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Summary 
The interplay in prostate cancer bone metastases between the “seed” – the prostate cancer 

cells, and the “soil” – the bone microenvironment, has been increasingly recognised as 

integral to the remarkable tropism for bone exhibited by prostate cancer. An explosion of 

research into this area is elucidating the mechanisms involved in this complex crosstalk. 

Recent developments, including the use of bisphosphonates in metastatic disease, 

highlight the important role that bone cells play in the development and progression of 

metastatic prostate cancer. We have reviewed the current literature emphasizing these 

possible mechanisms indicating possible factors for future treatment directions. 
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Introduction 
A feature of prostate cancer is its predilection to metastasize to bone resulting in 

pathologic fractures, bone pain and spinal cord compression. These complications 

severely impact on the patients’ quality of life (1). 

 

The majority of prostate cancer bone lesions are osteoblastic (increased deposition of 

bone) unlike other skeletal metastases which are typically osteolytic due to bone 

destruction. The complex interplay between prostate cancer and the bone 

microenvironment will be discussed in detail in the following mini-review.  

 

Molecular Control of Bone Structure and Function 
Bone is a biphasic composite material composed of mineral (calcium hydroxyapatite) and 

organic matrix (osteoid), endowing high strength and resilience to the skeleton. There are 

two commonly described types of bone tissue: woven bone and lamellar bone. Woven 

bone is structurally characterised by random orientation of its collagen fibrils and often 



high mineral density. It is normally seen in the fetal skeleton at the growth plates. Woven 

bone in an adult is always indicative of a pathologic state (2, 3). 

 

Lamellar bone which usually replaces woven bone is deposited much more slowly and in 

a more orderly, layered manner and is therefore much stronger. It requires a preformed 

solid scaffold and the newly formed lamellae run strictly parallel to the underlying 

surface (2, 3). The cells involved in bone function include osteoprogenitor cells, 

osteoblasts, osteoclasts and osteocytes [refer figure 1] (2, 3).  

Figure 1 - Bone formation and resorption are linked in normal bone. Osteoblasts form 

matrix which becomes mineralised to produce bone and osteoclasts break it down. 

Various osteogenic factors stimulate osteoblast activity, differentiation and proliferation. 

These include factors such as bone morphogenetic protein (BMP), transforming growth 

factor-β (TGF-β), insulin-like growth factor (IGF), fibroblast growth factor (FGF), 

vascular endothelial growth factor (VEGF), and Wnt. The Wnt antagonist DKK-1 

prevents osteoblastic proliferation. Many of these factors are produced by the cells of the 

bone marrow stroma and extracellular matrix. Osteoblasts control osteoclastic activity 

through production of cytokines such as receptor activator of nuclear factor-κB ligand 

(RANKL) which activates osteoclast differentiation, and Osteoprotegerin (OPG) which 

acts as a decoy receptor for RANKL. 



Osteoblasts line the surface of bone and synthesize, transport and arrange the proteins of 

the organic matrix. Osteoblasts express various receptors for many hormones 

(parathyroid hormone [PTH], vitamin D, oestrogen and androgens), cytokines and growth 

factors (bone morphogenetic proteins [BMPs], transforming growth factor-β [TGF-β], 

insulin-like growth factor [IGF], endothelin-1 [ET-1], fibroblast growth factor [FGF], and  

Wnt) all of which control osteoblastic functions (2, 4-6). 

 

The transcription factor RUNX-2 or core-binding factor α1 (CBFA1) drives the 

expression of most genes associated with osteoblast differentiation (2-4, 7). It is activated 

by many growth factors such as FGF, platelet-derived growth factor (PDGF), IGF and 

TGF-β. RUNX-2 also up-regulates expression of other transcription factors such as 

Osterix, another essential factor in the control of osteogenesis (7). 

 

Osteoclasts mediate bone resorption, arising from haematopoietic precursor cells of the 

monocyte-macrophage lineage (1-4). Osteoclast differentiation, maturation and activation 

is dependent on cytokines and growth factors including Interleukin (IL)-1, IL-3, IL-6, IL-

11, tumor necrosis factor (TNF), granulocyte-macrophage colony-stimulating factor 

(GM-CSF), macrophage colony-stimulating factor (M-CSF), parathyroid hormone 

(PTH), activated vitamin D,  and thyroxine (T4) (1, 2, 4).  

