and

(a)k =

 1 k = 0

a (a + 1) . . . (a + k) k ≥ 1

see Andrews, Askey and Roy (1999) for details. For α + γ ∈ [0, 1) , a = 0 and

νS (dx) =

[
α 1 F1 (1− γ; 2− α− γ;−x)

Γ (2− α− γ) xα+γ
+

(α + γ) 1 F1 (1− γ; 1− α− γ;−x)

Γ (1− α− γ) x1+α+γ

]
dx, (2.4)

and for α + γ = 1, a = 1 and

νS (dx) = αx−1 [ 1 F1 (α; 1;−x)− 1 F1 (α + 1; 2;−x)] dx. (2.5)

The qualitative behaviour of the paths of RBLs changes with the value of α + γ; when

α + γ = 0, the process is a compound Poisson process; when α + γ ∈ (0, 1), the process is

a pure jump process with jumping times dense in (0,∞); when α + γ = 1, the process is a

compound Poisson process with drift.

The characteristic function of RBLm has Lévy representation

E
(
eiλRB(t)

)
= exp

[
−atλ2 − t

∫
R

(cos (λx)− 1) ν (dx)
]

where ν (dλ) is called the Lévy measure. As RBLm is a subordinated Brownian motion, it’s

Lévy measure is of the form

ν (dx) =
∫ ∞

0
(4πs)−1/2 exp

(
−x2

4s

)
νS (ds) dx, (2.6)

with νS (dx) given by either (2.4) or (2.5). As with RBLs, the qualitative behaviour of the

paths of RBLm changes with the value of α + γ. For α + γ < 1 RBLs and RBLm display

similar behaviour. For α + γ = 1 RBLm is the sum of a compound Poisson process and an

independent Brownian motion.

Despite there being no closed form for the density function of the Riesz-Bessel distribu-

tion, it is still possible to visualize the density by numerical inversion of the characteristic

function. In Figures 1 and 2, the density of the Riesz-Bessel distribution is plotted for

t = 1, α = 1 and γ varying. The graphs were generated using the method described in

Mittnik, Doganoglu and Chen (1999) for the stable distributions. Note that the variance in

these plots is held constant.
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Figure 1: The Riesz-Bessel density calculated by numerical inversion of the Fourier

transform, t = 1, α = 1; γ = −0.8,−0.6, . . . , 0. As γ ↓ −1 the density becomes more peaked

at x = 0. Note that the case α + γ = 0 is excluded, as the corresponding distribution has

an atom at x = 0.

Figure 2: Densities from Figure 1 plotted on the semi-log scale. As γ ↓ −1 the tails of the

distribution become heavier which can also be seen from the Lévy density.

We now consider the problem of determining if RBLs is a member of the class of gen-

eralized convolutions of mixtures of exponentials (GCMED), that is, can RBLs be obtained

as a weak limit of sums of random variables with completely monotone densities. These

results rely on chapter nine of Bondesson (1992). A distribution of the class of GCMED is

a distribution on [0,∞) with Laplace-Stieltjes transform

φ (λ) = exp

[
−aλ +

∫
(0,∞)

(
1

x + λ
− 1

x

)
Q (dx)

]
, λ ≥ 0,

where a ≥ 0 and the non-negative measure Q on (0,∞) satisfies∫
(0,∞)

1

x (1 + x)
Q (dx) <∞.

This class of distributions can be characterized as those infinitely divisible distributions

whose Lévy measure has a completely monotone derivative, in which case the Lévy measure

is given by νS (x) dx =
∫

e−xyQ (dy) dx, (Theorem 9.1.2 of Bondesson (1992)). It is noted

that this class is closed under weak limits (Theorem 9.1.1 of Bondesson (1992)). A special

subclass is obtained by restricting Q (dx) to have an increasing density. The resulting class

is the generalized Gamma convolutions (GGC), that is the class of distributions obtained

as weak limits of sums of Gamma random variables. As GGC contain a large number of

interesting distributions, such as positive stable, Mittag-Leffler, log-normal and generalized

inverse Gaussian to name a few, it is also of interest to establish if RBLs is a member of

GGC.