 

Both bone stromal cells and osteoblasts produce important factors mediating bone 

metabolism such as RANK (Receptor Activator for Nuclear factor κB), RANK ligand 

(RANKL), and osteoprotegerin (OPG). RANK is a member of the TNF family of 

receptors mainly expressed on the cell surface of osteoclast precursors. RANKL is 

expressed on the surface of osteoblasts and bone marrow stomal cells and is released by 

activated T cells (1, 2, 4). RANKL’s major role is stimulation of osteoclast formation, 

fusion, differentiation, activation and survival. Most of the systemic osteotropic factors 

such as PTH, activated Vitamin D and prostaglandin E2 induce osteoclast formation by 

increasing expression of RANKL on stromal cells and osteoblasts rather than a direct 

effect on the osteoclast precursors (4).   

 



When RANKL binds the RANK receptor on osteoclast precursors, it induces osteoclast 

formation. The soluble protein OPG acting as a decoy RANK receptor inhibits osteoclast 

differentiation and activation (2, 4). Ratio of RANKL to OPG regulates osteoclast 

activity allowing osteoblasts and stromal cells to regulate osteoclast function influencing 

bone homeostasis. 

 

Wnt proteins are primarily involved in developmental control of body axis symmetry and 

branching morphogenesis in utero (8, 9). In mature tissues, Wnts are involved in self-

renewal of stem cells and maintenance of many normal tissues as well as oncogenesis 

(10). Disruption of Wnt signalling results in limb defects in the developing embryo. 

Adult bone remodelling is also affected by defects in Wnt antagonists (9). 

 

Human and mouse studies suggest that Wnt signalling increases bone mass at least in part 

by stimulating osteoblastogenesis. There appears to be a temporal importance of Wnt 

signalling in osteoblast differentiation. Disruption of Wnt signalling by expression of the 

Wnt antagonists Dkk-1 and 2 blocks osteoblast differentiation in immature osteoblasts 

but is required to promote terminal differentiation in late stage osteoblasts. Mesenchymal 

stem cells from which osteoblasts derive can differentiate into several cell types and there 

is considerable evidence that Wnt signalling stimulates osteoblastogenesis and represses 

alternate differentiation pathways (9). Wnt signalling increases expression of 

osteoblastogenic transcription factors such as RUNX-2 and Osterix possibly by direct 

binding of a β-catenin/T Cell Factor (TCF) complex to the RUNX-2 promoter (9). Recent 

studies have suggested that Wnt signalling increases the growth rate of undifferentiated 

and proliferating osteoblast precursor populations and inhibit osteoblast apoptosis 

increasing numbers and survival (9). 

 

Wnt activation may also affect bone formation by increasing the mineralizing activity of 

osteoblasts. Activation of β-catenin in osteoblasts specifically increases expression of 

type I collagen (a major component of the organic matrix). It also affects osteoclast 

function by increasing osteoblastic expression of OPG, decreasing osteoclast 

differentiation and bone resorption (9). 



Bone Remodelling 
Skeletal remodelling involves substitution or replacement of packets of bone and occurs 

continuously throughout life as a means of preserving the mechanical integrity of the 

skeleton. During growth it contributes to bone maturation. In the adult it provides 

metabolically active tissue for calcium homeostasis, eliminates avascular, necrotic bone 

compartments and prevents fatigue by local repair of micro-cracks and fractures (2, 3). 

 

Bone remodelling is characterised by the activation-resorption-formation sequence which 

has a duration of approximately 3 to 4 months in humans. It is initiated with the 

activation of resting cell populations on or near a bone surface. Osteoclasts are the first to 

invade the area and resorb bone, closely followed by osteoblasts that fill the excavated 

site with new bone matrix. Bone formation and resorption are both temporally and 

quantitatively coupled in optimal conditions, such that the activity of osteoclasts and 

osteoblasts is tightly coordinated 

 

The remodelling rate varies from bone to bone and with age. It is activated by various 

growth hormones, thyroid and parathyroid hormones and inhibited by calcitonin, 

cortisone and possibly calcium (3). 