Proposition 2.1 The Riesz-Bessel-Lévy subordinator is a member of the generalized convo-

lutions of mixtures of exponentials.
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Proof: Assume α + γ ∈ (0, 1) and γ > 0. The inverse Laplace transform of the Lévy density

can be obtained from Equation 3.33.1.3 of Prudnikov, Brychkov and Marichev (1990) and

basic properties of the Laplace transform as

1

π

∫ x

0
sin (απ) uα (1− u)γ−1

+

(
α

u
− α− γ

)
+ sin (π (α + γ)) uα (u− 1)γ−1

+

(
α + γ − α

u

)
du.

(2.7)

The first term of the integrand is positive for u ∈ [0, α/ (α + γ)) and negative for u ∈

(α/ (α + γ) , 1] and zero for u > 1. The second term of the integrand is zero for u ∈ [0, 1]

and positive for all u > 1. It follows that if the integral is non-negative at x = 1 then the

integral is non-negative for all x > 0. From elementary properties of the Gamma function,

the integral at x = 1 is zero and hence the Lévy density is completely monotone on (0,∞).

Now we assume that α + γ ∈ (0, 1) and γ < 0. The inverse Laplace transform of the

Lévy density is given in equation 3.33.1.2 of Prudnikov et al. (1990) as

xα

Γ (α) Γ (1− α)

[
2 F1 (1− γ; α; 1 + α; x)− α + γ

1 + α
2 F1 (1− γ; 1 + α; 2 + α; x)

]
1(0<x≤1)

+
xα+γ−1

Γ (α + γ) Γ (2− α− γ)
[α 2 F1 (1− γ; 1− α− γ; 2− α− γ; 1/x)

+ (1− α− γ) x 2 F1 (1− γ;−α− γ; 1− α− γ; 1/x)] 1(x>1).

For x ∈ [0, 1], taking the series expansion of the Gaussian hypergeometric function yields

2 F1 (1− γ, α; 1 + α; x)− α + γ

1 + α
2 F1 (1− γ, 1 + α; 2 + α; x)

=
∞∑

k=0

(1− γ)k (α)k

(1 + α)k

xk

k!
− α + γ

1 + α

∞∑
k=0

(1− γ)k (1 + α)k

(2 + α)k

xk

k!

= 1− α + γ

1 + α
+

∞∑
k=1

α (1− γ)k

k + α

xk

k!
−

∞∑
k=1

(α + γ) (1− γ)k

k + 1 + α

xk

k!

=
1− γ

1 + α
+

∞∑
k=1

(1− γ)k

(
α

α + k
− α + γ

k + 1 + α

)
xk

k!
.

As γ < 0 it follows that (2.8) is non-negative for x ∈ [0, 1]. For x > 1, the series expansion

of the Gaussian hypergeometric function yields,

α 2 F1 (1− γ, 1− α− γ; 2− α− γ; x)− (1− α− γ) x 2 F1 (1− γ,−α− γ; 1− α− γ; x)
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= α + (1− α− γ) x + α
∞∑

k=1

(1− α− γ) (1− γ)k

k + 1− α− γ

x−k

k!

+ (1− α− γ)
∞∑

k=1

(−α− γ) (1− γ)k

k − α− γ

x1−k

k!

= α + (1− γ) (−α− γ) + (1− α− γ) x

+
∞∑

k=1

{
α +

(−α− γ) (k + 1− γ)

(k + 1)

}
(1− α− γ) (1− γ)k x−k

k! (k + 1− α− γ)

= (−γ) (1− α− γ) + (1− α− γ) x

+ (−γ) (1− α− γ)
∞∑

k=1

(1− γ)k x−k

k! (k + 1− α− γ)

(
1− α + γ

k + 1

)
.

As γ < 0 and α + γ < 1 it follows that (2.8) is positive for x > 1. Hence, the Lévy density

is completely monotone for this range of parameters. The remaining cases, α + γ = 1 and

α+γ = 0, are members of GCMED as this class is closed under weak limits. This completes

the proof.

The functions (2.7) and (2.8) give the density q of the measure Q in the respective

parameter ranges. For γ > 0, α + γ < 1 it is clear that q is not increasing and from

theorem 9.1.4 of Bondesson (1992) it follows that RBLs is not a member of the class GGC.

Furthermore, q is not bounded as x→∞ and hence from theorem 9.1.5 of Bondesson (1992)

it follows that the distribution of RBLs does not have a completely monotone derivative for

any t > 0. These statements also hold for γ < 0. Recall the following property due to Gauss

of the hypergeometric function. If < (c− a− b) < 0, then

lim
x→1−

2 F1 (a; b; c; x)

(1− x)c−a−b =
Γ (c) Γ (a + b− c)

Γ (a) Γ (b)
,

see Andrews et al. (1999) for details. For γ < 0, q satisfies

lim
x→1−

q (x)

(1− x)γ =
1

Γ (α) Γ (1− α)
,

thus, q cannot be increasing and so RBLs is not a member of GGC. Furthermore, as q is

unbounded, the distribution of RBLs does not have a completely monotone derivative for any

t > 0. The remaining case of α+γ = 1 cannot be a member of GGC as RBLs is a compound

Poisson process with drift in this case and hence is not self-decomposable. However, the

distribution of RBLs does have a completely monotone derivative for some t > 0 in this case.
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Proposition 2.2 Let Yt = RBS (t) − t and assume α + γ = 1. The distribution function

of Yt has an atom at zero with mass e−t(1−α). The absolutely continuous component of the

distribution has a density given by

1

π

∫ 1

0
exp

[
−ux− t

(
uα (1− u)1−α cos (απ) + u

)]
sin

(
t sin (απ) uα (1− u)1−α

)
du, x ≥ 0,

(2.9)

provided t ≤ α−α (1− α)α−1 π/ sin (απ).

Proof: The Laplace-Stieltjes transform of the distribution of Yt is given by

φ (λ) = exp
{
−t
[
λα (1 + λ)1−α − λ

]}
. (2.10)

From proposition 2.1 it is known that Yt is a member of the class of GCMED. By application

of some elementary properties of the Laplace transform to (2.5), the density of the Q measure

in this case is given by

q (x) =
t

Γ (α) Γ (1− α)

∫ x

0
(1− u)−α

+ uα−1 (α− u) du.

The above integral is bounded by tαα (1− α)1−α π/ sin (απ) for all α ∈ (0, 1) and hence, the

density q (x) is finite for all x > 0. Application of Theorem 9.1.5 of Bondesson (1992) gives

that the density of RBLs is completely monotone on x > t, t ∈
(
0, α−α (1− α)α−1 π/ sin (απ)

]
for α + γ = 1. It follows that (2.10) is the Stieltjes transform of a Borel measure µ (du)

which may be obtained by application of the Stieltjes complex inversion formula (Widder

(1941) - chapter VIII, theorem 7a).

lim
η→0+

1

2πi

∫ u

0
[φ (−σ − iη)− φ (−σ + iη)] dσ =

µ (u+) + µ (u−)

2
− µ (0+) + µ (0)

2
(2.11)

for λ > 0. The integrand in (2.11) remains bounded as η → 0. Applying the Lebesgue

dominated convergence theorem we see that µ is absolutely continuous and hence has rep-

resentation (2.9). This completes the proof.

From (2.6) and Proposition 2.1 it follows that the density of the Lévy measure of RBLm

is completely monotone on (0,∞). This implies that RBLm for α + γ < 1/2 (this condition

ensures RBLm has paths of bounded variation) can be written as the difference of two
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subordinators whose distribution belongs to the class of GCMED. Geman, Madan and Yor

(2001) provide the following interpretation of these processes in a financial setting. Let St

be the price of some traded asset. The log price process is given by

log (St/S0) = U (t)− V (t)

where U (t) , V (t) are the prevailing buy/sell orders which are modeled as independent sub-

ordinators. The representation of a Lévy measure with a completely monotone derivative

as the Laplace transform of some measure is interpreted as an economy populated by in-

dividuals who submit prevailing price buy or sell orders with an exponential distribution.

The measure from the representation of the Lévy measure relates to the number of orders

per unit time at a particular mean level, with exponential size distribution. A further prop-

erty of subordinators with GCMED distributions is that by solely observing small jumps

information can be obtained on the larger jumps of the process.

3. SIMULATION

It is noted that subordination of a Riesz-Bessel motion by a stable subordinator is again

a Riesz-Bessel motion with a change of its parameters. Precisely, if RB (t) is a Riesz-

Bessel motion with characteristic function (1.2) and St is a stable subordinator with Laplace

transform exp
(
−tzβ

)
then RB (St) is a Riesz-Bessel motion with α := αβ and γ := γβ.