 

Effects of Hormones and Aging on Bone 
Peak bone mass is achieved early in adulthood and is related to nutrition, level of 

physical activity, age and hormonal status. Men experience a gradual age-related loss of 

bone mineral density (BMD) of 7-12% per decade after 30 years of age.  

 

Bone turnover in males is active before 25 years of age, decreases rapidly up to 40 years 

of age when it slows reaching a nadir at 55-60 years of age. After 60 years of age, bone 

resorption as measured by bone turnover markers increases, (as does remodelling rate), 

whilst bone formation remains stable therefore leading to an overall negative balance (3, 

11, 12). Osteoporosis in men however is rarely encountered in men before 70 years of 

age.  



Balanced bone remodelling depends on appropriate hormonal signals. As previously 

mentioned both osteoclasts and osteoblasts have receptors for oestrogens and androgens 

(5, 6, 13). Androgens have direct actions on osteoblasts inducing proliferation and 

differentiation, and inhibiting apoptosis (6).  

 

Testosterone was felt to be most important in men for control of bone metabolism but 

recent evidence suggests that oestrogens play the major role, especially in elderly men 

controlling bone resorption (5, 6, 14, 15).   

 

Age-related decline in BMD may be due to reduced oestradiol and testosterone 

bioavailability with age-related increases in sex hormone binding globulin (SHBG). This 

reduces testosterone available for conversion to oestradiol through aromatization, 

decreasing the protective effects of oestrogen. Thus bone resorption is increased, 

reducing BMD (5, 14, 15). 

 

Oestrogen may act in concert with paracrine factors secreted by osteoblasts reducing pro-

resorptive cytokines such as IL-1, TNF-α, IL-6 M-CSF and PGE2 and increasing the anti-

resorptive cytokine TGF-β. Oestrogen appears to increase OPG production and 

downregulates the expression of RANKL altering the resorptive function of osteoclasts 

via the RANKL/OPG system (13, 16). 

 

Androgen deprivation therapy produces significant osteoporosis reducing BMD by 3-7% 

per year. This exacerbates pre-existing bone loss, leading to osteopenia or osteoporosis in 

nearly 90% of patients after 1 year of treatment and a fivefold increase in skeletal 

fractures for men treated with androgen deprivation compared to age-matched controls 

(5, 15). Whether or not this active, fertile “soil” increases the risk of bone metastases in 

prostate cancer is currently unknown. 

 

Androgen deprivation therapy has been increasingly broadened and is now prescribed for 

locally advanced disease and biochemical relapse after local therapies. Many men are 

now being treated at an early age for longer periods (15, 17). The potential and actual 



major public health cost due to osteoporotic secondary complications in prostate cancer 

patients is increasingly recognized.  

 

Molecular Biology of Prostate Cancer Metastases; Cross Talk and 

Interaction with the Bone Microenvironment in Metastatic Disease 
 

Effects of Bone on Prostate Cancer 
The bone microenvironment has direct effects on prostate cancer cells, which may 

explain the tropism of prostate cancer (CaP) for bone. Many of the factors discussed 

previously produced by bone marrow stromal cells, osteoclasts and osteoblasts also affect 

the prostate cancer cells [refer figure 2].  

 

Figure 2 – Summary of interactions between bone microenvironment and prostate cancer 

cells. Various cytokines and growth factors produced by or released from the bone tissue 

interact with their receptors on the prostate cancer cell (notated for example as IGFR for 



the insulin-like growth factor receptor and the Wnt receptor frizzled and its co-receptor 

LRP5 and 6 on the diagram). Once stimulated these receptors act via various intracellular 

signalling pathways such as the SMAD, androgen receptor associated protein 55 

(ARA55), transducers and activators of transcription (STAT), phosphatidylinositol 3´-

kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) 

signal transducers. These act on various down stream effectors but many interact with the 

androgen receptor itself (AR) which once activated translocates to the nucleus and 

activates the androgen response elements (ARE) to initiate transcription of various 

androgen sensitive genes. Beta catenin which is increased when the Wnt pathway is 

activated controls transcription factors of Lymphoid Enhancer-Binding Factor/T Cell 

Factor (LEF/TCF) family. Beta catenin is targeted for constitutive degradation by 

glycogen synthase kinase 3β (GSK-3β). In the absence of Wnt ligand, GSK 

phosphorylates the bound β-catenin which directs it for ubiquination and subsequent 

proteasomal degradation thereby maintaining low levels of cytoplasmic β-catenin. The 

PI3K/AKT pathway can inhibit the activity of GSK-3β thereby preventing degradation of 

β catenin and increased levels. E cadherin is involved in cell-cell adhesion and is down-

regulated in metastatic prostate cancer. It also has β catenin complexed to it and therefore 

when downregulated may increase the pool of available β catenin intracellularly. 

Phosphatase and tensin homologue (PTEN) causes cell-cycle arrest and apoptosis as well 

as inhibition of cell motility. PTEN function is often downregulated or lost in prostate 

cancer which can increase activity of the PI3/AKT pathway.  

 

Factors specific to bone are involved in chemotaxis and attachment of the prostate cancer 

cell to bone. The bone protein SPARC has been implicated as an important chemotactic 

factor, as has the cytokine CXCL12 also known as Stromal derived factor (SDF-1). 

These, and specific integrins (some of which are upregulated by TGF- β) may mediate 

the initial attraction and attachment of prostate cancer cells to the bone tissue and 

promote metastatic deposit growth (18-20). 

 



Growth Factors 

The bone matrix has several growth factors bound within its structure and once released 

upon bone resorption may promote growth of the tumour. These include IGF, TGF-β,

BMPs and FGF. 

 

IGF-1 

The IGFs abundant in bone are potent mitogens stimulating the growth of tumour cells. 

Once bound IGFs are released via bone resorption, they can enhance metastasis in two 

ways: by increasing cell numbers (proliferation); and by attracting the tumour cells to 

bone (chemotaxis) (21). Prostate cancer cells can also increase IGF levels through 

degradation of the IGFBPs, potentiating these effects. IGF-1  activates the transcriptional 

targets of the androgen receptor (AR) via the PI-3K/AKT pathway, as well as several 

anti-apoptotic mechanisms (22). 

 

TGF-β

Bone is a rich source of TGF-β. Studies have indicated that low levels of TGF-β result in 

cellular proliferation of prostate cancer (21). High levels of TGF-β paradoxically inhibit 

proliferation. 

 

Effects of Prostate Cancer on Bone 
Prostate cancer cells alter bone homeostasis by secreting factors directly affecting 

osteoblast function, or influencing bone formation indirectly by modifying the bone 

matrix or microenvironment. Cancer cells synthesize and deposit bone matrix proteins 

such as osteopontin, osteocalcin, osteonectin and bone sialoprotein within the bone. 

Through this osteomimetic ability they may directly contribute to bone formation (16, 

23).  

 

The prostate cancer cells produce both pro-osteoblastic and pro-osteoclastic factors. 

Some factors are able to function in both manners, depending on timing of production or 

concentration. Whilst radiological secondaries appear osteoblastic, histology and bone 

resorption and formation marker evidence indicates they are mixed osteoblastic and 



osteolytic lesions. Osteoblastic metastases form on trabecular bone at sites of prior 

osteoclastic resorption and are characterised by the weak woven bone tissue predisposing 

the site to fracture. The increased bone production is via an overall increase in bone 

remodelling with induction of osteoblastic mediated bone formation outweighing 

osteoclastic resorption (7, 18, 24). The exact mechanisms by which this occurs are likely 

to be multiple and are still poorly understood. 

 

Pro-Osteolytic Factors Produced by Prostate Cancer Cells 
As noted, it appears osteolysis is required prior to osteoblastic bone deposition in 

metastatic deposits. The cancer cells produce several pro-osteolytic factors which can 

enhance this initial bone resorption [refer figure 3]. 

 

Figure 3 – Summary of interactions between prostate cancer cells and osteoclasts. 

RANKL stimulates osteoclast differentiation and action, and decreases apoptosis. OPG 

acts as a decoy receptor for RANK. The balance between OPG and RANKL is critical in 

controlling osteoclast activity. The prostate cancer cells produce factors which can both 

stimulate or inhibit the activity and regulation of osteoclasts. 