Thus, all Riesz-Bessel motions can be reduced to the subordination of one of the two following

cases: If γ < 0 then it can be obtained by subordination of a Riesz-Bessel motion with

β := α, γ := γ/β and α := 1. If γ > 0 then it can be obtained by subordination of a

Riesz-Bessel motion with β := α + γ, α := α/β and γ := γ/β.

Simulation of a general Riesz-Bessel motion can be carried out by simulating an appropri-

ate stable subordinator and one of the special cases. Simulation of stable random variables

is detailed in Weron (1996). Details on the simulation of stable processes can be found in

Janicki and Weron (1994). Simulation of the two special cases of Riesz-Bessel motion is

discussed below.

First consider the case of α + γ = 1. From Proposition 2.2 it follows that for t ≤
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α−α (1− α)α−1 π/ sin (απ) a Riesz-Bessel random variable with α+γ = 1 can be represented

by

RBt
d
= σtZ, σ2

t
d
= t + δW/A (3.1)

where Z ∼ N (0, 2) , δ is a Bernoulli random variable with Pr (δ = 0) = exp (−tγ) , W is a

exponential random variable with unit mean and A is a random variable with density

1

π
exp

[
−t
(
uα (1− u)1−α cos (απ) + u

)]
sin

(
t sin (απ) uα (1− u)1−α

)
u−1, (3.2)

0 < u < 1. If t > α−α (1− α)α−1 π/ sin (απ) then we can use the property that the Riesz-

Bessel distribution is closed under convolution, that is,

RB (t) =
M∑

k=1

RBk (tk) , t =
M∑

k=1

tk

with tk ≤ α−α (1− α)α−1 π/ sin (απ) for all k and RBk (t) are independent. Simulation from

density (3.2) can be achieved by a rejection sampling algorithm. The algorithm for simulat-

ing RB (t) with α + γ = 1 is given below:

Algorithm 1: Case of α + γ = 1.

1. Repeat

– Generate two independent random variates U1, U2 from the uniform distribution

on [0, 1].

– Set V ← U
1/α
1 .

– Set G← t sin (απ) V α−1 × max
u∈[0,1]

exp
[
−t
(
uα (1− u)1−α cos (απ) + u

)]
.

– Set g ← sin
(
t sin (απ) V α (1− V )1−α

)
exp

[
−t
(
V α (1− V )1−α cos (απ) + V

)]
/V .

– Until U2 < g/G.

2. Generate an exponential random variable W with unit mean and a Bernoulli random

variable δ such that Pr (δ = 0) = exp (−tγ).
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3. Set V = t + δW/V .

4. Generate a Gaussian random variable Z with mean zero and variance 2.

5. Return Z
√

V .

The expected number of iterations required to generate a single random variable is given

by
t sin (απ)

απ (1− exp (−t (1− α)))
max
u∈[0,1]

exp
[
−t
(
uα (1− u)1−α cos (απ) + u

)]
.

It is seen that for moderate values of t the efficiency of the algorithm increases with α while

for t small the efficiency is symmetric about α = 1/2 and increases as α approaches 1 and 0.

The sample paths of Figure 3 were generated using algorithm 1 and time increments of 0.1.

Figure 3: Sample paths of Riesz-Bessel motion with α + γ = 1. Note that as α→ 1 the size

of the jumps in the process becomes smaller.

Now we consider the case of α = 1. This was briefly considered in Anh and McVinish

(2004) where it was noted that the Lévy measure is given by

ν (dx) =
1

Γ (−γ)

(
x(1+γ)e−x + (1 + γ) x−(2+γ)e−x

)
dx

from which it can be seen that RBLs is the sum of a tempered Stable (TS) subordinator, also

called a CGMY process (see Carr, Geman and Yor (2002) for details) and an independent

compound Poisson process with Gamma distributed jumps. In this paper the TS component

will be simulated using a rejection sampling algorithm. The algorithm for simulating RB (t)

with α = 1 is given below.

Algorithm 2: Case of α = 1.

1. Generate a Poisson random variable N with mean t.

2. Generate a Gamma random variable G with shape parameter−γN and scale parameter

1.
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3. Repeat

– Generate a positive stable random variable V , with index 1+γ and scale parameter

t cos (π (1 + γ) /2).

– Generate a random variable U from the uniform distribution of [0, 1].

– Until U < exp (−V ).

4. Generate a Gaussian random variable Z with mean zero and variance 2.

5. Return Z
√

V + G.