 

Receptor activator of NFκB ligand (RANKL) 

Prostate cancer cells produce RANKL and can directly initiate osteoclastogenesis and 

therefore stimulate bone resorption  (16, 18, 23-25). Upregulation and expression of 



RANKL by prostate cancer cells and osteoblasts is controlled by several factors produced 

by the prostate cancer cells themselves and therefore may act in a paracrine and/or 

autocrine fashion. These factors include PTHrP, IL-6 and 1 and PSA. 

 

Parathyroid hormone related protein (PTHrP), Interleukin-1 and -6 (IL-1 and IL-6) 

PTHrP is an endocrine hormone that evokes the same biological activity at the 

parathyroid hormone receptor as PTH, increasing bone resorption. PTHrP is produced by 

prostate cancer cells and leads to expression of RANKL on bone marrow stromal cells, 

inducing formation of osteoclasts and bone resorption. This releases among other factors, 

TGF-β, which further increases PTHrP production by prostate cancer cells (4, 24, 26). 

PTHrP may protect prostate cancer cells and osteoblasts from apoptosis and act as a 

mitogen to promote tumour growth in addition to its osteoclastogenic properties (18). 

 

Other potent osteoclastogenic factors produced by prostate cancer cells include IL-1 and 

IL-6 (16, 18, 26). IL-6 is a potent stimulator of osteoclast formation and can enhance the 

effects of PTHrP on the formation of osteoclasts. Elevated serum levels of IL-6 correlate 

strongly with objective markers of prostate cancer morbidity and suggest that it may be 

useful as a marker of prostate cancer activity and possibly also disease progression (4, 16, 

18, 26) 

 

Matrix Metalloproteinases (MMPs) 

MMPs promote osteolysis and possibly metastasis by degrading bone matrix and are 

secreted by prostate cancer cells [refer figure 4]. MMP-2 and MMP-9 blood and urine 

levels are increased in patients with prostate metastases.  MMPs are also active during 

osteoclast recruitment to sites of bone remodelling (16). The mechanism by which 

prostate cancer produced MMPs induce bone resorption is not clear. It may involve 

induction of osteoclastogenesis, as inhibition of MMPs reduces the number of osteoclasts 

associated with prostate tumour growth in human bone implants in an experimental 

mouse model (18, 27). 

 



Figure 4 – Summary of interactions between prostate cancer cells and bone marrow 

stroma and extracellular matrix. Much of the effects of prostate cancer cells on the ECM 

pertain to metastasis and epithelial to mesenchymal transformation (EMT). EMT is 

necessary for the successful spread of cancer cells from the prostate to the bone 

metastatic site. 

 

Kallikrein Related Proteases 

The kallikrein related proteases, a family of serine proteases, have specific involvement 

in both normal prostate and prostate cancer. Prostate specific antigen (PSA) or KLK3 is 

one such kallikrein related protease. PSA hydrolyses the seminal vesicle proteins, 

seminogelin I and II in ejaculate, liquefying the seminal clot (28).  PSA has recently been 

shown to decrease OPG mRNA expression and increase RANKL mRNA expression 

suggesting that PSA may induce osteoclast formation (29) 

 



Pro-Osteoblastic Factors Produced by Prostate Cancer Cells 
Multiple products of prostate cancer promote the hallmarks of the osteoblastic reaction – 

increased osteoid surface, osteoid volume and mineralization rate [refer figure 5]. 

 

Osteoprotegerin (OPG) 

Studies suggest a positive association between the presence of metastatic prostate cancer 

and raised OPG levels. Whilst most OPG is likely to be produced by bone marrow cells, 

prostate cancer cells themselves have also been shown to produce OPG (26).  

 

OPG in human prostate cancer cells has also been shown to be a survival factor due to its 

ability to bind TRAIL (a TNF related apoptosis inducing ligand) suppressing apoptosis. 

Production of OPG may therefore be a strategy for survival by providing a decoy target 

for TRAIL produced in and around tumour foci by patient monocytes and other cell types 

(24, 26, 30). 

Figure 5 – Details of interaction between prostate cancer cells and osteoblasts. RUNX2 

controls transcription factors and when activated increases Osteocalcin, Bone 



Sialoprotein, Osteopontin, Alkaline Phosphatase and Type I collagen. Protein kinase C 

(PKC) is another intracellular messenger transduction system. Osterix is another 

controller of transcription factors similar to RUNX2. 

 

Bone Morphogenetic Proteins (BMPs) and Transforming Growth Factor-β (TGF-β)

BMPs and TGF-β are members of the TGF-β superfamily. BMPs have multiple functions 

in bone including apoptosis, differentiation, proliferation and morphogenesis. Target 

genes of the BMPs in osteoblasts include OPG and RUNX-2 (18, 24). 

 

BMPs’ can induce uncommitted stem cells and myoblasts to express osteoblast 

characteristics such as alkaline phosphatase or osteocalcin. Their osteogenic properties 

appear to be specific to the differentiation stage of target cells.  They do not stimulate 

mature osteoblasts or fibroblasts to increase expression of these proteins (18, 24). 

Prostate carcinoma cells produce increasing levels of BMPs as they progress to a more 

aggressive phenotype suggesting upregulation of BMP expression by cancer cells in bone 

is a critical component in the development of osteoblastic lesions (7, 18, 24). 

 

TGF-β upregulates RUNX-2 and similar controllers of osteogenesis. Increased TGF-β

levels are seen in patients with prostate cancer bone metastases compared to those 

without (7, 26). TGF-β1 may act directly on the stroma regulating angiogenesis and 

tumour progression as well as induction of differentiation in bone cell populations, 

induction of growth/survival factors by/for tumour cells and regulation of tumour cell 

attachment to matrices (16, 26). 

 

Insulin-like Growth Factor -1 (IGF-1) 

Serum levels of IGF-1 correlate with risk of prostate cancer and the IGF-1 receptor is 

required for neoplastic transformation (31). Serum levels of IGF-binding proteins 

(IGFBPS) are inversely related to the risk of developing prostate cancer. IGF-1 binds 

receptors on osteoblasts activating RUNX-2 (7, 18). This may provide a link between 

IGF-1 and the development of osteoblastic metastases. 



Endothelin-1 (ET-1) 

Endothelin-1 is a potent vasoconstrictor that belongs to a family of three 21-amino-acid 

peptides. ET-1s effects are mediated mainly through the ETA receptor. ET-1 has been 

detected in osteocytes, osteoblasts, osteoclasts and vascular endothelial cells. ET-1 

stimulates mitogenesis in osteoblasts which have both ETA and ETB receptors. It also 

enhances the effects of other osteoblast-stimulatory factors such as BMP-7 to induce 

bone formation (4, 18, 24, 32). 

 

Prostate epithelium produces ET-1 and has high affinity receptors throughout the gland. 

ET-1 levels are increased in patients with osteoblastic metastases from prostate cancer 

(4). Tumour produced ET-1 may have paracrine (on bone cells) and/or autocrine effects 

(on tumour growth and apoptosis). Exogenous ET-1 increases prostate cancer cell 

proliferation and augments the effects of IGF-1, PDGF, EGF and FGF-2. It has also been 

shown that ET-1 production is increased by prostate cancer cells in contact with bone (7, 

18, 24, 32). Substantial data associates ET-1 with osteoblastic metastases in prostate 

cancer. 

 

Vascular Endothelial Growth Factor (VEGF) 

VEGF is a key regulator of physiologic and pathophysiologic angiogenesis. VEGF 

promotes endothelial cell proliferation, survival and migration. The effects of VEGF are 

mediated via several receptors. The two key receptor tyrosine kinases are VEGFR-1 and 

VEGFR-2. VEGF has previously been shown to regulate bone formation indirectly by 

controlling vascularity within the developing growth plate (7). VEGF has a direct effect 

on bone formation by stimulating migration and proliferation of human osteoblasts (33).  

 

Prostate cancer cells produce VEGF facilitating tumour growth by enhancing 

angiogenesis and possibly migratory ability. The VEGF produced by tumour cells binds 

neuropilin-1 on pre-osteoblasts inducing osteoblast differentiation and in conjunction 

with other tumour related pro-osteoblastic factors, results in osteosclerotic lesions (7, 33). 