In this algorithm most computation is required for the rejection step which generates the

TS component. The efficiency of the rejection algorithm will decrease quickly as t increase,

through for t small the efficiency is near one. The sample paths of Figure 4 were generated

using this algorithm with time increments of 0.1.

Figure 4: Sample paths of Riesz-Bessel motion with α = 1. Note that as γ → −1 RBLm

approaches a compound Poisson process.

How to simulate random variables from the Riesz-Bessel distribution for the case of

{α 6= 1} ∩ {α + γ 6= 1} using the above special cases was described at the beginning of this

section. The efficiency of these algorithms will only be reasonable when the parameter values

are near these special cases, that is, only if α or α + γ are not too far from one. Further

research will hopefully provide more efficient algorithms.

4. PARAMETER ESTIMATION

For distributions which lack a closed form for the density function, maximum likelihood

estimation of parameters is generally not feasible and so one needs an alternative approaches.

For the stable and Linnik distributions estimates based on the empirical characteristic func-

tion have proven useful. For a symmetric distribution, the empirical characteristic function

is defined as

φ̂n (λ) =
1

n

n∑
j=1

cos (λXj)

13



from which it is clear that

E φ̂n (λ) = φ (λ) , cov
(
φ̂n (λ1) , φ̂n (λ2)

)
=

1

2n
[φ (λ1 − λ2) + φ (λ1 + λ2)− 2φ (λ1) φ (λ2)] .

The strong law of large numbers implies that φ̂n (λ) → φ (λ), almost surely, and hence

estimators based on the empirical characteristic function are usually strongly consistent.

A number of estimates based on the empirical characteristic function are described in

the literature. In the context of the stable distribution, Koutrouvelis (1980) proposed the

least squares regression of log(− log |φ̂n(λ)|2) on log |t|, Press (1972) suggested a method of

moments type estimator, Paulson et al. (1975) gave a minimal distance method of estimation,

where the estimate is given by

min
θ

∫ ∞

−∞

∣∣∣φ̂n (λ)− φ (λ)
∣∣∣2 e−λ2

dλ

and the integral is approximated by Gauss-Hermite quadrature, and Feuerverger and Mc-

Dunnogh (1981) proposed the k–L procedure. The method of moments type estimate, min-

imal distance estimate and k–L procedure can be written as the solution to an estimating

equation ∑
i

a (λi; θ)
(
φ̂n (λi)− φ (λi; θ)

)
= 0 (4.1)

for particular choices of a (λ; θ). The theory of quasi-likelihood provides a framework in

which an optimal choice for a (λ; θ) can be made within a given class of estimating functions

such as (4.1) (see Heyde (1997)). Taking the sequence {λi} as fixed, the optimal estimating

equation within the class (4.1) is

Z (θ)T V −1 (θ)
(
φ̂n − φ (θ)

)
= 0 (4.2)

where

Z (θ)ij =
∂φ (λi; θ)

∂θj

, V (θ)ij = cov
(
φ̂n (λi) , φ̂n (λj)

)
(from page 15 of Heyde (1997)), which is precisely the estimator obtained from the k–L

procedure. It was proved by Feuerverger and McDunnogh (1981) that this estimate can be

made to have arbitrarily high asymptotically efficiency. Using the quasi-likelihood framework

14



it is possible to see that for any finite sample size the estimate is an approximate maximum

likelihood estimate. Note that equation (4.2) can be written in the form

1

n

n∑
j=1

∑
i

a (λi; θ) (cos (λiXj)− φ (λi; θ)) = 0.

The quasi-score function minimises the distance to the true score function, that is, it min-

imises

E

(∂ log f (X; θ)

∂θ
−
∑

i

a (λi; θ) (cos (λiXj)− φ (λi; θ))

)2
 , (4.3)

see Heyde (1997) page 13 for details. Now consider the space L2 (f) of functions which a

square integrable with respect to f (x; θ). This Hilbert space can be decomposed into the

subspace of functions that are constant f–a.e., denoted by H, and the subspace of functions

orthogonal to it, that is

L2 (f) = H ⊕H⊥.

Clearly, the score function belongs to the subspace H⊥. It is known that the space of

trigonometric functions is dense in L2 (f). The function cos (λx)−φ (λ; θ) is in H⊥ as it is the

result of cos (λx) being made orthogonal to H. It follows that the functions cos (λx)−φ (λ; θ)

are dense in H⊥ and hence (4.3) can be made arbitrarily small. In summary, the estimating

equation (4.2) can be made arbitrarily close to the true score function by taking a sufficiently

fine sequence of {λi}.

The estimating equation (4.2) can be solved iteratively given a good initial estimate θ0

as follows:

Z (θm)T V (θm)−1 Z (θm) δm = Z (θm)T V (θm)−1
(
φ̂n − φ (θm)

)
(4.4)

θm+1 = θm + δm

The resulting estimate is consistent, asymptotically normal with covariance matrix given by

E (θ̂ − θ)(θ̂ − θ)T =
[
Z (θ)T V −1 (θ) Z (θ)

]−1
.

Equation (4.4) is just generalised least squares and so the method can be easily implemented

is most statistical packages. As the parameters of the Riesz-Bessel distribution need to satisfy
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certain constraints it is advisable to transform the parameters to remove these constraints,

for example, set

α∗ = log
(

α

1− α

)
, γ∗ = log

(
α + γ

1− α− γ

)
, t∗ = log (t) .

and the appropriate changes made to the matrix Z.

The only choice to be made is the sequence {λi} which is common to the other methods

previously mentioned. A large number of ordinates at which the empirical characteristic

function is computed will lead to more efficient estimates, however there is also an increase

in computational cost and stability problems may arise with a near singular matrices. A

simulation study was performed to assess the method in small samples for the Reisz-Bessel

distribution. For each value of the parameter the estimation scheme was applied 50 times to

a sample of size 250. The {λi} was taken to be a sequence from 0.1 to 5 with spacing of 0.1

The results of the simulation study are reported in Table I.

Table I: Performance of estimator in the simulation study.

(α, γ, t) Average Standard Error

(0.9,-0.8,1) (0.9050, -0.7936, 0.9930) (0.0766, 0.1210, 0.1764)

(0.9,-0.6,1) (0.9229, -0.6045, 0.9933) (0.0673, 0.1406, 0.1712)

(0.9,-0.4,1) (0.9524, -0.4247, 1.0001) (0.0653, 0.1855, 0.1587)

(0.9,-0.2,1) (0.9637, -0.2497, 1.0008) (0.0526, 0.1879, 0.1431)

(0.7,-0.6,1) (0.7276, -0.6253, 1.0083) (0.0884, 0.1369, 0.1709)

(0.7,-0.4,1) (0.7579, -0.4476, 1.0176) (0.0797, 0.1513, 0.1553)

(0.7,-0.2,1) (0.8269, -0.3072, 1.0080) (0.0611, 0.1698, 0.1717)

(0.7,0.2,1) (0.7098, 0.1376, 1.0482) (0.0661, 0.1958, 0.1617)

(0.5,0.2,1) (0.4826, 0.2672, 0.9589) (0.0664, 0.2142, 0.1808)

(0.5,0.4,1) (0.5181, 0.3335, 1.0633) (0.0739, 0.2074, 0.1889)

We note that the bias appears to be considerable for small negative values of γ. The bias

does not appear to be as great for small positive values of γ.
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Finally, we illustrate the Riesz-Bessel distribution and the fitting procedure on the ex-

change rate of the Japanese Yen against the US dollar. The data were taken daily close during

the period 12 December 1983 to 8 October 2001. The approach used here assumes that the

Japanese Yen exchange rate follows an exponential transformation of a Riesz-Bessel-Lévy

motion whose distribution is parameterised

p̂ (t, λ) = exp
[
−κt |λ|2α

(
c2 + λ2

)γ]
, λ ∈ R.

Admittedly, this ignores certain dependencies that financial data are known to display, how-

ever, the aim of this application is to demonstrate the fit of the distribution to some real

data. Applying the estimation method described above the following parameter estimates

were obtained with t = 1,

Table II: Parameter estimates for Japanese Yen exchange rate data.

κ α γ c

(0.0057 (0.0015) 0.9999 (0.0015) -0.4869 ( 0.0703) 181.1382 (24.1096)

The value of α being very close to one indicates that the distribution appears to have

finite variance but not Gaussian as γ is significantly different from 0. A plot of the fitted

Riesz-Bessel density with a non-parametric density estimate of the data is given below.

Figure 5: Sample density (solid curve) of the returns of Japanese Yen series and the fitted

Riesz-Bessel density function (dashed curve).
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