 



Kallikrein Related Proteases and Urinary Plasminogen Activator (uPA) 

PSA and KLK2 mediate cell proliferation in both the normal and malignant prostate by 

interactions with the insulin-like growth factor axis. PSA has potent mitogenic activity 

for osteoblasts. This may be through elevation of IGF-1 acting as an osteoblastic growth 

factor increasing bone deposition. PSA may achieve this by degrading IGFBP3 thereby 

increasing bioavailability of IGF-1. Another pathway may be through PSA activating the 

latent form of TGF-β (4, 26, 28, 29, 34). PSA may also have a direct role in modulation 

of genes involved in bone remodelling, including upregulation of genes such as RUNX-2, 

osteopontin, and TGF-β (29).  

 

PSA increases bone deposition by cleaving PTHrP (18). PTHrP has multiple effects on 

the bone and prostate cancer cell populations but its degradation may reduce bone 

resorption thereby tending toward increased deposition (4, 7, 28, 29, 34, 35). 

 

uPA is another serine protease produced by prostate cancer which acts as an osteoblast 

growth factor. This may be due to increasing IGF-1 levels by hydrolysing IGFBP-3 and  

activating latent growth factors such as TGF-β similarly to PSA (4, 7, 18). 

 

Wnts 

The Wnt pathway has been implicated in the development of osteoblastic metastases in 

prostate cancer in several ways. Wnt signalling by the prostate cancer cells may promote 

osteomimicry. Expression by tumour cells of the bone matrix protein osteopontin (OPN), 

the OPN receptor CD44 and RUNX2, and the ability to produce mineralised matrix has 

been noted. The Wnt pathway may be involved in this osteomimicry in that both OPN 

and CD44 are Wnt regulated genes and the canonical Wnts stimulate osteoblast 

mineralization and differentiation (8, 9).  

 

Other evidence pointing to the involvement of the Wnt pathway is conflicting, indicating 

the complexity of the Wnt pathway and its role in bone metastases. Hall et al have 

suggested an elegant mechanism of Wnt involvement in prostate cancer osteoblastic 

metastases (9). They have suggested that the involvement of Wnt agonists and 



antagonists are integrated with many of the previously mentioned factors to produce a 

phasic model. Refer to figure 6 for an overview of interactions between prostate cancer 

cells and bone. 

 

Figure 6 – Overview of the complex interactions between prostate cancer cells and the 

bone microenvironment promoting tumour establishment and growth of osteoblastic 

metastases. Shaded area illustrates metastatic cascade factors which promote prostate 

cancer cell metastases from primary cancer deposit.  

 

Integrated Phasic Model of Metastatic Prostate Cancer 

In this model, initially the prostate cancer cells target bone and establish metastases and 

produce pro-osteolytic factors such as RANKL, IL-6, PTHrP and the Wnt antagonist and 

inhibitor of osteoblastic activity dickkopf-1 (DKK-1). The osteolytic activity releases 

growth factors stored in the bone, modifying the bone microenvironment which then 

alters the prostate cancer phenotype. Tumour cells then produce osteoblastic factors 

including BMP, PTHrP (which can act as an anabolic factor through inhibition of 

OPG



osteoblastic apoptosis) and factors which block osteoclastic activity such as OPG. DKK-1 

expression also decreases activating the Wnt pathway which increases osteogenesis. This 

therefore transforms an initial osteolytic phenotype to an osteoblastic one. As the deposit 

expands, it outgrows its initial blood supply producing hypoxia, inducing VEGF and ET-

1 expression to promote angiogenesis. Both the cytokines also have osteoblastic activity, 

enhancing bone production (9). 

 

This model may explain why apparently conflicting data has been noted by various 

research groups due to the phasic activity of the factors involved. 

 

Conclusion 
As is obvious from the preceding discussion and figures, the complex interplay of the 

pathways involved is significant. As new technologies such as micro-array evolve and are 

used more extensively, this complexity is likely to continue to grow. A continued 

challenge for researchers is identification and characterisation of the important pathways 

and components of the bone/cancer interplay. Only through this dedication will one day 

effective therapeutic interventions become available to impact on this pre-eminent issue 

in men’s health. 
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